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Abstract 

Bridgmanite formation and amorphization in shocked meteorites constrain the pressure and temperature conditions 
during planetary impact. However, the effect of the bridgmanite grain size on its amorphization kinetics is still unclear. 
Here, the amorphization mechanism and kinetics of fine-grained polycrystalline bridgmanite were studied at high 
temperatures up to 1080 K. High-temperature time-resolved synchrotron X-ray diffraction measurements showed 
that significant volume expansion due to temperature-induced amorphization caused static stress, which then hin-
dered amorphization progress. Further, the temperature required for the amorphization of fine-grained bridgmanite 
(~ 1 μm) was found to be approximately 100 K higher than that required for the amorphization of coarse-grained sam-
ples (> 10 μm). We also noted that amorphization preferentially commenced at the twin planes and subgrain bounda-
ries of bridgmanite grains, resulting in lower amorphization temperatures for the coarse-grained samples. The limited 
number of such specific locations in fine-grained natural bridgmanite suggested that grain boundary amorphization 
may be the dominant mechanism for bridgmanite amorphization in shocked meteorites. This unique amorphization 
kinetics would support the preservation of bridgmanite during the post-shock annealing in the shocked meteorite. 
Although bridgmanite amorphization starts easily at temperatures above ~ 420 K, a small amount of bridgmanite 
grains can survive at temperatures above 800 K by the effect of amorphization-induced stress.
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1 Introduction
High-pressure and high-temperature generation 
induced by planetary impact processes can cause con-
stituent minerals to undergo phase transitions, forming 
their high-pressure polymorphs (Gillet and El Goresy 
2013; Hu and Sharp 2022; Stöffler et al. 2018). Further, 
high-pressure minerals, such as stishovite, majorite, 
ringwoodite, and bridgmanite, can be found in shocked 
meteorites that have fallen on Earth (Binns et al. 1969; 
El Goresy et  al. 2004; Ohtani et  al. 2011; Smith and 
Mason 1970; Tomioka and Miyahara 2017; Tschauner 
et  al. 2014). These high-pressure minerals can be 
formed within a few seconds, corresponding to the 
timescale of shock-induced high-pressure pulses dur-
ing impact (Beck et al. 2005; Gillet and El Goresy 2013; 
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Ohtani et  al. 2004; Tiwari et  al. 2022). However, they 
become metastable immediately after pressure release. 
Since the high temperature after pressure release (here-
after, residual post-shock temperature) is maintained 
over several hours, high-pressure minerals often disap-
pear owing to back transformation or amorphization 
(Hu and Sharp 2017; Kimura et  al. 2004). Reportedly, 
the kinetics of these reactions strongly depend on tem-
perature, and possibly, the residual post-shock tem-
perature is a key parameter that determines whether 
high-pressure minerals can survive in shocked meteor-
ites (Kubo et al. 2022; Nishi et al. 2022).

The occurrence of bridgmanites in shocked mete-
orites (Ghosh et  al. 2021; Miyahara et  al. 2011; Tiwari 
et al. 2021; Tomioka and Fujino 1997; Tschauner et al. 
2014) suggests that pressures above 23 GPa are gen-
erated during the impact process. Additionally, the 
residual post-shock temperature should be sufficiently 
low to preserve the structure of bridgmanite, which 
is known to be easily destroyed at high temperatures 
above 400  K and atmospheric pressure (Durben and 
Wolf 1992; Wang et  al. 1992). At much higher tem-
peratures above ~ 800  K, bridgmanite transforms to 
enstatite (Knittle and Jeanloz 1987). A recent experi-
mental study based on time-resolved in  situ X-ray 
diffraction (XRD) measurements showed that the 
amorphization of polycrystalline bridgmanite with 
grain size > 10 μm starts at temperatures above ~ 400 K 
and ends at ~ 700 K, irrespective of the annealing time 
(Nishi et al. 2022). It has also been observed that amor-
phization progress at a constant temperature is strongly 
prevented by static stress, which is induced by volume 
expansion via amorphization. This stress effect enables 
the preservation of bridgmanite during exposure to 
the residual  post-shock temperature, which continues 
for several hours. Additionally, based on microtextural 
observations, it has been inferred that intracrystalline 
amorphization is initiated at specific weak locations 
within bridgmanite grains, such as twin planes and sub-
grain boundaries. However, the grain size correspond-
ing to natural samples is below ~ 1 μm and conspicuous 
dislocations are absent in small grains (Ghosh et  al. 
2021; Tomioka and Fujino 1997; Tschauner et al. 2014). 
Therefore, intracrystalline amorphization may not be 
the dominant mechanism of the amorphization of nat-
ural bridgmanite.

