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Abstract 

This paper provides an overview of inverse studies that estimate earthquake source processes using tsunami-related 
data. Methods and techniques developed with those data associated with the 2004 Sumatra and 2011 Tohoku-oki 
earthquakes were reviewed. These events significantly impacted subsequent studies that focused on great historical 
earthquakes. Thus, recent advancements from studies on great historical earthquakes (M > 8) using old tsunami data, 
including documents and non-digital tsunami waveforms, have been reviewed. Another key earthquake was the 1700 
Cascadia earthquake, and its source process was revealed using geological tsunami deposit data, which have led 
to a recent surge in prehistorical earthquake studies using tsunami deposit data. Considering this, the advancements 
in prehistorical earthquake studies have been reviewed. Finally, expected advancements in earthquake source pro-
cess studies using tsunami-related data in the near future have been discussed.
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1 Introduction
In 2004, the Sumatra–Andaman great earthquake (Mw 
9.1) occurred along a subduction zone in which the 
Indian plate is subducting beneath the Sunda plate and 
generated a devastating tsunami (Fig. 1). Larger tsunami 
heights than 40  m were observed along the northwest-
ern coast of Sumatra, Indonesia (Tsuji et  al. 2006). The 
tsunami severely damaged coasts not only in Indonesia 
and India, but also in Thailand, Sri Lanka, the Maldives, 
and Somalia. Consequently, the 2004 tsunami killed 
approximately 230,000 people along the Indian Ocean 
coast (Srivichai et  al. 2007). In 2011, the Tohoku-oki 
great earthquake (Mw 9.0) occurred in a subduction zone 
along the Japan Trench, where the Pacific plate is sub-
ducting beneath the North American or Okhotsk plates 

(Fig. 2). The earthquake generated a tsunami that reached 
heights as large as 40  m along the Sanriku Coast (Mori 
et al. 2011). The 2011 tsunami killed 19,000 people along 
Japan’s Pacific coast (The Fire and Disaster Management 
Agency 2014). The 2011 tsunami was observed using var-
ious sensors, including GPS buoys, cabled ocean-bottom 
pressure sensors, DART (Deep-ocean Assessment and 
Reporting of Tsunamis) buoys, and tide gauges. Many 
researchers have conducted inverse studies of the source 
processes of these two earthquakes using tsunami-related 
data. New methods and techniques for estimating earth-
quake sources and enhancing existing source-estimation 
skills have been developed via those studies.

This review specifically focused on the methods 
and techniques for estimating source processes using 
observed tsunami-related data. This review is divided 
into three sections. First, the methods and techniques 
developed by published studies on the 2004 Sumatra 
and 2011 Tohoku-oki earthquakes are reviewed. Sec-
ond, recent advancements in research on great his-
torical earthquakes using document data for tsunami 
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heights and tsunami waveforms observed at old tide 
gauges are reviewed. After the source of the 1700 
Cascadia earthquake was revealed using geological 

data (Atwater et al. 1991; Satake et al. 1996), research 
on the source processes of prehistorical earthquakes 
using tsunami deposit data has flourished. Third, the 

Fig. 1 Earthquake sources off Sumatra in Indonesia in 1797 and 1833 (Natawidjaja et al. 2006), 2004 (Fujii and Satake 2007), 2005 (Fujii et al. 2020), 
2007 (Fujii and Satake 2008), 2010 (Satake et al. 2013b)
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advancements in research on the source processes of 
prehistorical earthquakes are reviewed. The third part 
includes key element studies that will lead to source 
process estimation of prehistorical earthquakes in the 
future because those tsunami deposit studies have 
great future potential. Finally, future advancements in 
these studies using tsunami-related data are discussed.

2  Recent great earthquakes
2.1  The 2004 Suamtra‑Andaman, 2007 Bengkulu, 

and 2010 Mentawai earthquakes
The 2004 Sumatra–Andaman earthquake (Fig.  1) was a 
key earthquake, and its detailed source process was thor-
oughly revealed using various available seismological, 

