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Abstract 

A detailed 3-D tomographic model of the whole mantle beneath the northern hemisphere (north of ~ 30°N 
latitude) is obtained by inverting a large amount of P-wave arrival time data (P, pP, and PP) to investigate transition 
of subducted slabs beneath Eurasia–Arctic–North America. We apply an updated global tomographic method 
that can investigate the whole mantle 3-D structure beneath a target area with high resolution comparable 
to that of regional tomography. The final tomographic model is obtained by performing independent calculations 
for 12 different target areas and stitching together the results. Our model clearly shows the subducted Izanagi 
and Farallon slabs penetrating into the lower mantle beneath Eurasia and North America, respectively. In the region 
from Canada to Greenland, a stagnant slab lying below the 660-km discontinuity is revealed. Because this slab 
has a texture that seems to be due to subducted oceanic ridges, the slab might be composed of the Farallon and Kula 
slabs that had subducted during ~60–50 Ma. During that period, a complex rift system represented by division 
between Canada and Greenland was developed. The oceanic ridge subduction and hot upwelling in the big mantle 
wedge above the stagnant slab caused a tensional stress field, which might have induced these complex tectonic 
events.

Keywords Seismic tomography, Arctic region, Subducting slab, Subduction zone, Big mantle wedge (BMW), Izanagi 
slab, Farallon slab

1 Introduction
The underground structure beneath the circum-Arctic 
region (Fig.  1) is a frontier of our geoscientific knowl-
edge, which is poorly understood compared to other 
regions of the northern hemisphere. Especially in recent 
years, the underground structure and tectonics of this 
region have received wide attentions because, for exam-
ple, a possibility of resource mining has increased due to 
decrease in ice in the Arctic Ocean, and the underground 

temperature affects melting of the Greenland Ice Sheet 
and global sea level rise (Martos et  al. 2018; Toyokuni 
et al. 2020a).

The slabs that have subducted into the mantle may 
affect the evolution of the Earth’s surface. Especially in 
the northern hemisphere, the Farallon and Izanagi slabs, 
which had subducted for a long time, are considered to 
have a decisive impact (Fig. 2). Recent studies have sug-
gested that the Mid-Atlantic Ridge (MAR) in the north-
ern hemisphere was opened by hot mantle return-flow 
when the Farallon slab beneath North America sank 
into the lower mantle (e.g., Dal Zilio 2018; Dal Zilio et al. 
2018). The Farallon slab beneath North America has 
been revealed by many previous studies using seismic 
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tomography (e.g., Grand et al. 1997; Schmid et al. 2002; 
Zhao 2004; Zhao et al. 2013), but the subducted Izanagi 
slab beneath Eurasia is still poorly understood.

One of the major mysteries of tectonics in the circum-
Arctic region is the existence of the Canadian Arctic rift 
system (CARS). Its latest activity was the Eurekan rifting 
episode (ERE), symbolized by the division between 
Greenland and Canada and complex movement of the 
Canadian Arctic Archipelago (CAA), which took place 
between 63 and 35  Ma (Gion et  al. 2017) (Fig.  2c). It is 
known that this division began in the Labrador Sea on 

the southern side and propagated to Baffin Bay on the 
northern side. Simultaneously, flood basalts erupted 
widely in West Greenland, Davis Strait, and Baffin Island 
(Chalmers et  al. 1995; Larsen et  al. 2016). Traditionally, 
these events were thought to be induced by the rising 
Iceland plume (Gerlings et  al. 2009; Gill et  al. 1992). 
However, reconstruction of the plume track (Peace et al. 
2017), geothermal heat flow estimation (Artemieva 
2019; Martos et al. 2018), and seismic velocity structure 
(Toyokuni et  al. 2020a) suggest that it is unlikely that 
the Iceland plume passed through this area. Peace et al. 

Fig. 1 Map of the circum-Arctic region. The color scale for the topography is shown at the bottom. White color denotes the Greenland Ice Sheet. 
Red triangles: active volcanoes; thick blue lines: plate boundaries. CAA = Canadian Arctic Archipelago; BB = Baffin Bay; DS = Davis Strait; HB = Hudson 
Bay; LS = Labrador Sea; SJ = Sea of Japan; SO = Sea of Okhotsk
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(2017) proposed that a far-field tectonic force caused 
the division, but they did not mention what the force is. 
During that period, some smaller plates, e.g., the Kula 
and Vancouver plates (Fig.  2c) as well as oceanic ridges 
in-betweens, might have also subducted, so their roles 
should be also considered.

