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Abstract 

Detachment faulting is one of the main styles of seafloor spreading at slow to intermediate mid-ocean ridges. 
However, we have limited insight into its role in back-arc basin formation. We surveyed a remnant back-arc spreading 
center in the Philippine Sea and determined the detailed features and formation processes of the Mado Megamullion 
(Mado MM) oceanic core complex (OCC). This was undertaken in the context of back-arc evolution, based on the ship-
borne bathymetry, magnetics, and gravity with radiometric age dating of the rock samples collected. The Mado MM 
OCC has a typical OCC morphology with prominent corrugations on the domed surface and positive gravity anoma-
lies, suggesting that there has been an exposure of the lower crust and mantle materials by a detachment fault. The 
downdip side of the detachment continues to the relict axial rift valley, which has indicated that the Mado MM OCC 
was formed at the end of the back-arc basin opening. The spreading rate of the basin decreased once when the 
spreading direction changed after six million years of stable trench perpendicular spreading. The rate then further 
decreased immediately prior to the end of the spreading when the Mado MM OCC was formed. The existence 
of other OCC-like structures in the neighboring segment and the previously reported OCCs along the Parece Vela 
Rift have indicated that the melt-poor, tectonic-dominant spreading is a widespread phenomenon at the terminal 
phase of back-arc spreading. The decrease in spreading rate in the later stage is consistent with the previous numeri-
cal modeling because of the decrease in trench retreat. In the Izu–Bonin–Mariana arc trench system, the rotation 
of the spreading axis and the resultant axis segmentation have enhanced the lithosphere cooling and constrained 
mantle upwelling, which caused the tectonic-dominant spreading at the final phase of the basin evolution.
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1 Introduction
Detachment faulting is now recognized as an important 
style of seafloor spreading in global mid-ocean ridge sys-
tems. Oceanic core complexes (OCCs) exposed along 
long-lived detachments and associated asymmetric 
spreading have been reported in ultraslow (e.g., Searle 
et al. 2003; Cannat et al. 2006; Hayman et al. 2011; Sau-
ter et  al. 2013; Grevemeyer et  al. 2018; Haughton et  al. 
2019; Corbalán et al. 2021), slow (Cann et al. 1997, 2015; 
Tucholke et  al. 1998, 2008; Ranero and Reston 1999; 
Smith et  al. 2006, 2014; Escartín et  al. 2008), and inter-
mediate spreading ridges (Okino et  al. 2004). However, 
to date, there have been relatively few studies on OCCs 
in back-arc spreading centers, despite back-arc systems 
being an indispensable part of global divergent bounda-
ries and the OCCs being a tectonic window to the mantle 
beneath back-arc areas.

The most extensively studied OCC in a back-arc setting 
is the Godzilla Megamullion (GMM) OCC in the Parece 
Vela Basin in the Philippine Sea (e.g., Ohara et al. 2001; 
Harigane et  al. 2008, 2011a, b; Tani et  al. 2011; Loocke 
et  al. 2013; Spencer and Ohara 2014; Ohara 2016;). 
This OCC extends 125  km in spreading direction and 
is located adjacent to the extinct spreading axis, which 
is known as the Parece Vela Rift　(Okino et  al. 1998). 
Zircon dating of gabbroic samples collected has indi-
cated that the GMM was formed between approximately 
13–8 Ma (Tani et al. 2011). This result suggests that tec-
tonic spreading with low melt supply was dominant in 
the last five million years in this back-arc basin forma-
tion. If OCCs and/or other structures have suggested that 
detachment faulting spreading is widely distributed along 
extinct spreading axes in the Philippine Sea, this likely 
indicates that the reduction of melt supply is a common 
feature in the final stage of back-arc basin formation and 
that the back-arc system crosses a threshold in melt sup-
ply, triggering detachment faulting. Then, the extensional 
stress field likely continues for millions of years after 
magma production has waned.