Fig. 2 Earthquake sources off Tohoku and Hokkaido in Japan in 869 (Namegaya and Satake 2014), 1611 (Yamanaka and Tanioka 2022), 2011 (Satake 
et al. 2013a), 2016 (Gusman et al. 2017) and the seventeenth century (Ioki and Tanioka 2016). Area of panel (b) corresponds to an area specified 
by black-dashed square in panel (a)
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geodetical, and tsunami data (Lay et al. 2005). It is worth 
noting that, the 2004 tsunami was the first tsunami 
detected by the altimetry of two satellites, “Jason-1” 
and “TOPEX/Poseidon” along the pass of the satellites 
(Hirata et al. 2006). Tsunami data from satellites with tsu-
nami waveforms recorded at tide gauges have been used 
to estimate the source processes of earthquakes (Fujii 
and Satake 2007; Lorito et al. 2010; Fujii et al. 2021). In 
addition, the rupture velocity of an earthquake was first 
determined using tsunami data (Hirata et  al. 2006; Fujii 
and Satake 2007; Tanioka et al. 2006). Because both the 
resolution of the source processes using tsunami data and 
the resolution of that using seismic data are increased, 
the discrepancy of the slip distribution or the rupture 
velocity among the different data sets was estimated. As 
a result, it became possible to discuss the frequency-
dependent source processes. The sand materials brought 
by the tsunami into inland areas from the sea (tsunami 
deposits) have been well surveyed and investigated after 
the tsunami. A key finding of Gusman et al. (2012a) was 
that the source process could be constrained by com-
paring the thickness distribution of tsunami deposits 
estimated in a numerical simulation with the observed 
thickness distribution.

Subsequent great earthquakes occurred off Suma-
tra Island in Indonesia in 2007 and 2010 (Fig.  1). The 
source process of the 2007 great Bengkulu earthquake 
(Mw 8.5) was estimated using a joint inversion of tsu-
nami waveforms and InSAR data (Gusman et  al. 2010). 
Gusman et al. (2010) successfully estimated both the slip 
angle and slip amount of each subfault via joint inver-
sion, although typical tsunami waveform inversion esti-
mates only the slip amount of each subfault with a fixed 
slip angle. A smoothness factor was introduced in this 
joint inversion, and its magnitude was quantitatively 
determined based on the Akaike’s Bayesian information 
criterion (ABIC) (Akaike et al. 1980). This joint inversion 
technique has often been used with geodetic and seis-
mological data to estimate the slip distributions of large 
earthquakes. Using the smoothness factor, a small size of 
the subfault (25  km × 25  km) can be used to estimate a 
realistic slip distribution (Gusman et  al. 2010). In 2010, 
the Mentawai earthquake occurred trenchward from 
the source of the 2007 Bengkulu earthquake and gener-
ated large tsunami heights around the Mentawai Islands 
without strong shaking, and it was likely a tsunami earth-
quake (Satake et al. 2013b). The source model (Mw 7.9) 
was estimated from far-field tsunami waveforms; how-
ever, the large tsunami heights on the Mentawai Islands 
could not be explained with the estimated source model 
(Satake et al. 2013b). Hill et al. (2012) explained the large 
tsunami on the Mentawai Islands by using a layered crus-
tal structure model instead of a simple elastic half-space 

model. Recently, Ratnasari et  al. (2020) estimated the 
source process based on W-phase inversion, assuming a 
relatively low rigidity of 1.5 ×  1010 N/m2 near the trench. 
The source model of Ratnasari et  al. (2020) produced a 
similar tsunami to that observed in the Mentawai Islands. 
This suggests that the depth-dependent rigidity along the 
plate interface is the key to estimating the slip amount 
along the fault model of great earthquakes.

2.2  The 2011 Tohoku‑oki earthquake
The 2011 great Tohoku-oki earthquake (Fig.  2) was 
another key earthquake and its detailed source process 
was revealed using various tsunami-related data. The tsu-
nami was observed through various systems such as typi-
cal tide gauges, ocean bottom pressure gauges connected 
by cables, GPS buoy systems (operated by the Port and 
Airport Research Institute in Japan) (Nagai and Shimizu 
2009), and DART buoy systems (operated by the National 
Oceanic and Atmospheric Administration) (Meinig et al. 
2005). In addition to those tsunami waveforms, various 
geophysical observational data, seismic data (including 
broadband and strong motion waveforms), co-seismic 
deformation data obtained from GPS data, ionospheric 
total electron content (TEC) data obtained from GPS 
data (Kakinami et  al. 2012), and ocean bottom electro-
magnetic data (Ichihara et al. 2013) are available. There-
fore, various researchers have investigated the source 
processes of this earthquake using various data sets. As 
a result, it became possible to discuss the frequency-
dependent source processes. Particularly, the source 
process of the northern parts of the source area is still 
controversial.