In Greenland, a seismograph network has recently 
been installed with international cooperation, and high-
quality data have been accumulated (Clinton et al. 2014; 
Toyokuni et  al. 2014). The underground structures 
beneath Greenland, Iceland, and surrounding regions 
have been extensively investigated by seismic wave-
form analyses (Kumar et  al. 2007; Mordret et  al. 2016; 

Toyokuni et al. 2015, 2018, 2021a), surface wave tomog-
raphy (Antonijevic and Lees 2018; Darbyshire et  al. 
2004, 2018; Levshin et  al. 2017; Mordret 2018; Pilidou 
et  al. 2004; Pourpoint et  al. 2018), body wave tomogra-
phy (Toyokuni and Zhao 2021; Toyokuni et al. 2020a, b), 
and full-wave tomography (Rickers et al. 2013). Although 
several previous studies targeted the whole circum-Arc-
tic region, these only focused on the structure shallower 
than 700  km depth (Jakovlev et  al. 2012; Lebedev et  al. 
2018). Seismic tomography, especially body-wave tomog-
raphy, is a well-established high-resolution method for 
investigating the 3-D mantle structure of the Earth. To 
investigate the relationship between tectonics of the 

Fig. 2 Past plate positions estimated by the plate reconstruction (Müller et al. 2019). The age of reconstruction is shown above each panel. Red 
jagged lines delineate subduction zones, and blue lines denote mid-ocean ridges and transform faults. The length and azimuth of each arrow 
denote the rate and direction of the absolute plate motion, respectively. The scale for the plate motion rate is shown on the right. EUR = Eurasian 
Plate; FAR = Farallon Plate; GRN = Greenland Plate; IZA = Izanagi Plate; K = Kula Plate; NAM = North American Plate; PAC = Pacific Plate; V = Vancouver 
Plate
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circum-Arctic region and large-scale geodynamic events 
such as plate subduction and hot mantle plumes that 
occurred or are occurring in or around the Arctic region, 
we need to study the whole mantle structure with high 
resolution over a vast horizontal scale. In this study we 
exploit the updated global tomography method that can 
reveal the whole mantle P-wave velocity ( VP ) structure 
beneath a specific area with high resolution (Toyokuni 
et al. 2020b; Zhao et al. 2017) to execute multiple com-
putations for different areas, and to obtain detailed pan-
oramic tomography by stitching the individual images 
together. The purpose of this study is to obtain robust 
images of the Izanagi, Farallon and other possible slabs in 
this region, to investigate their relationships, and to infer 
the cause of ERE from a tectonic viewpoint using our 
novel tomographic model.

2  Data and method
We apply the multiscale global tomography method by 
Zhao et  al. (2017), which adopts a fine 3-D grid for the 
target region and a coarse 3-D grid for the surround-
ing regions of the globe. Thus, the 3-D velocity model 
beneath the target region can be obtained with high 

resolution while saving computational resources. Apply-
ing this method to the Izu-Bonin subduction zone, Zhao 
et al. (2017) investigated the detailed 3-D structure of the 
subducted Pacific slab where the 2015 Bonin deep earth-
quake (M7.9; ~670  km depth) took place. This method 
was also applied to investigate the whole mantle struc-
ture beneath Greenland (Toyokuni et  al. 2020b), the 
South China Sea (Zhao et al. 2021), and Southeast Asia 
(Toyokuni et al. 2022).

We apply a coordinate transformation technique to 
move the center of the target area to the equator (longi-
tude = 90°, latitude = 0°) to treat high latitude areas with 
a nearly rectangular grid distribution (Takenaka et  al. 
2017; Toyokuni et al. 2020a, b). To clarify the relationship 
between tectonic features with a large horizontal scale 
such as plate subduction and hot mantle upwelling, our 
target covers the entire region north of ~ 30°N latitude. 
The computational cost is reduced by performing inde-
pendent calculations with 12 different regions and super-
imposing the results to obtain a final tomographic model.

Table 1 shows the central location (longitude and lati-
tude) of each of the 12 regions. Each calculation is per-
formed for a region covering the longitude range from 60° 

Table 1 Information on the tomographic inversions for the 12 regions

(in): inside the target volume; (out): outside the target volume;  Nstation: the number of stations;  Nevent: the number of seismic events;  NP,  NpP, and  NPP: the number of 
arrival times for P, pP, and PP waves;  Ntotal: the total number of arrival times used

Region Center (lon, lat) Block size Nstation (in) Nstation (total) Nevent NP NpP NPP Ntotal

1 (0.0, 90.0) 0.1° × 5.0 km (in) 923 12,543 17,827 5,762,140 188,989 128,476 6,079,605

1.0° × 20.0 km (out)

2 (−38.461, 90.0) 0.1° × 5.0 km (in) 1295 12,640 19,045 6,084,018 196,719 130,135 6,410,872

1.0° × 20.0 km (out)