The origin of back-arc basins has been extensively 
debated in the literature. There are two major mod-
els, that is, trench roll-back (Elsasser 1971; Molnar and 
Atwater 1978; Hall et al. 2003; Schellart 2005) and slab-
anchor (Chase 1978; Scholz and Campos 1995). Cyclic 
back-arc spreading that has been observed at the Mari-
ana arc and the Tonga arc has indicated the occurrence of 
a non-steady-state process controlled by some common 
physical/chemical conditions in back-arc areas. Some 
numerical model studies (Nakakuki and Mura 2013; 
Schellart and Moresi 2013; Ishii and Wallis 2022) have 
proposed potential control factors. However, we have not 
yet entirely determined the mechanisms governing the 
back-arc extension and formation of basins. Sdrolias and 

Müller (2006) compiled the past and current absolute 
plate motions and concluded that the absolute motion of 
the overriding plate preceded the back-arc opening and 
that trench roll-back was dominant after the opening 
started. The spreading process and magma generation 
were significantly influenced by arc magmatism in the 
early stage of spreading but were similar to those of mid-
ocean ridges in mature back-arc basins (Arai and Dunn 
2014). Important questions remain around how and why 
back-arc basins ceased to be opening after 10 million 
years of spreading. To address these questions, we need 
to examine inactive back-arc basins where the spreading 
has already stopped.

The Mado MM OCC is an OCC at the southern end of 
the Shikoku Basin in the Philippine Sea. It is located adja-
cent to the extinct spreading axis, and its size and mor-
phologies are similar to typical OCC that have previously 
been reported in mid-ocean ridges such as the Kane Meg-
amullion (Dick et al. 2008; Lissenberg et al. 2016; Xu and 
Tivey 2016; Harigane et al. 2016; Xu et al. 2020), Atlan-
tis Massif (Nooner et al. 2003; Schroeder and John 2004; 
Karson et al. 2006; Grimes et al. 2008; Collins et al. 2009, 
2012), and the 13° 20′ OCC (Smith et al. 2006; Craig and 
Parnell-Turner 2017; Escartín et al. 2017; Parnell-Turner 
et al. 2017; Searle et al. 2019). We conducted a series of 
research cruises at the Mado MM OCC and adjacent 
areas from 2018 to 2021 and collected geophysical data 
and rock samples (Basch et al. 2020; Akizawa et al. 2021; 
Hirauchi et al. 2021; Sen et al. 2021). This paper presents 
an overview of the geophysical features of the area and 
the rock age dating from our recent surveys. We describe 
the details of the morphological and geophysical features 
of the Mado MM OCC and the surrounding area as well 
as determining its structure and formation processes. We 
discuss the relationship between the Mado MM OCC 
formation and the history of the Shikoku Basin and sug-
gest the occurrence of tectonic-dominant spreading at 
the final stage of back-arc spreading in general, in refer-
ence to other OCCs that have been reported near the 
extinct back-arc spreading centers.

2  Regional setting
The Philippine Sea comprises active and inactive island 
arcs, back-arc basins, and fragments of continental crust 
(Fig.  1). The Pacific Plate subducts beneath the Philip-
pine Sea Plate, causing back-arc rifting of the Izu–Bonin 
arc (Taylor 1992; Ishizuka et  al. 1998; Hochstaedter 
et  al. 2000; Takahashi et  al. 2009) and back-arc spread-
ing behind the Mariana arc (Fryer 1996; Yamazaki and 
Murakami 1998; Deschamps and Fujiwara 2003; Kitada 
et  al. 2006; Fujiwara et  al. 2008; Takahashi et  al. 2008). 
West of these present-day active back-arc zones, the 
Shikoku and the Parece Vela Basins were formed in 
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mid-Oligocene to Miocene time, rifting the paleo Izu–
Bonin–Mariana arc crust　(e.g., Okino et  al. 1999; Lal-
lemand 2016).

The Shikoku Basin is one of the most intensively stud-
ied back-arc basins worldwide, and its evolution pro-
cess has been determined predominantly based on its 
prominent lineated magnetic anomaly pattern (Fig.  1; 
Tomoda et  al. 1975; Okino et  al. 1994; Sdrolias et  al. 
2004; Okino 2015), and the radiometric age dating along 
the remnant Kyushu–Palau Ridge (Ishizuka et  al. 2011), 
and the seamounts located near the remnant spreading 
center known as the Kinan Seamount Chain (Sato et al. 
2002; Ishizuka et  al. 2009). These previous studies have 
suggested the following basin history. The proto-Izu–
Ogasawara arc was rifted at approximately 26  Ma, and 
the earlier east–west spreading was followed by NE–
SW spreading at a later stage. The basin ceased to open 
around 15  Ma, with some alkalic volcanism continuing 
sporadically after the basin formation, forming the Kinan 

Seamount Chain. The Parece Vela Basin, which is located 
south of 25°  N, has a similar history to the paleo Mari-
ana arc (Mrozowski and Hayes 1979; Okino et  al. 1998; 
Ishizuka et  al. 2004; Sdrolias et  al. 2004; Okino 2015). 
Detailed reconstructions of the spreading history are still 
being debated mainly because of weak magnetic anoma-
lies and the significant presence of unsurveyed areas in 
its southern section. However, the two basins were linked 
at approximately 19  Ma and evolved since then as one 
system (Okino 2015).