Maeda et  al. (2011) and Fujii et  al. (2011) estimated 
the large near-trench slip by utilizing the data observed 
at cabled ocean bottom pressure gauges. Yamazaki et al. 
(2018) tried to reconcile the discrepancy between the slip 
estimation from seismic data and that from tsunami data. 
The rupture process of the 2011 Tohoku-oki earthquake 
and the temporal evolution of slip were determined by 
an inversion of tsunami waveform data observed at tide 
gauges, cabled ocean bottom pressure gauges, GPS buoys, 
and DART buoys (Satake et  al. 2013a). Although static 
slip distributions of earthquakes have been estimated 
using tsunami waveforms by various researchers since 
1987 (Satake 1987), the time-dependent slip distribution 
was first estimated for the 2011 Togoku-oki earthquake. 
Gusman et  al. (2012b) determined a slip distribution of 
the earthquake by using a joint inversion of co-seismic 
deformation data from GPS observations and tsunami 
waveforms observed at various station types. Gusman 
et  al. (2012b) were the first study to incorporate aseis-
mic deformation of unconsolidated sediment near the 
trench due to a large horizontal co-seismic displacement 
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into tsunami inversion, which was originally suggested by 
Tanioka and Seno (2001). Yokota et al. (2011) estimated 
the source process of the earthquake using joint inver-
sion with strong motion, teleseismic waves, near-field 
tsunami waves, and geodetic data. Because they success-
fully estimated source processes using various observa-
tional data, Yokota et  al.’s (2011) study was regarded as 
one of the most important studies on earthquake source 
processes. Saito et  al. (2011) found that the tsunami 
waveforms observed at one DART station had dispersive 
characteristics; they used a linearized Boussinesq model 
for tsunami propagation simulation to compute Green`s 
functions for their inversion. Yamazaki et al. (2013) also 
modeled dispersive effects using a non-hydrostatic evolu-
tion of the ocean wave model (NEOWAVE) to compute 
the tsunami propagation. Both models are based on the 
depth-integrated theory with weak dispersive character-
istics and successfully improved the accuracy of the sim-
ulation of the 2011 tsunami. Based on these results, it is 
suggested that weak dispersive characteristics should be 
considered in tsunami simulations for the source process 
determination of great earthquakes.

Furthermore, the 2011 tsunami was observed using 
far-field DART buoys and tide gauges along the Pacific 
Ocean. Watada et  al. (2014) investigated these far-field 
tsunami waveforms and found that the tsunami propa-
gated not only with the wave dispersion itself, but also 
with dispersion effects associated with the self-gravitat-
ing elastic earth. Watada et  al. (2014) also developed a 
method to account for these effects using a theoretical 
dispersion curve. Baba et al. (2017) developed a method 
for directly incorporating these effects into tsunami 
propagation simulations. The dispersion effects associ-
ated with a self-gravitating elastic earth are not negligi-
ble for tsunamis propagating over long distances. Thus, 
the method developed by Watada et al. (2014) to account 
for dispersion effects has been key for investigating the 
source processes of great earthquakes using far-field 
tsunami waveforms. The method was used to investi-
gate the source process of the recent great earthquakes: 
the 2004 Sumatra–Andaman earthquake (Mw 9.2) (Fujii 
et  al. 2021), the 2005 Nias earthquake (Mw 8.6) (Fujii 
et al. 2020), the 2010 Maule, Chile, earthquake (Mw 8.8) 
(Yoshimoto et  al. 2016), the 2014 Iquique, Chile, earth-
quake (Mw 8.0) (Gusman et  al. 2015), the 2015 Illapel, 
Chile earthquake (Mw 8.4) (Heidarzadeh et al. 2015), and 
the 2020 Shumagin, Alaska earthquake (Mw 7.8) (Mulia 
et al. 2022). The details of these advancements in far-field 
tsunami computations have been reviewed by Watada 
(2023).

Ichihara et  al. (2013) showed that ocean bottom elec-
tro-magnetometers near the 2011 Tohoku-oki earth-
quake source detected the 2011 tsunami. Using these 

data, the tsunami source could be constrained. A detailed 
theoretical study (Minami et al. 2017) concluded that the 
tsunami waveform with dispersive characteristics was 
reproduced well from observed ocean-bottom electro-
magnetic data. Especially, it is important that the flow 
speeds during the 2011 tsunami can be reproduced from 
the ocean bottom electromagnetic data. The tsunami was 
also detected as an ionospheric disturbance by analyz-
ing GPS data (Kakinami et al. 2012). The Total Electron 
Content (TEC) along the slanted path between the satel-
lite and receiver was obtained from GPS data and repre-
sents the ionospheric disturbance 300 km above the sea 
level. Because there are more than 1000 GNSS stations 
in Japan, the ionospheric disturbance caused by the 2011 
Tohoku-oki tsunami was detected using the TEC time 
series obtained from GPS stations in Japan (Kakinami 
et al. 2012). If tsunami amplitudes are precisely estimated 
from TEC time series data, such highly dense observa-
tions of tsunami wave fields will be key for investigating 
the source process of great earthquakes in the future.