Here, we subjected bridgmanite to time-resolved 
in  situ XRD measurements during amorphization to 
clarify the effect of grain size on bridgmanite amor-
phization at high temperatures. To this end, we used 
bridgmanite with a grain size one order of magnitude 
smaller than that used in a previous study (Nishi et al. 
2022).

2  Methods
Polycrystalline bridgmanite was synthesized from 
 MgSiO3 glass at 25 GPa and 1400  °C using a 3000-ton 
multi-anvil apparatus (Orange-3000) at the Geodynamics 
Research Center, Ehime University, Japan. First,  MgSiO3 
glass was synthesized from a mixture of reagent-grade 
MgO and  SiO2 via melting in a high-temperature fur-
nace. The recovered bulk glass was then shaped into a rod 
(diameter = 2.5 mm) using an ultrasonic machining tool. 
To avoid moisture adsorption, which causes rapid grain 
growth, we used bulk glass without crushing. The cell 
assembly and anvils were almost the same as that used in 
our previous study (Nishi et al. 2022).

Time-resolved high-temperature XRD measurements 
on the polycrystalline bridgmanite were performed at 
beamline BL02B2, SPring-8, Japan (Kawaguchi et  al. 
2017). Specifically, the synthesized polycrystalline bridg-
manite was crushed into several pieces and filled in silica 
glass capillaries (diameter = 0.5 mm). The incident X-ray 
beam, size 1.5 × 0.5 mm, larger than that of the polycrys-
talline sample, was monochromatized to 25  keV using 
Si(111) double crystals. The wavelength was determined 
to be 0.496431  Å using a standard reference material, 
 CeO2. XRD patterns were then obtained every 10 s dur-
ing heating. The fluctuation of incident X-ray intensity 
monitored during the measurements was within 0.1%. 
The temperature was controlled using an  N2 gas blower. 
In runs FBRD07-09, the temperature was raised to the 
target value at a heating rate of 80  K/min and main-
tained for 2–30 min to observe the amorphization kinet-
ics at a constant temperature (Table 1). The heating rates 
employed in the other runs were controlled at 10–30 K/
min, and changes in peak intensity and bridgmanite lat-
tice volume as a function of temperature were noted. The 
integrated intensities of the XRD and cell volumes of the 
crystals during heating were calculated using diffraction 
lines 020, 112, 200, 210, 211, 022, 122, 221, and 204 rela-
tive to the initial intensities before heating. Secondary 
electron images, obtained using a field-emission scan-
ning electron microscope (JSM-IT500HR), were used to 
observe the texture of the recovered bridgmanite.

3  Results
We synthesized fine-grained polycrystalline bridgman-
ite with grain size (G) ~ 0.9  μm (Fig.  1a), much smaller 
than that of bridgmanite synthesized in a previous study 
(Nishi et al. 2022). G was estimated from the relationship: 
G = cL, where c is a constant with a value of 1.56, and L 
is the average intercept length, which is the line length 
divided by the number of grain boundaries (Mendelson 
1969). The experimental conditions and results are pre-
sented in Table  1. The XRD patterns observed before 
heating (300 K) showed the presence of bridgmanite and 
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trace amounts of MgO periclase (Fig. 2a). Amorphization 
at temperatures above 400 K induced a decrease in XRD 
peak intensities and also brought about the appearance 
of an amorphous halo (Fig.  2b), similar to the observa-
tion made in the previous study using a coarse-grained 
sample (Nishi et al. 2022). The XRD peaks of our synthe-
sized fine-grained polycrystalline bridgmanite survived 
at temperatures up to ~ 850  K. In the previous study, it 
was observed that the peaks disappeared at lower tem-
peratures (~ 700 K) (Nishi et al. 2022). Thus, the crystal 
structure of fine-grained bridgmanite is more robust at 
high temperatures.