The Mado MM OCC was first fully mapped in 2018 
and is located at 23° 40′ N, at the junction of two basins 
(Fig. 1, red box). The axial zone of the Shikoku Basin is 
characterized by the Kinan Seamount Chain, the over-
print of post-spreading alkalic volcanism to the north of 
26° 30′ N (Ishii et al. 2000; Sato et al. 2002; Ishizuka et al. 
2009), whereas the axial rift structure is located to the 
south. The Mado MM OCC has developed at the rem-
nant inside corner of the axial rift, where the spreading 

Fig. 1 Geological and tectonic setting of the Shikoku Basin and the adjacent area. Major magnetic isochrons are shown (Okino 2015). The box 
shows the survey area of this study. The loci of the Mado Megamullion (MMM) OCC and the Godzilla Megamullion (GMM) are shown
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axis has been segmented by remnant transform faults at 
relatively short intervals.

3  Methods
The existence of a domed structure near the junction of 
the Shikoku and the Parece Vela Basins has been known 
based on the continental shelf survey undertaken by the 
Japanese government (Ohara et al. 2015). We conducted 
a geophysical survey of the area during four cruises, that 
is, YK18-07, KH-18-02, YK19-04S, and YK20-18S, which 
encompassed the Mado MM OCC and the adjacent 
areas.

The swath bathymetry data were collected using 
EM122 (12  kHz, R/V Yokosuka) and SeaBeam2020 
(20 kHz, R/V Hakuho-maru). Appropriate sound velocity 
correction was applied in real-time, using XBT (eXpend-
able Bathy Thermograph) profiles or human-occupied 
vehicle (HOV) attached CTD (Conductivity, Tempera-
ture, Depth) profiles. The raw data were edited, erroneous 

soundings were eliminated, and then, a bathymetry grid 
of 50 m intervals was created.

We collected rock samples from over the Mado MM 
OCC with dredge hauls and HOV dives. The primary 
lithology of each sampling site is shown in Fig.  2a and 
Additional file 4: Table S1. We used several gabbroic sam-
ples to obtain the zircon U–Pb age. The geochemical and 
isotopic characteristics of these samples are out of scope 
in this study (see previous studies, Basch et al. 2020; Aki-
zawa et al. 2021; Hirauchi et al. 2021; Sen et al. 2021).

The total magnetic field was measured using a surface-
towed proton precession magnetometer on all cruises. 
The magnetometer was towed 300–350  m behind the 
ship. The measurement interval was 20 s. We calculated 
the total magnetic anomaly and subtracted the IGRF-13 
(Alken et al. 2021). The existing magnetic anomaly data 
were also downloaded from the NGDC Marine Track-
line Geophysics Database (https:// www. ngdc. noaa. gov/ 
mgg/ geodas/) and merged with our newly collected 
data. We then investigated the data of cross-over points 

Fig. 2 Swath bathymetry of the surveyed area. a Shaded bathymetry illuminated from east and south. The loci of existing rock samples 
and the primary lithology are also plotted. See Additional file 4: Table S1 for the map keys. The red box shows the range of Fig. 3. b Major 
morphological features

https://www.ngdc.noaa.gov/mgg/geodas/
https://www.ngdc.noaa.gov/mgg/geodas/
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among all the lines and applied the dc-shift smaller than 
11 nT to minimize the cross-over errors. We produced 
a 1500 m-interval grid of the magnetic anomalies which 
was then reduced to pole to remove the skewness. Here, 
we assumed the inclination of the magnetized body as 
being 33°, considering the geocentric axial dipole field 
at the paleo latitude being 18°N, for approximately 5° 
northward shift of the Philippine Sea Plate since middle 
to late Oligocene which was estimated from paleomag-
netic analysis of the drilled core (Yamazaki et  al. 2021). 
We also calculated the equivalent magnetization of the 
area assuming a uniformly magnetized 0.5 km-thick layer 
draping seafloor morphology, following the methods of 
Parker and Huestis (1974) and Macdonald et  al. (1980). 
To identify the geochrons and magnetic structure over 
the OCC, we conducted a two-step forward modeling. 
We first constructed a standard one-layer block model to 
obtain a general idea of the spreading history and then 
produced a three-layer model with different remnant 
magnetization values developed as Zhou and Dyment 
(2022) and Zhou et  al. (2022) for more detailed discus-
sion. Both forward models assumed that the magnetic 
anomalies recorded the spreading history sequentially. 
This assumption is appropriate for the volcanic seafloor 
with well-ordered abyssal hills, but not generally correct 
for OCCs, where the detachment fault zone influences 
the magnetic signals. The examination of this issue is 
shown in Discussion section.