The characteristics of the sediments deposited by the 
2011 tsunami along Japan’s Pacific coast were thoroughly 
surveyed. Jaffe et  al. (2012) showed that inundated flow 
speeds along a survey line during a tsunami can be esti-
mated by modeling sandy tsunami deposit layers at the 
survey points. Gusman et al. (2018) shows that not only 
the thickness of the tsunami deposits but also grain sizes 
of the tsunami deposits were key to reproduce the 2011 
tsunami behavior along the steep coastal valley. Mitra 
et  al. (2020) developed an inverse method to estimate 
tsunami characteristics, inundated flow depth, and veloc-
ity from tsunami deposit conditions in one-dimensional 
flat bathymetry using a deep learning neural network. 
These results indicate that a detailed tsunami deposit 
distribution is a key element that will lead to estimating 
the source processes of historical and pre-historical great 
earthquakes in the future.

After the 2011 Tohoku earthquake, a dense cabled 
observation network called the seafloor observation 
network for earthquakes and tsunami around the Japan 
Trench (S-net) was installed. In this network, 150 obser-
vation stations consisting of ocean-bottom pressure sen-
sors and seismometers are connected by cables at 30-km 
intervals (Aoi et  al. 2020). The first earthquake event 
with a tsunami after the installation of the S-net was the 
2016 Fukushima earthquake (Mw 7.1) (Fig. 2). The 2016 
tsunami was observed by pressure sensors of the S-net 
(Kubota et al. 2021), five ocean bottom pressure sensors 
offshore Kamaishi, and tide gauges (Gusman et al. 2017). 
The source process of the 2016 earthquake has been well 
studies using those tsunami data. Kubota et  al. (2021) 
estimated the stress drop of an earthquake and dis-
cussed the stress regime of the source region. Moreover, 
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Mizutani and Yomogida (2021) developed a back-projec-
tion imaging method for tsunami waveforms, applied it 
to the observed ocean bottom tsunami waveform data, 
and estimated the tsunami source of the 2016 Fukush-
ima earthquake. These advancements in techniques will 
be a key for understanding the source processes of great 
earthquakes in the future.

3  Historical great earthquakes
Research on source processes of great historical earth-
quakes using tsunami data has recently made signifi-
cant progress. As presented previously, Watada et  al. 
(2014) found that far-field tsunami propagation is largely 
affected by self-gravitating elastic earth. Considering 
this effect has become essential for investigating histori-
cal tsunamis propagating over a long distance (far-field 
tsunamis). The source processes of the 1960 great Chile 
earthquake (Mw 9.3–9.4) were accurately estimated by 
computing the far-field tsunami waveforms with this 
effect and computed near-field co-seismic deformation 
(Ho et al. 2019) (Fig. 3).

The source of the 1854 great Ansei Tokai earthquake 
(Mw 8.5) that occurred in the Nanakai Trough subduc-
tion zone (Japan) was estimated using tsunami wave-
forms from San Francisco and San Diego along the 
California coast (USA) (Kusumoto et  al. 2020) (Fig.  4). 
In 1854, tsunami waveforms observed at tide gauges 
were only available in California, but not in Japan. Those 
results obtained by including the dispersion effects for 
far-field tsunamis showed that far-field tsunami wave-
forms contribute to the estimation of earthquake source 
processes. The source process of the 1707 great Nankai 
earthquake (Mw 8.7) was estimated using a large num-
ber of historical documents of tsunami heights along 
the coast of Shikoku, Kii Peninsula, and Tokai area and 
a key tsunami deposit site data in the Kyusyu region of 
Japan (Furumura et al. 2011). To explain the key tsunami 
deposit data, the source of the earthquake needed to be 
extended about 70 km west from the Ashizuri Peninsula, 
at the westernmost end of the Shikoku region.