The relative peak intensities and relative cell volumes 
(V/V0) of bridgmanite as a function of temperature are 
shown in Fig. 3a and b, respectively. Data corresponding 
to coarse-grained bridgmanite polycrystalline (> 10  μm) 
obtained in the previous study are shown for compari-
son (Nishi et  al. 2022). The decrease in the integrated 
peak intensities at temperatures above ~ 420 K indicated 
the partial disappearance of the bridgmanite struc-
ture owing to amorphization. The data showed that the 
fine-grained sample required a higher temperature for 
amorphization than for coarse-grained samples. Thus, 
the fine-grained polycrystalline bridgmanite survived 
at temperatures up to ~ 850  K, ~ 150  K higher than the 

Table 1 Experimental conditions and run products

*Glass capillaries broken during storage time

Run no Temperature
(K)

Heating rate
(K/min)

Keeping time
(minutes)

Cooling time
(minutes)

Relative peak 
intensity

Apparent 
pressure
(GPa)

Gradual heating

FBRD06 300–547 20 – –

FBRD05 300–592 10 – –

FBRD04 300–613 10 – 10

FBRD10 300–1079 30 – –

Constant temperature

FBRD09 554 80 20 80 0.37 (2) 0.51 (6)

FBRD07 576 80 30 80 0.26 (1) 0.51 (6)

FBRD08 613 80 2* 80 0.24 (1) 0.56 (4)

Fig. 1 Secondary electron images of bridgmanite before and after amorphization. a Synthesized polycrystalline bridgmanite used as starting 
material. b Partially amorphized bridgmanite after high-temperature annealing at 554 K (FBRD09). The darker regions surrounding the bridgmanite 
grains represent amorphous phases
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maximum temperature the coarse-grained sample could 
survive (Fig.  3a). As previously observed, the thermal 
expansivity of bridgmanite decreased discontinuously 
following amorphization (Fig. 3b). This change could be 
attributed to the occurrence of stress during the amor-
phization process. The large difference in cell volume 
(~ 32%) between bridgmanite and the amorphous glass 
phase (Fei et  al. 2021) could be attributed to the appar-
ent pressure on bridgmanite grains experienced dur-
ing amorphization. Following the previously reported 
method and assuming that bridgmanite has a constant 
thermal expansivity (2.1 ×  10–5   K−1) (Nishi et  al. 2022), 
we estimated the apparent static pressure on bridgman-
ite during amorphization based on the compressibility of 
its structure as shown in Fig. 3c. The apparent pressure 
on bridgmanite increased due to increasing tempera-
ture, reaching ~ 1.1 GPa at 750 K. All lattice axes showed 
the stress effect (Fig. 4). We also observed that the peak 
intensities and apparent pressure were maintained dur-
ing the cooling process (Fig.  5). Thus, the amorphiza-
tion-induced stress could be maintained at ambient 
temperature.

The amorphization of bridgmanite in meteorites should 
proceed continuously as long as the residual post-shock 
residual temperature is maintained. Figure  6 shows the 
relative peak intensities during the heating process as a 
function of time. In these runs, the temperature was rap-
idly increased to the target value at a heating rate of 80 K/
min and maintained for 2–30 min. The short heating run 
at 613 K was due to the breakdown of the glass capillary 
during heating. As previously observed, the peak inten-
sity suddenly decreased before the target temperature 
was attained and did not change significantly when the 
temperature was kept constant. The kinetic data were 
analyzed using the Avrami rate equation:

where X represents the transformed (amorphous) volume 
fraction, k and n are constants, and t represents the dura-
tion over which the temperature was maintained. The k 
and n values obtained are listed in Table 2. The n values 
obtained in this study (very low n values, less than ~ 0.1) 
were consistent with that reported by Nishi et al. (2022) 
for coarse-grained polycrystalline bridgmanite.

(1)X = 1− exp −kt
n

Fig. 2 a Selected XRD patterns during heating (FBRD10). The heating rate was 30 K/min. The vertical bars indicate peak positions calculated 
for bridgmanite under ambient conditions. The numbers are Miller indices. Pe, periclase. b Magnified XRD pattern of the near amorphous halo 
that appeared at a 2θ range of 3–20°. The amorphous halo signal from the glass capillary was subtracted, taking background measurements 
into account
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4  Discussion
Low n values in the Avrami rate equation indicated 
that the amorphization progress was hindered immedi-
ately after its occurrence. Further, these values differed 
from the general n values above 0.5, indicating continu-
ous reaction progress over time (e.g., Kubo et  al. 2004; 
Starink 2001). Owing to the extremely low n value, the 
bridgmanite volume fraction almost stagnated with time 
(Fig.  6b), even if the post-shock residual temperature is 
maintained long-term after shock events (Nishi et  al. 
2022).