3 (−100.0, 60.0) 0.1° × 5.0 km (in) 4164 12,612 17,671 5,738,009 190,145 129,393 6,057,547

1.0° × 20.0 km (out)

4 (110.0, 50.0) 0.7° × 10.0 km (in) 1183 12,485 16,033 5,623,441 183,447 122,100 5,928,988

1.3° × 20.0 km (out)

5 (80.0, 60.0) 0.2° × 10.0 km (in) 1028 12,555 19,288 6,006,788 197,460 131,146 6,335,394

1.0° × 20.0 km (out)

6 (−70.0, 50.0) 0.1° × 5.0 km (in) 2469 12,565 17,167 5,658,950 178,360 127,522 5,964,832

1.0° × 20.0 km (out)

7 (−120.0, 35.0) 0.1° × 5.0 km (in) 3618 12,612 19,817 6,190,973 206,735 134,798 6,532,506

1.0° × 20.0 km (out)

8 (−170.0, 40.0) 0.3° × 10.0 km (in) 705 12,659 19,515 6,448,371 209,746 134,384 6,792,501

1.0° × 20.0 km (out)

9 (150.0, 35.0) 0.7° × 10.0 km (in) 1021 12,611 17,150 5,907,332 186,988 127,138 6,221,458

1.3° × 20.0 km (out)

10 (60.0, 35.0) 0.3° × 10.0 km (in) 2307 12,551 19,120 5,974,579 198,425 131,238 6,304,242

1.0° × 20.0 km (out)

11 (10.0, 40.0) 0.1° × 5.0 km (in) 3863 12,558 19,078 5,919,055 187,066 129,807 6,235,928

1.0° × 20.0 km (out)

12 (−30.0, 35.0) 0.1° × 5.0 km (in) 1687 12,542 17,276 5,664,954 178,391 126,679 5,970,024

1.0° × 20.0 km (out)
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to 120° and the latitude range from – 30° to 30° after the 
coordinate transformation. In the vicinity of the North 
Pole, where only a few seismic stations and earthquakes 
exist, calculations are performed in two regions rotated 
by ~ 40° around the North Pole to reduce the distortion 
of the tomographic results due to the grid arrangement 
(Regions 1 and 2). In addition, 10 regions with different 
positions and angles are further arranged around them 
(Regions 3–12) (Fig. 3).

Data are collected from the ISC-EHB catalog at the 
International Seismological Centre (ISC) website (http:// 
www. isc. ac. uk/) and further selected for our analysis. The 
P, pP, and PP (Additional file 1: Fig. S1) arrival times from 

170,435 earthquakes that occurred during 1964–2016 are 
selected. To make the hypocentral distribution uniform, 
the entire crust and mantle are divided into small cubic 
blocks, and in each block only one earthquake with the 
maximum number of data is extracted. We extract as 
many earthquakes as possible that occurred inside the 
target region, by adopting finer blocks inside the target 
region and coarser blocks outside it. The block size is 
changed for each calculation to roughly homogenize the 
number of earthquakes and data used in each calcula-
tion ("Block size" in  Table  1 and Figs.  4 and Additional 
file 1: S2–S12). Table 1 also shows the numbers of earth-
quakes, seismic stations, and arrival time data used.

Fig. 3 Distribution of Regions 1–12 listed in Table 1. The points denote the grid nodes adopted for interpolation to obtain the final tomographic 
model

http://www.isc.ac.uk/
http://www.isc.ac.uk/
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We set up a fine 3-D grid with a lateral grid interval of 
55.6 km (i.e., a great circle distance of 0.5° on the surface) 
in the target volume, and a coarse 3-D grid with a lateral 
grid interval of 222.39 km (a great circle distance of 2.0° 
on the surface) in the whole crust and mantle. The vertical 
grid intervals inside and outside the target volume are 
also different. Table  S1 in the  Additional file  1  shows 
the depths of grid meshes and the number of grid nodes 
at each depth inside and outside of the target volume. 
We note that theoretical travel times and ray paths 
are calculated using a 3-D ray tracing method (Zhao 

2004) that combines the pseudo-bending scheme (Um 
and Thurber 1987) and Snell’s law. The IASP91 model 
(Kennett and Engdahl 1991) is taken to be the 1-D initial 
VP model for the tomographic inversion (Additional 
file 1: Fig. S13). The LSQR algorithm (Paige and Saunders 
1982) with damping and smoothing regularizations 
is used to conduct the tomographic inversion (Zhao 
2004). The optimal values of the damping and smoothing 
parameters are determined by conducting trade-off curve 
analysis following the previous studies (Toyokuni et  al. 
2020b, 2022; Zhao et al. 2017, 2021).

The obtained 12 tomographic models are combined 
with the following procedure (Additional file 1: Fig. S14).