The slip distribution of the 1906 Colombia-Ecuador 
great earthquake (Mw 8.7) (Fig. 3) was estimated from 
an old tide-gauge record from Naos Island in Panama, 
located relatively near the source (Yamanaka and 

Fig. 3 Earthquake sources off South America in 1906 (Yamanaka 
and Tanioka 2021), 1942 and 1958 (Collot et al. 2002), 1979 (Adriano 
et al. 2017), 2016 (Gombert et al. 2018), 2014 (Gusman et al. 2015), 
2015 (Heidarzadeh et al. 2015), and 1960 and 2010 (Fujii and Satake 
2012)

▸
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Tanioka 2021). Old tide gauge data occasionally remain 
uncertain and are associated with various unknown 
factors such as absolute time and absolute amplitude. 
To resolve this problem, by comparing the astronomi-
cal tide level changes in the tide gauge record with esti-
mated ones, Yamanaka and Tanioka (2021) validated 
the old tide gauge record for the 1906 tsunami and used 
it in their inversion with synthetic waveforms simulated 
based on a linearized Bousssinesq model. Although 
a single tsunami waveform was used for the tsunami 
waveform inversion, the slip distribution was well 
resolved. The estimated slip distribution of the 1906 
earthquake was compared with the source areas of the 
recent sequence of great earthquakes, namely the 1942 
(Mw 7.9), 1958 (Mw 7.8), 1979 (Mw 8.1), and 2016 (Mw 
7.8) great earthquakes that occurred in the Colombia-
Ecuador subduction zone (Fig.  3). Consequently, the 
stress-release conditions at the plate interface were dis-
cussed by Yamanaka and Tanioka (2021).

The source processes of the 1923 Kanto earthquake 
(Mw 8.0) that occurred beneath the Metropolitan 

Tokyo area (Fig.  4) were re-estimated using tsunami 
waveforms observed at tide gauges in Tokyo Bay and 
the Ibaraki Prefecture, tsunami height survey data 
along the Izu Peninsula, and co-seismic vertical defor-
mation survey data (Nakadai et  al. 2023). The source 
processes were estimated using seismic wave data and 
co-seismic vertical deformation data (e.g. Kobayashi 
and Koketsu 2005; Matsu’ura et  al. 2007). Nakadai 
et  al. (2023) modified digital topography data to be 
consistent with the topography in 1923 for a tsunami 
computation and estimated a slip distribution of the 
earthquake. According to Nakadai et al. (2023), a large 
slip along the plate interface near the Sagami Trough 
was responsible for the large tsunami observed along 
Izu Peninsula. The results of Nakadai et al. (2023) dem-
onstrate that the use of detailed bathymetric and old 
topographic data is essential for tsunami analysis of 
historic great earthquakes.

Historical documents on the tsunami at several loca-
tions in Choshi City are available for the 1703 Genroku 
Kanto earthquake (Mw > 8.3) (Fig. 4), which was another 

Fig. 4 Earthquake sources off Kanto and western parts of Japan in 1677 (Cabinet Office 2013), 1703 (Yanagisawa and Goto 2017), 1707 (Furumura 
et al. 2011), 1771 (Nakamura 2009), 1854 (Tokai: Kusumoto et al. 2020; Nankai: Ando 1975), 1923 (Nakadai et al. 2023). Area of panel (b) corresponds 
to an area specified by black-dashed square in panel (a)
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great earthquake that occurred beneath the Metropolitan 
Tokyo area before the 1923 earthquake (Yanagisawa and 
Goto 2017). Yanagisawa and Goto (2017) investigated the 
source process of the 1703 Genroku earthquake using 
these data and found that a trenchward extent of the fault 
model was necessary. The slip amount of the 1677 Enpo 
Tsunami earthquake (Mw 8.3–8.6) that occurred off Boso 
peninsula was estimated using historical document data 
and tsunami deposit data at Choshi (Yanagisawa et  al. 
2016). The sub-fault model located near the Japan Trench 
that was originally used by Cabinet office (2013) (Fig. 4) 
was used to estimate the slip amount by Yanagisawa et al. 
(2016).

Detailed historical documents are important in deter-
mining the source processes of great earthquakes, and 
for the 1611 Keicho earthquake (Mw 8.5) (Fig.  2), the 
tsunami disaster along the Sanriku Coast is well docu-
mented. One reported that the tsunami overflowed 
the Koyadori pass, with an elevation of 26 m, inside the 
Funakoshi Peninsula from south to north. At three loca-
tions several kilometers away from the Koyadori pass, the 
tsunami reached an elevation of less than 4 m. Yamanaka 
and Tanioka (2022) found that this significant local con-
centration was only produced when the source area was 
located relatively close to Koyadori. They also suggested 
resonance in the southern bay of Koyadori as a poten-
tial mechanism for producing local concentration. Thus, 
Yamanaka and Tanioka (2022) proposed that two large 
slip areas at the plate interface near the Japan Trench 
were necessary to excite the resonance of the bay.