This study, as well as a previous study (Nishi et al. 2022), 
has shown consistent results that bridgmanite amorphi-
zation induces static stress, which prevents further amor-
phization. The temperature required for amorphization 
differs depending on grain size, as shown in Fig. 3. How-
ever, it appeared that the relationship between apparent 
pressure and the bridgmanite fraction surviving after 
amorphization remained unchanged irrespective of grain 
size (Fig.  7). Therefore, it is reasonable to consider that 
the amorphization induced apparent pressure. Further, 
a recent experimental study on bridgmanite amorphiza-
tion under pressure shows that the pressure increases the 
amorphization temperature (Kubo et al. 2022). Thus, the 
hindering of amorphization progress by apparent pres-
sure is plausible. Without the effect of apparent pressure 
on amorphization kinetics, bridgmanite would disappear 
during long post-shock annealing at above ~ 420 K.

We obtained apparent pressures of up to 1.1 GPa using 
strong XRD peaks from bridgmanite at 750  K (Fig.  3c). 
The XRD patterns observed at higher temperatures 
showed the survival of a small amount of bridgmanite 
at temperatures up to ~ 850 K, although the peak inten-
sity was not strong enough to determine the cell param-
eters. Using the linear correlation between apparent 
pressure and temperature (Fig. 3c), the pressure possibly 
reached ~ 1.4 GPa at 850 K.

In many cases of polycrystalline materials, polymor-
phic transformation proceeds via interface-controlled 
growth, following nucleation at the grain boundary. 
Therefore, the overall reaction rate should be faster 

Fig. 3 High-temperature behavior of polycrystalline bridgmanite 
with different grain sizes. The data for the coarse-grained 
polycrystalline bridgmanite (> 10 μm) are based on a previous 
study (Nishi et al. 2022). a Bridgmanite peak intensities as a function 
of temperature. The error bars reflect the standard deviations (1σ) 
derived taking into consideration the various diffraction peaks. b 
Variation of relative volume (V/V0) as a function of temperature. 
The dashed line shows the thermal expansivity of bridgmanite. c 
Apparent pressure on bridgmanite grains. We did not determine 
pressure values at temperatures above 750 K due to the weak peak 
intensities observed

Fig. 4 Unit cell parameters of bridgmanite as a function 
of the temperature (FBRD10). The thermal expansivity decreased 
discontinuously following amorphization at above ~ 420 K
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for smaller grains, which have a larger grain boundary 
area (Cahn 1956; Rubie and Ross 1994). In contrast, our 
results showed a faster amorphization rate for coarse-
grained polycrystalline bridgmanite (Fig.  3). We con-
sider that intracrystalline amorphization contributes 
to the amorphization process for coarse-grained poly-
crystalline. Actually, a previous study indicated that 
amorphization of coarse-grained bridgmanite occurs 
inside the grains rather than at grain boundaries, possi-
bly via the use of specific locations, such as twin planes 
and subgrain boundaries (Nishi et  al. 2022). Because 
intracrystalline amorphization has not been observed 
in fine-grained natural bridgmanite, grain boundary 

amorphization may be the dominant mechanism for 
bridgmanite amorphization in shocked meteorites.

Figure 8 shows the relationship between temperature 
and the amorphous molar fraction with various heating 
timescales. Owing to differences in grain size, the post-
shock residual temperatures estimated in this study 
were higher than those reported in a previous study 
(Nishi et al. 2022). This difference may be due to intrac-
rystalline amorphization in coarse grains, as discussed 
above. Considering the small grains in natural bridg-
manite (< 1 μm), the fine-grained data obtained in this 
study were more suitable for estimating residual post-
shock temperature.