1. To reduce the boundary effect of the target region, 
the edges of each tomographic model are cut off. 
Considering the trade-off between the degree of 
smooth connection among regions and the amount 
of information, we extract only the results 4° inside 
the longitude and latitude ranges of each target 
region.

2. Transforming the coordinates of the 12 tomographic 
models and aligning them with the coordinate system 
of Region 1.

3. A grid for connection (hereinafter we call it 
connection grid) is generated with an interval of 
0.5° in both latitude and longitude directions and an 
interval of 10 km in depth direction from the surface 
to the core-mantle boundary (CMB) according to the 
coordinate system of Region 1.

4. Finding the VP and ray hit-count values of each 
tomographic model at the connection grid. This is 
done by linear interpolation of the values at the eight 
grid nodes of each tomographic model surrounding 
the connection grid.

5. At the connection grid, weighted average of 
overlapping tomographic models is performed using 
the ray hit-count.

As a result, the final tomographic model is obtained 
from the surface to the CMB beneath the region north 
of ~ 30°N latitude. Such jointing of multiple tomographic 
models has been adopted by previous studies targeting a 
wide area (e.g., Jakovlev et al. 2012). Figure 5 shows the 
transition of the tomographic result when the number 
of regions is gradually increased from the result when 
only Region 1 is considered. Even after more regions are 
added, the fluctuation of the structural features is negligi-
ble, and no artificial structural boundary appears.

The edge cutoff width (4°) in the above-mentioned 
step (1) is selected based on the following results. Figure 

Fig. 4 Global distribution of a earthquakes and b seismic stations, 
and c distribution of earthquakes (yellow stars) and seismic stations 
(blue rectangles) inside the target region, used in the tomographic 
inversion for Region 1 (Table 1). The red box indicates the target 
region. The thick black lines denote plate boundaries. The coordinate 
transformation is applied (see the text for details)
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Fig. 5 Map views of VP tomography at a depth of 800 km for a Region 1 only, b Regions 1 and 2, c Regions 1–4, d Regions 1–6, e Regions 1–6, 8, 
and 11, and f Regions 1–12. The blue and red colors denote high and low VP perturbations, respectively, whose scale (in %) is shown on the right. 
Areas with average hit counts < 20 are masked in gray. Thick black lines: plate boundaries
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S15 in the  Additional file  1 shows the difference in the 
connection results due to different edge cutoff widths 
for each of the 12 inversion regions for a vertical cross-
section through North America. Six results are shown: 
without the edge cutoff, and with the edge cutoff widths 
of 1°, 2°, 3°, 4°, and 5°. As for this cross-section, when 
the edge cutoff width is 3°  or smaller, the influence of 
the edges of each tomographic model on the inversion 
regions is clearly visible. However, when the edge cutoff 
width is 4° or 5°, the connection looks smooth. To 
demonstrate this more objectively, we performed the 
following analysis. For each connection grid, we calculate 
the difference in VP  perturbations ( dVP)  for each of the 
connected results without the edge cutoff, and with the 
edge cutoff widths of 1°, 2°, 3°, and 4°, from the reference 
result with the edge cutoff width of 5°. The arithmetic 
mean roughness (AMR) of the differences is calculated as 
follows:

where i ∈ {0, 1, 2, 3, 4} , N  is the number of connection 
grid nodes within a range of ±2.5° from the boundaries 
of the inversion regions and with the ray hit-count ≥ 20, 
dVP0n is dVP of the connected tomographic model 
without edge cutoff at the n th grid, and dVPin is dVP of the 
connected tomographic model with the edge cutoff width 
of i◦ at the n th grid. The resulting AMR0 , AMR1 , AMR2 , 
AMR3 , and AMR4 are 0.0324, 0.0253, 0.0197, 0.0125, and 
0.0070, respectively. We can see that as the edge cutoff 
width increases, the discrepancy across the boundaries 
between the inversion regions is reduced. Since there 
is almost no difference in the results for the edge cutoff 
widths of 4° and 5°, we adopt 4° as the cutoff width for the 
final model, considering the trade-off between the degree 
of smooth connection among the inversion regions and 
the amount of information.

The resolution of the tomographic images and 
the reliability of the obtained structural features are 
investigated by performing multiple synthetic tests 
including the checkerboard resolution test (CRT) 
(Humphreys and Clayton 1988; Zhao et  al. 2017), 
restoring resolution test (RRT) (Toyokuni et  al. 2021b; 
Zhao et al. 2017), and synthetic resolution test (SRT).