4  Great pre‑historical earthquakes
Source processes of great pre-historical earthquakes have 
been determined by geological studies, including tsunami 
deposits, diatoms, coastal tree fossils, coral microatolls, 
and turbidites. Influential results based on geological 
studies were present for the 1700 Cascadia earthquake 
(Fig. 5). The occurrence of the 1700 Cascadia earthquake 
was suggested from the analysis of tsunami deposits 
and coastal tree ring dating (Atwater et  al. 1991; Atwa-
ter and Yamaguchi 1991) or the presence of turbidites at 
the ocean bottom (Adams 1990; Goldfinger et al. 2003). 
The source process of the 1700 Cascadia earthquake 
was revealed using historical tsunami height informa-
tion without shaking in Japan and the coastal subsidence 
distribution from coastal tree death and tsunami deposit 
data in Cascadia (Satake et  al. 1996, 2003). Those stud-
ies concluded that the 1700 Cascadia earthquake with a 
magnitude range of 8.7–9.2 ruptured the entire Cascadia 
subduction zone.

An earthquake in Hokkaido in the seventeenth cen-
tury (the seventeenth century Hokkaido earthquake) 
was a great prehistoric earthquake (Mw 8.8) in which the 

source process was well determined from geological data 
(Fig. 2). The earthquake source model was first estimated 
by Nanayama et al. (2003) and Satake et al. (2008) based 
on the tsunami deposit distribution along the Pacific 
coast of Hokkaido. Ioki and Tanioka (2016) re-estimated 
the source model of the earthquake using all available 
tsunami deposit data and suggested that the earthquake 
ruptured the plate interface near the Kuril trench. This 
indicates that the source process of the seventeenth cen-
tury Hokkaido earthquake may have been similar to that 
of the 2011 Tohoku-oki earthquake. In addition to the 
earthquake itself, pre- and post-earthquake deformations 
along the Hokkaido coast were first determined by Sawai 
et al. (2004) using the diatom distribution in coastal sedi-
ment layers above or below tsunami deposits. This result 
shows that these sediment analyses are key for under-
standing earthquake generation processes.

Fig. 5 Potential Cascadia earthquake source area (Melgar et al. 2022). 
This source area can be comparable to the area of 1700 Cascadia 
earthquake
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The 869 Jogan earthquake (Fig.  2), which was likely a 
predecessor of the 2011 earthquake, was another event in 
which the source process was well studied using tsunami 
deposit data. Minoura et  al. (2001) surveyed tsunami 
deposits in the Sendai Plain, in the Tohoku region of 
Japan, and suggested that a great earthquake with a large 
tsunami occurred off the Sendai Plain in 869. Namegaya 
et al. (2010) estimated a source model for this earthquake 
(Mw 8.5) using tsunami deposit data from the Sendai 
Plain and Ishinomaki City. The 2011 event provided 
valuable insights into tsunami deposits, as previously 
reviewed. As a result, after the 2011 Tohoku-oki earth-
quake, studies on the tsunami deposit distribution asso-
ciated with the 869 event accelerated (Sawai et al. 2012; 
Sugawara et al. 2013). Namegaya and Satake (2014) sug-
gested that the rupture of the 869 earthquake extended 
over at least 200  km, resulting in a moment magnitude 
of 8.6. An additional important finding by Namegaya and 
Satake (2014) was that the flow depths and velocities of 
the 2011 Tohoku-oki tsunami at most sites where the 
deposits associated with the 2011 tsunami were found 
to be approximately 1  m and 0.6  m/s, respectively. This 
result indicates that there is the required flow depth and 
velocity to produce a tsunami deposit at the site. The 
required flow depth and velocity are key elements that 
will lead to understanding the source processes of prehis-
torical earthquakes in the future.

Studies on coral microatolls along the Sumatra coast 
(Natawidjaja et al. 2004, 2006) are important to find the 
sources of great earthquakes. Microatolls are very sen-
sitive to sea level changes. Since their growth produces 
annual coral bands, historical sea level changes have been 
recorded in them. Then, co-seismic, pre-earthquake, and 
post-earthquake vertical deformations can be analyzed 
from these data. The sources of the Great Sumatra meg-
athrust earthquakes of 1797 and 1833 were estimated 
using these data (Natawidjaja et al. 2006) (Fig. 1).