We also collected data on the vector magnetic field 
using shipboard fluxgate magnetometer system. The per-
manent and induced ship magnetizations were removed, 
using figure eight maneuvers conducted at different lati-
tudes in each cruise (Isezaki 1986). The absolute values 
were less reliable. However, the variation of each com-
ponent of the magnetic field has been well recorded. 
We calculated the ISDV (Intensity of Spatial Differential 
Vectors) (Seama et  al. 1993) and determined the loca-
tion and direction of the magnetic boundaries. We used 
the revised STCM (Shipboard Three-Component Mag-
netometer) kit originally provided by Korenaga (1995) to 
process and calculate the vector anomaly data.

The shipboard gravity data were obtained during 
KH-18–2 and YK18-07 using ZLS D-004 (R/V Hakuho-
maru) and Lacoste-Romberg S-63 (R/V Yokosuka), 
respectively. The absolute gravity tie was conducted at 
Yokosuka port, Japan. We calculated the free-air gravity 
anomaly, subtracted the International Gravity Formula 
1980, and Eötvös correction was applied. We also used 
the existing gravity anomaly data in the NGDC Marine 
Trackline Geophysics Database, in line with the total 
magnetic anomaly, and merged the data with our newly 
collected data. The dc-shift smaller than 4.5 mGal was 
applied to minimize the cross-over errors and to fit the 

satellite altimetry data. We developed a 1500  m-grid of 
free-air anomaly and then calculated the mantle Bouguer 
anomaly (MBA) assuming 1665 and 600  kg/m3 den-
sity contrast at the seafloor and Moho, respectively. We 
did not calculate the residual mantle Bouguer anomaly 
(RMBA), because (1) the reliable age estimation for the 
entire area is challenging at present, and (2) the area is 
a relict spreading center of at least older than 13 Ma in 
age and the variation in the cooling effect is relatively low 
at less than 5 mGal. We estimated the crustal thickness 
variation using MBA, assuming that the density contrast 
was uniform and that all the MBA occurred because of 
the crustal thickness variation (Kuo and Forsyth 1988). 
We also estimated the density variation, assuming a uni-
form crustal thickness of 6 km.

4  Results
4.1  Morphology
Figure 2 shows the shaded bathymetry (Fig. 2a) and the 
interpreted morphological features of the Mado MM 
OCC and the adjacent areas (Fig.  2b). The Shikoku/
Parece Vela back-arc basin floor becomes narrow-
est between the remnant and present arcs in this area 
(Fig. 1), where the early east–west spreading stage started 
at approximately 22 Ma (Okino 2015). We can recognize 
nearly N–S trending abyssal hills at the westernmost edge 
of the survey area. In contrast, the eastern counterpart is 
unclear due to the thick sediment cover supplied by east-
ern arc volcanism. The central part is dominated by NW–
SE trending abyssal hills, suggesting NE–SW spreading 
in the later stage of basin formation. The rift axis trends 
N128°  E and is right-laterally offset by prominent NE–
SW fracture zones.

There are at least three pronounced detachment-
related structures in the area. The Mado MM OCC is 
located at the northeastern side of the relict axial rift and 
is a domed massif with flow-line parallel corrugations 
(Fig.  2b). It is adjacent to the remnant transform fault 
that offsets the spreading axis 51  km. The length of the 
rift segment, hereafter referred to as the Mado segment, 
is 46 km, and half is the width of the domed part of the 
Mado MM OCC. East of the Mado segment, we can also 
recognize a clear corrugated surface on the northeast-
ern side of the relict axis. The corrugation extends more 
than 40 km, whereas the width of the corrugated surface 
is less than 18 km. We have tentatively called this struc-
ture 23°  20′  N OCC. This OCC is also adjacent to the 
remnant transform fault, which offsets the remnant ridge 
axis 34 km. At the intersection of the Mado segment axis 
and the remnant transform fault, a semicircular domed 
high with an 18 km diameter has developed. We did not 
identify any clear corrugations here, but the morphologi-
cal feature and the location have indicated that this high 
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is what is known as a non-transform offset (NTO) massif 
(Gràcia et al. 2000).