3  Results
Figure  6 shows selected map views of the tomographic 
image; the complete results are shown in the support-
ing information (Additional file 1: Fig. S16). For the areas 
where some of the 12 regions overlap, the ray hit count 

(1)AMRi(%) =
1

N

N

n=1

dVPin − dVP5n

(HC) in each region is averaged, and the areas where 
average HC < 20 (Additional file  1: Fig. S17) are masked 
in white. At 160  km depth, high-VP anomalies are vis-
ible in subduction zones (Marker A, Fig.  6a), and low-
VP (Marker B, Fig.  6a) and high-VP (Marker C, Fig.  6a) 
anomalies appear in the western and eastern parts of 
North America, respectively, which are generally consist-
ent with previous tomographic models (e.g., Golos et al. 
2018). At 400 km depth, a low-VP zone beneath the Ice-
land (Marker D, Fig. 6b) and Azores (Marker E, Fig. 6b) 
hotspots is visible. At a depth of 800 km, a wide range of 
high-VP from North America to North Eurasia (Marker 
F, Fig. 6c) and low-VP in surrounding regions (Marker G, 
Fig. 6c) are prominent. At a depth of 1500 km, no distinc-
tive feature is visible (Fig. 6d), but at 2100 km depth the 
“Greenland plume” (Marker H, Fig.  6e) (Toyokuni et  al. 
2020b) and low-VP anomalies beneath the western Pacific 
(Marker I, Fig. 6e) are prominent. At a depth of 2880 km, 
there is a marked increase in the amplitude of high-VP 
and low-VP anomalies near the CMB (Fig. 6f ).

Figure  7 shows selected vertical cross-sections of the 
tomographic model, in which the zones with dVP exceed-
ing + 0.25% are outlined. The subducting Farallon slab 
beneath the North American continent is clearly visible 
down to the lower mantle (Fig. 7a). Beneath the Eurasian 
continent, the Izanagi slab penetrating into the lower 
mantle is also clearly revealed (Fig. 7c). The shapes of the 
Farallon and Izanagi slabs in our tomographic model are 
almost the same as those predicted theoretically (Peng 
et  al. 2021), so they can be identified easily. As a plate 
becomes thicker and heavier as it moves away from the 
ridge axis, it is likely to fall into the lower mantle after 
stagnating around the 660-km discontinuity. The pen-
etration of the Farallon slab into the lower mantle has 
already been revealed by many tomographic studies (e.g., 
Grand et al. 1997; Schmid et al. 2002; Zhao 2004; Zhao 
et al. 2013). However, the deep penetration of the Izan-
agi slab was only predicted by studies based on mantle 
convection modeling (Peng et  al. 2021). This is the first 
time that the deeply penetrating Izanagi slab is clearly 
imaged by seismic tomography. In Fig. 7a, we can also see 
a low-VP anomaly, which appears to be a hot plume rising 
from the CMB below Hawaii toward the western coast 
of North America (e.g., Nelson and Grand 2018; Stein-
berger et al. 2019).

Beneath Canada and Greenland, located between the 
two penetrating slabs, a high-VP anomaly lies at a depth 
of ~800  km (Fig.  7b). Although this high-VP anomaly 
is visible almost near the surface at the western end, it 
deepens toward the east and extends with a total length 
of ~2500 km. This feature looks like a supersized stagnant 
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Fig. 6 Map views of VP tomography at six depths obtained by this study. The layer depth is shown above each map. The blue and red colors denote 
high and low VP perturbations, respectively, whose scale (in %) is shown on the right. Areas with average hit counts < 20 are masked in white. Red 
triangles: active volcanoes; thick black lines: plate boundaries
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slab. Vertical cross-sections with a finer grid interval 
beneath Canada and Greenland are shown in Fig. 8; the 
same cross-sections with a much finer grid interval are 
shown in the supporting information (Additional file  1: 
Fig. S18). The appearance changes even in a narrow area, 

but the high-VP anomaly dipping eastward down to the 
mantle transition zone (MTZ) beneath the west coast of 
the North American continent and lying long below the 
MTZ is visible in many cross-sections.

We compare our model with the previous global 
tomography models. Ten VP tomographic models are 
adopted for the comparison, i.e., UU-P07 (Amaru 
2007), MITP08 (Li et  al. 2008), GyPSuM-P (Simmons 
et al. 2010), LLNL_G3Dv3 (Simmons et al. 2012), GAP-
P4 (Fukao and Obayashi 2013; Obayashi et  al. 2013), 
SPani-P (Tesoniero et  al. 2015), Hosseini2016 (Hosseini 
2016), MITP_USA_2016MAY (Burdick et  al. 2017), 
TX2019slab-P (Lu et al. 2019), and DETOX-P3 (Hosseini 
et  al. 2020). These models were downloaded from the 
SubMachine website (http:// www. earth. ox. ac. uk/ ~smach 
ine/ cgi/ index. php) (Hosseini et  al. 2018). We compare 
our model with these previous models (Figs.  9, 10). 
Note that our model is displayed with a different color 
palette from that used in Figs. 5, 6, 7 and 8 to compare 
these models using the same color palette. These figures 
show that the main features in Fig.  7a are robust  (A-A′ 
in Fig.  9), but those in Figs.  7b, c vary depending on 
the model  (B-B′ in Fig.  9 and C-C′ in Fig.  10). Images 
of the Japan subduction zone are also shown in Fig.  10 
(D-D′) for comparison with other models. The 3-D seis-
mic structure under the Japan Islands is relatively well 
known, thanks to many previous studies of this region 
(see a recent review by Zhao 2021). Our model clearly 
shows the subducting Pacific slab, demonstrating the reli-
ability of our VP model.