Sources of great earthquakes can be investigated via 
coral boulder distribution along the coasts as a geologi-
cal study. The 1771 great Yaeyama tsunami killed more 
than 10,000 people on the Ishigaki and Miyako Islands 
in Okinawa, Japan. Many large coral boulders are dis-
tributed along the coasts of Ishigaki and Miyako Islands. 
These are considered to have been caused by a large 
tsunami (Goto et  al. 2010a). Further, the 1771 tsunami 
is considered to have been caused by a large submarine 
landslide, accounting for large local tsunami heights 
ranging from 30 to 80 m. Okamura et al. (2018) suggested 
that the tsunami was caused by an accretionary prism 
collapse from seismic profiles and geomorphological evi-
dence. By contrast, Nakamura (2009) suggested that the 
tsunami was generated by a great earthquake (Mw 8.0) 
(Fig.  4). Goto et  al. (2010b) showed that small boulders 

found off the coasts of the Okinawa Islands along the 
northeast of the Ryuku Trench could be moved by coastal 
waves under storm conditions; however, large boul-
ders off the Ishigaki or Miyako Islands along the south-
west of the Ryuku Trench could not be moved by such 
waves. Therefore, all large boulders off the Ishigaki and 
Miyako Islands must have been moved by large tsuna-
mis. By dating the coral boulders, a tsunami was found 
to have occurred in 1600–1630, and a big wave was doc-
umented in 1625 at Ishigaki Island (Araoka et al. 2010). 
Even before this event, many events had been identified 
to have occurred in the previous 2000 years (Goto 2017). 
This indicates that large tsunamis generated by great 
earthquakes repeatedly occurred along the southeastern 
part of the Ryukyu Trench, but not along the northwest 
part of Ryukyu Trench.

5  Discussion
Since the great 2004 Sumatra–Andaman and 2011 
Tohoku-oki earthquakes, research on earthquake 
source processes using various tsunami-related data has 
advanced intensively, as shown in this review. However, 
future improvements are still needed in source process 
studies of historical and pre-historical great earthquakes. 
One expected advancement is the development of non-
linear inversion methods using tsunami waveforms or 
heights. The observation data of tsunamis associated 
with great historical earthquakes are based solely on his-
torical documents or tsunami waveforms observed by 
old tide gauges. That is, offshore tsunami observational 
data are unavailable for such events. Nearshore tsunami 
dynamics of large amplitude waves are strongly influ-
enced by nonlinear effects. To use observational data 
for historical large tsunamis in the estimation of earth-
quake source processes, nonlinear inversion techniques 
are required. For seismological studies, nonlinear inver-
sion methods have been already developed (e.g., Taran-
tola 2005; Brossier et al. 2010). For geodetical data, such 
as GNSS measurements, the Markov chain Monte Carlo 
(MCMC) method has been used for source process anal-
ysis of earthquakes (Ito et al. 2016; Yamada et al. 2022). 
In tsunami analysis, forward tsunami modeling is still 
occasionally used to determine the source processes of 
historical earthquakes through trial and error although 
Nemoto et al. (2019) proposed a weekly nonlinear inver-
sion method. Nonlinear inversion methods for estimat-
ing earthquake source processes from tsunami data must 
be developed and applied to various events to assess their 
performances.

Tsunami deposits provide key data for understand-
ing the source processes of prehistorical earthquakes. 
In general, tsunami inundation areas estimated from 
tsunami deposit data are used to estimate the source 
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Table 1 Important progress in source studies of great earthquakes reported in this review

Section Name of earthquake Mw References Important progress (*data, #parameter, and 
$method)

Recent great earthquakes 2004 Sumatra–Andaman 9.1 Hirata et al. (2006)
Tanioka et al. (2006)
Fujii and Satake (2007)
Lorito et al. (2010)
Gusman et al. (2012a)
Fujii et al. (2021)

satellite data*, rupture velocity#
satellite data*, rupture velocity#
satellite data*, rupture velocity#
satellite data*, GPS data*, slip angle#, rupture 
velocity#
deposit (thickness data)*$
far-field (Watada et al. 2014)$

2007 Bengkulu 8.5 Gusman et al. (2010) InSAR data*, slip angle#

2010 Mentawai tsunami 7.9 Satake, et al. (2013b)
Hill et al. (2012)
Ratnasari et al. (2020)

detail survey*
layered crustal structure$
depth-dependent rigidity$

2011 Tohoku-oki 9.0 Satake et al. (2013a)
Gusman et al. (2012b)
Yokota et al. (2011)
Saito et al. (2011)
Yamazaki et al. (2013)
Watada et al. (2014)
Baba et al. (2017)
Ichihara et al. (2013)
Minami et al. (2017)
Kakinami et al. (2012)
Jaffe et al. (2012)
Gusman et al. (2018)
Mitra et al. (2020)

temporal evolution slip$
deformation of sediments near the trench$
seismic wave + geodetic + tsunami$
dispersive wave equations$
dispersive wave equations$
dispersion effects with the self-gravitating 
elastic earth$
dispersion effects with the self-gravitating 
elastic earth
electro-magnetometer data*$
electro-magnetometer data*$
TEC data from GPS data*$
sedimental data by tsunami*$
sedimental data by tsunami*$
sedimental data by tsunami*$