Shock conditions of bridgmanite formation within the 
melt vein in the Tenham meteorite were estimated to be 
23 to 25 GPa and 2200 to 2400 K (Tschauner et al. 2014). 
If such high temperatures were maintained after shock 
pressure release, bridgmanite amorphization would com-
plete even if a short timescale of  10–2 s (Fig. 8). Thus, it 
is reasonable to consider that the shock vein was cooled 
to a temperature roughly equivalent to that of the host 
rock before the shock pressure was released. This result 
is consistent with the previous estimation based on the 
thermal conductivity and transformation texture of con-
stituent minerals (Ohtani et  al. 2004; Xie et  al. 2006). 
If we assume that 10  mol% (8 vol. %) of the bridgman-
ite fraction survived after partial amorphization, then 
the estimated post-shock temperature would be ~ 700  K 
at a constant annealing time of  102  s, while this value 
was 600 K in the previous underestimation (Nishi et  al. 
2022). Thus, the amorphization mechanisms and kinet-
ics of fine-grained bridgmanite can facilitate bridgman-
ite preservation in shocked meteorites. The post-shock 
temperature of meteorites increases with pre-impact 
porosity. Our estimate of the post-shock temperature is 
in good agreement with previous theoretical estimate for 
the Tenham meteorite with 7% porosity (~ 620 K) rather 
than that for the zero-porosity case (~ 400  K) (~ 620  K) 
rather than that assuming non-porous case (~ 400 K) (Xie 
et al. 2006).

Bridgmanite and its amorphous phase found in 
shocked meteorites have various chemical composition, 
including Fe and Al, which may affect the amorphization 
mechanisms and kinetics. Further experiments using Fe- 
and Al-bearing samples would contribute to constraining 
the precise residual temperature.

5  Conclusions
The amorphization mechanisms and kinetics of fine-
grained polycrystalline bridgmanite were investigated 
via time-resolved synchrotron XRD measurements. 
Thus, we observed that irrespective of grain size, 

Fig. 5 High-temperature behavior of fine-grained polycrystalline 
bridgmanite during heating and cooling processes (FBRD04). 
The behavior during continuous heating (FBRD10) is shown 
for comparison. a Bridgmanite peak intensities as a function 
of temperature. The peak intensity was maintained during the cooling 
process. b Variation of relative unit cell volume (V/V0) as a function 
of temperature. The dashed line shows the thermal expansivity 
of bridgmanite. c Apparent pressure on bridgmanite grains. The 
amorphization-induced stress was maintained during the cooling 
process
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significant volume expansion due to amorphization 
induced static stress, which prevented further amorphi-
zation. Intracrystalline amorphization initiated from 
twin planes and/or subgrain boundaries in bridgman-
ite grains may contribute to the amorphization kinetics. 
Thus, we observed that a higher temperature is required 
to induce bridgmanite amorphization for finer grains 
than for coarse grains. Considering the small grains in 
natural bridgmanite (< 1 μm), grain boundary amorphi-
zation may be the dominant amorphization mechanism 
for bridgmanite in shocked meteorites. The survival of 
10  mol% bridgmanite requires a residual temperature 
of ~ 700  K, which is 100  K higher than the previously 
estimated temperature using data corresponding to 

coarse grains. The preservation of bridgmanite in mete-
orites can be explained by the amorphization-induced 
stress during post-shock annealing.

Fig. 6 a Plot of peak intensities as a function of time. Data were obtained from runs with the target temperatures varying in the range of 554–
613 K. The heating rate was 80 K/min. The temperatures were maintained from 0 s after the initial temperature increase (shaded area). b Plots of ln 
ln(1/(1 − X)) as a function of ln (t) for the kinetic data at constant temperatures. The n values in the rate Eq. (1) correspond to the linear slope of these 
plots. The solid lines shown in this figure are based on a fixed n value of 0.05. The back-transition kinetics from  Mg2SiO4 wadsleyite to olivine 
at 1273 K (n = 1.5) (Ming et al. 1991) is also provided for comparison (dashed line)

Table 2 Estimated values of kinetic parameters for bridgmanite 
amorphization

Run No Temperature (K) n ln k ln k for the 
n value of 
0.05

FBRD09 554 0.03 (1) − 0.23 (7) − 0.33 (1)

FBRD07 576 0.06 (1) − 0.16 (5) − 0.10 (1)

FBRD08 613 0.00 (2) 0.34 (8) 0.16 (2)

Fig. 7 Plots of the apparent pressure of bridgmanite as a function 
of the bridgmanite fraction that survived amorphization
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Abbreviation
XRD  X-ray diffraction
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