To perform the resolution tests including CRT, RRT, 
and SRT, we construct the following five input VP models: 
(1) CRT1: the checkerboard has a lateral grid interval 
of 278 km (a great circle distance of 2.5° on the surface) 
inside the study region, (2) CRT2: the lateral grid interval 
is 167 km (a great circle distance of 1.5° on the surface) 
inside the study region, (3) RRT1: highlighting the 
pattern of the obtained tomographic result, (4) RRT2: 
the same as RRT1 but a regional rectangular high-VP 
anomaly is added at depths of 650–800  km, and (5) 
SRT: a regional rectangular high-VP anomaly is added at 
depths of 0–250  km, but VP perturbations at the other 
grid nodes are set to zero.

Main features of the test results are summarized in 
Figs. 11 and 12; the complete test results are shown in the 
supporting information for the CRT1 (Additional file  1: 
Fig. S19), CRT2 (Additional file 1: Fig. S20), RRT1 (Addi-
tional file 1: Fig. S21), RRT2 (Additional file 1: Fig. S22), 
and SRT (Additional file 1: Fig. S23). Figures S19 and S20 
in the Additional file 1 show the distribution of recovery 
rates estimated from the CRT results:

Fig. 7 Vertical cross-sections of VP tomography showing main 
tectonic features. a–c Vertical cross-sections along three profiles 
as shown on the map d. The scale for VP perturbation (in %) is shown 
on the bottom right. The 410-km and 660-km discontinuities are 
shown in black solid lines. The thick black lines on the surface denote 
land areas. Areas with average hit counts < 20 are masked in white. 
The blue zones outlined by thin black lines are high-VP anomalies 
with amplitudes exceeding +0.25%. Red triangles: active volcanoes 
existing within ±2° of each profile; yellow stars: large earthquakes 
(M ≥ 6) that occurred during 1964–2016 within ±2° of each profile; 
green circles: points dividing the section equidistantly using 
the central angle of the earth, which correspond to those in d. On 
the map (d), red triangles: active volcanoes; thick green lines: plate 
boundaries

http://www.earth.ox.ac.uk/~smachine/cgi/index.php
http://www.earth.ox.ac.uk/~smachine/cgi/index.php
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Fig. 8 Vertical cross-sections of VP tomography along eight profiles beneath North America and Greenland as shown on the inset map. The 410-km 
and 660-km discontinuities are shown in black solid lines. The thick black lines on the surface denote land areas. Active volcanoes within a ±2° width 
of each profile are shown as red triangles. The color scale and masking threshold are the same as those in Fig. 7. CAA = Canadian Arctic Archipelago
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The CRT results show that the resolution in our study 
region is 1.5° in the lateral direction and the distances 
comparable to the vertical grid interval in the depth 
direction for regions with average HC ≥ 20. The two RRT 
results (Figs. 11, Additional file 1: S21 and S22) show that 
the pattern of tomographic results can be recovered very 
well. The SRT results (Additional file  1: Fig. S23) show 
that our tomography does not have enough sensitivity 
to a high-VP shallow craton (the upper 250  km depth) 
beneath the Canadian Shield, and that these shield 
anomalies are unlikely to be mistakenly imaged into 
the MTZ but in the shallow mantle as artificial velocity 
anomalies. Figure  12 shows the reliability of main 
features in Fig. 7.

4  Discussion
The map views at depths of ~700–800 km (Figs. 6c, 13e, 
f ) show that the amplitude of high-VP anomalies in the 
region from Canada to the Arctic Ocean is not uniform, 
and that the amplitude changes like stripes. Compari-
son of RRT1 and RRT2 results indicates that this fea-
ture is reliable (Fig.  11). By overlapping the results of 
plate reconstruction (Müller et  al. 2019) according to 
a relationship between depth and subducted slab age 
(Butterworth et  al. 2014), we can see that these stripes 
are coincident with the oceanic ridge axis subducted 
approximately normal to the trench axis. Specifically, 
the regions with the lineament of weaker high-VP ampli-
tudes are consistent well with the ridge axis between the 
Farallon and Kula plates subducted during ~60–50  Ma 
(Figs.  13d, e, f ). Therefore, we consider that the linea-
ment of weak high-VP anomalies indicates the subducted 
oceanic ridge where the slab is thin, and the lineament 
with strong high-VP zones on its both sides indicates the 
part where the slab is relatively thick. This correspond-
ence reinforces the possibility that the high-VP anomaly 
beneath this region reflects a stagnant slab.