2005 Nias (Sumatra) 8.6 Fujii et al. (2020) far-field (Watada et al. 2014)$

2010 Maule (Chile) 8.8 Yoshimoto et al. (2016) far-field (Watada et al. 2014)$

2014 Iquique (Chile) 8.0 Gusman et al. (2015) far-field (Watada et al. 2014)$

2015 Illapel (Chile) 8.4 Heidarzadeh et al. (2015) far-field (Watada et al. 2014)$

2020 Shumagin (Alaska) 7.8 Mulia et al. (2022) far-field (Watada et al. 2014)$

2016 Fukushima 7.1 Kubota et al. (2021)
Mizutani and Yomogida (2021)

S-net data*, stress drop#$
S-net data*, back-projection imaging$

Historical 1960 Chile 9.3–9.4 Ho et al. (2019) far-field (Watada et al. 2014)$

Great Earthquakes 1854 Ansei Tokai 8.5 Kusumoto et al. 2020) old tide gauges*
far-field (Watada et al. 2014)$

1707 Nankai earthquake 8.7 Furumura et al. (2011) historical document*, tsunami deposit sites*

1906 Colombia-Ecuador 8.7 Yamanaka and Tanioka (2021) old tide gauges*
dispersive wave equations$

1923 Kanto 8.0 Nakadai et al. (2023) old tide gauges*, geodetic data document*, 
old maps*

1703 Genroku Kanto  > 8.3 Yanagisawa and Goto (2017) historical document*, tsunami deposit sites*

1677 Enpo (Boso) 8.3–8.6 Yanagisawa et al. (2016) historical document*,
tsunami deposit sites*

1611 Keicho Sanriku 8.5 Yamanaka and Tanioka (2022) historical document*, resonance of the bay$, 
dispersive wave$

Pre-Historical Earthquakes 1700 Cascadia 8.7–9.2 Atwater and Yamaguchi (1991)
Goldfinger et al. (2003)
Satake et al. (1996)
Satake et al. (2003)

tsunami deposit sites*
tree ring dating*
turbidites*
historical documents (Japan)*
geological evidence (USA)*
historical documents (Japan)*

Seventeenth century Hokkaido 8.8 Nanayama et al. (2003)
Satake et al. (2008)
Ioki and Tanioka (2016)
Sawai et al. (2004)

tsunami deposit sites*
tsunami deposit sites*
tsunami deposit sites*
diatom distribution in sediment*#$
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processes of great earthquakes (e.g., Namegaya and 
Satake 2014; Ioki and Tanioka 2016). Recent stud-
ies further showed that tsunami deposit characteris-
tics provide information about tsunami propagation 
that can be used to constrain the source process of the 
earthquake. Jaffe et  al. (2012), Gusman et  al. (2018), 
and Mitra et  al. (2020) indicated that tsunami char-
acteristics, flow depth or velocity, could be estimated 
from tsunami deposit data. The inverse method using 
a deep-learning neural network developed by Mitra 
et al. (2020) was assuming one-dimensional flat topog-
raphy. A problem with the work by Mitra et al. (2020) is 
that the method only works when the ground gradient 
can be approximated as zero. The sediment transport 
model by Gusman et  al. (2018) works for two-dimen-
sional horizontal (2D) topography as a forward model 
although the 2D topography at the time of the earth-
quake needs to be surveyed before applying the method 
to pre-historical earthquakes. We eagerly anticipate the 
development of an inverse method for 2D topography 
that would allow the extraction of the source processes 
of major earthquakes from the characteristic data 
found in tsunami deposits.

6  Conclusions
The 2004 Sumatra–Andaman and 2011 Tohoku-oki 
great earthquakes were key events that advanced stud-
ies on source processes using tsunami-related data. 
Research on the source processes of historical earth-
quakes has advanced because these two earthquakes 
have been extensively studied. After the source process 
of the 1700 Cascadia earthquake was revealed using 
geological data near the source and tsunami documents 
in Japan, tsunami deposit studies rapidly advanced. 
Those advancements discussed in this review are sum-
marized in Table 1. A nonlinear inversion method using 

tsunami waveforms or heights to obtain the slip distri-
bution of great historical earthquakes is expected to be 
developed in the near future. Inverse methods of tsu-
nami deposit characteristic data in 2D topography must 
be developed to specifically obtain the source processes 
of great earthquakes.
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