According to Domeier et  al. (2017), the previously 
considered Kula plate is a complex of the western Kronos 
plate and the eastern Kula plate, with subduction of the 

(2)

RRi(%) =
(dVP at the ith node of the output model)

(dVP at the ith node of the input model)
× 100

Kula plate beneath the Kronos plate forming a westward 
slope. In this case, the subduction axis of the Kula plate 
runs almost parallel to the eastern Kula–Farallon ridge, 
which better corresponds to the two parallel lineaments 
of weak high-VP zones beneath North America in our 
tomographic results.

The plate near the ridge axis is young and less heavy, 
so it is easy to stagnate at a depth in the mantle. 
Furthermore, the trench axis due to the subduction of 
this area continued to retreat (Fig.  13), providing an 
environment where the slab stagnation was likely to 
occur. When the slab is light enough, it does not fall into 
the lower mantle but keeps stagnating until it is thermally 
assimilated with its surroundings (Nakakuki et al. 2010).

Above the long stagnant slab, a broad wedge-shaped 
mantle called the Big Mantle Wedge (BMW) is formed, 
which was firstly found in East Asia (Zhao et  al. 2004, 
2009; Lei and Zhao 2005). In the BMW, subduction-
driven corner flow and fluids from deep dehydration 
reactions of the stagnant Pacific slab in the MTZ result 
in upwelling of hot and wet asthenospheric materials, 
causing the Japan Sea opening, intraplate volcanism and 
continental rift systems in East Asia. The BMW above 
the subducted Farallon/Nazca slab also caused Cenozoic 
intraplate magmatism in Patagonia (Navarrete et  al. 
2020). Referring to these previous studies, combining 
our tomography and the plate reconstruction results, we 
propose that the BMW above the stagnant slab in the 
circum-Arctic region caused the continental breakup 
during ERE and the accompanying volcanism in West 
Greenland, Davis Strait, and Baffin Island in Tertiary.

Unlike East Asia and Patagonia, the stagnant slab in the 
present study region is characterized by the oceanic ridge 
axis subducted nearly normal to the trench axis. Because 
the oceanic plates diverge to both sides of the ridge axis, 
when the ridge is subducted, a tensional stress field is 
likely to form in the trench-parallel direction in the over-
lying plate. Combined with the dominant trench-normal 
tensional stress regime formed by upwelling flows in the 
BMW, the upper plate in this area is likely to be domi-
nated by tensional stresses oriented in various directions, 
which might have induced the complex division of CAA 
(Fig. 14).

(See figure on next page.)
Fig. 9 Comparison of tomographic models along A-A′ (upper, the same cross-section as Fig. 7a) and B-B′ (lower, the same cross-section as Fig. 7b) 
profiles on the inset map. a This study, b GyPSuM-P (Simmons et al. 2010), c GAP-P4 (Fukao and Obayashi 2013; Obayashi et al. 2013), d LLNL_G3Dv3 
(Simmons et al. 2012), e UU-P07 (Amaru 2007), f MITP08 (Li et al. 2008), g Hosseini2016 (Hosseini 2016), h SPani-P (Tesoniero et al. 2015), i MITP_
USA_2016MAY (Burdick et al. 2017), j DETOX-P3 (Hosseini et al. 2020), and k TX2019slab-P (Lu et al. 2019). The same color scale is adopted for all 
models. The cross-sections b–k are generated at the SubMachine website (https:// www. earth. ox. ac. uk/ ~smach ine/ cgi/ index. php) (Hosseini et al. 
2018)

https://www.earth.ox.ac.uk/~smachine/cgi/index.php
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Fig. 9 (See legend on previous page.)



Page 14 of 20Toyokuni and Zhao  Progress in Earth and Planetary Science           (2023) 10:64 

Fig. 10 The same as Fig. 9 but along C–C′ (upper, the same cross-section as Fig. 7c) and D–D′ (lower, a cross-section through the Japan subduction 
zone) profiles on the inset map
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The root of this stagnant slab is located between the 
Cascadia and Alaska subduction zones in North Amer-
ica, where currently only the strike-slip Queen Charlotte 
Fault exists, and the subduction has already ceased. After 
the ERE, CARS became inactive and the entire rift system 
is now moving as part of the North American Plate. This 
fact also supports our proposal that CARS was induced 
by the stagnant slab. Toyokuni et  al. (2020b) discovered 
the Greenland plume ascending from the CMB beneath 
Greenland, which rises up eastward and is connected 
with Svalbard and Jan Mayen. The direction of plume 
trailing is opposite to the moving direction of the plate 
on which Greenland is placed. However, by considering 
that the stagnant slab may obstruct the upwelling flow, 

the unusual flowline of the Greenland plume (Toyokuni 
et al. 2020b) can be well explained.

A recent study of the Gakkel Ridge basalts suggested a 
subduction influence on the Gakkel MORB (Mid Ocean 
Ridge Basalt), which has a significant water enrichment 
compared to other MORBs sampled globally (Yang et al. 
2021). These geochemical and lithological observations 
have higher spatial resolution around the Gakkel Ridge 
than our tomography, so it is hard to confirm one-to-one 
correspondence between the two results. However, our 
result shows that a stagnant slab exists near the Gakkel 
ridge, which supports the results of Yang et al. (2021).

The stagnant slab revealed by this study is a supersized 
one. Its flat portion in the mantle is as long as ~2000 km 

Fig. 11 Comparison of the RRT results at a depth of 800 km. a The RRT1 input model, b the RRT1 output result, c the RRT2 input model, and d 
the RRT2 output result. The blue and red colors denote high and low VP perturbations, respectively, whose scale (in %) is shown on the right. The 
thick black lines denote plate boundaries
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(Fig.  7b). Gianni et  al. (2023) suggested that a similar 
supersized flat slab might exist beneath the Southern 
Atlantic–Southwest Indian ridges and provide MORBs 
with a residual subduction-related geochemical finger-
print. Our results suggest that a similar process might take 
place beneath the Arctic region. The persistence of such 
a stagnant slab depends on a variety of factors, including 
the slab age, trench retreat, and solid–solid phase transi-
tion within the slab (Faccenda and Dal Zilio 2017). Hence, 
further detailed studies are necessary to clarify this issue.

5  Conclusions
We investigate the detailed whole-mantle 3-D P-wave 
velocity ( VP ) structure beneath the Northern Hemi-
sphere north of 30°N latitude by combining detailed 
mantle tomographic models obtained piecewisely in 12 
adjacent target regions. Our novel tomographic model 
reveals the following features.

1. The Farallon and Izanagi slabs subducting to the 
lower mantle are revealed clearly. In particular, the 

Fig. 12 Vertical cross-sections along A–A′ (upper-left), B–B′ (upper-right), and C–C′ (lower-left) profiles on the inset map showing a the obtained 
tomographic model, b average ray hit count (HC), c recovery rate (RR) from the CRT1, d RR from the CRT2, e input model of RRT1, and f output 
result of RRT1. The color scales are shown beside the inset map. The 410-km and 660-km discontinuities are shown in black solid lines. The thick 
black lines on the surface denote land areas. The red triangles denote active volcanoes. On the inset map, red triangles: active volcanoes; thick 
green lines: plate boundaries
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Fig. 13 Comparison of VP map views obtained by this study with plate reconstructions (Müller et al. 2019) using an age-depth relationship 
(Butterworth et al. 2014). The depth of the tomography and the age of reconstruction are shown above each panel. The scale for VP perturbation 
(in %) is shown on the right. In e and f, thick arrows show locations of weak high-VP lineaments. Black jagged lines delineate subduction zones, 
and other black lines denote mid-ocean ridges and transform faults. The length and azimuth of each arrow denote the rate and direction 
of the absolute plate motion, respectively. The scale for the plate motion rate is shown on the right. EUR = Eurasian Plate; FAR = Farallon Plate; 
GRN = Greenland Plate; IZA = Izanagi Plate; K = Kula Plate; NAM = North American Plate; PAC = Pacific Plate
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position and shape of the Izanagi slab are clarified for 
the first time by this study.

2. A large-scale high-VP body is revealed in and 
around the mantle transition zone beneath Arctic. 
Continuous subduction of young plates around the 
oceanic ridge that formed the boundary between 
the Farallon and Izanagi slabs might form a stagnant 
slab beneath this region, which is imaged as the high-
VP body. In addition, striped features perpendicular 
to the ancient trench appear in the high-VP body, 
which may reflect the subducted oceanic ridges or 
boundaries of subducted microplates.

3. The subduction of the Farallon and Izanagi slabs and 
their stagnation might have resulted in a large-scale 
big mantle wedge (BMW) beneath the Arctic region, 
creating a tensional stress field in the overriding 
plate. These processes may have caused the breakup 
of Greenland and Canada followed by eruption of 
flood basalts and the formation of the Canadian 
Arctic Archipelago.
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