The bathymetry of Mado MM has the typical OCC 
morphology (Fig.  3), considered as the exhumation of 
the lower crust and mantle rocks by a detachment fault. 
The length and width of the Mado MM OCC are 23 and 
25 km, respectively, and this size is as same as the well-
surveyed Kane Megamullion (Dick et al. 2008; Lissenberg 
et al. 2016; Xu and Tivey 2016; Harigane et al. 2016; Xu 
et al. 2020) and the Atlantis Massif (Nooner et al. 2003; 
Schroeder and John 2004; Karson et  al. 2006; Grimes 
et  al. 2008; Collins et  al. 2009, 2012) along the Mid-
Atlantic Ridge. The relatively large-scale corrugation with 
a 5.5  km wavelength is dominant on the entire surface, 
and substantially smaller-scale striations are also identi-
fied (Fig.  3b). The wavelength of the smaller-scale stria-
tions is ~ 100 m order, for our observations were limited 
by ~ 50  m resolution of ship-mounted multibeam sonar. 
These striations can be seen over the large-scale corruga-
tions, and each striation extends a few kilometers at most 
in the flow-line direction. The breakaway is ~ 30 km from 
the relict axial rift (Fig.  3b). The termination, i.e., the 
hanging wall cutoff of the detachment fault, continues 

to the axial rift valley, which suggests that the detach-
ment faulting occurred at the end of the back-arc basin 
opening. The width of the OCC is wider at the breaka-
way and narrowed toward the termination. This change 
is explained by along-axis gradients in the melt supply 
rate (Howell et  al. 2019). A horseshoe-shaped depres-
sion on the slope near the termination is likely a signa-
ture of mass wasting after the denudation of the OCC 
(Fig. 3a and c). Slope debris is distributed at the bottom 
of the slope. Mass wasting near OCC terminations has 
often been observed in other OCCs (Cannat et al. 2013; 
Escartín et  al. 2017, 2022). Although flow-line paral-
lel corrugations and striations dominate at the surface, 
several rift-parallel lineaments have also been observed, 
which are likely post-detachment extensional structures.

The opposite side of the Mado MM OCC is character-
ized by a well-ordered abyssal hills pattern (Fig. 2b). The 
direction of the abyssal hill continuously changes from 
N178° E at 138° 20′ E to N128° E close to the relict axial 
rift. The fracture zone is perpendicular to the abyssal 
hill, and the general geometry shows an S-shaped curve 
as a consequence. These observations have suggested 
that there has been a gradual change in the spreading 

Fig. 3 a Close-up view of the Mado MM OCC. The contour interval is 20 m. b Distribution of maximum slope magnitude. c Bathymetry profile 
across the Mado MM OCC. The location of the profile is shown in a. a: axis, t: termination, b: breakaway
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direction and that the spreading process cannot be inter-
preted as a typical “rigid” plate movement. The far off-
axis area, north and northeast of the Mado MM OCC, 
is enigmatic, and the thick sediment makes it difficult 
to recognize the basement morphology. However, this 
sedimented area is anomalously deep compared to the 
neighboring abyssal hills. Some circular and elongated 
topographic highs that are considered to be derived from 
post-spreading volcanism have disturbed the original 
segment structure (Fig. 2b).

4.2  Age dating
During our four cruises and on one previous cruise in 
2007, rock samples were collected using dredge hauls and 
HOV dives on and around the Mado MM OCC (Basch 
et al. 2020; Akizawa et al. 2021; Hirauchi et al. 2021; Sen 
et al. 2021). Gabbroic rocks and serpentinized peridotites 
were dominant over the OCC, and dolerite, basalt, rodin-
gite, amphibolite, and schist samples were also collected 
(Fig. 2a, Additional file 4: Table S1). One dredge was con-
ducted at the NTO massif and one at the elongated OCC 
east of the Mado MM OCC in the previous cruise, where 
we recovered peridotites (Fig. 2a).

To determine the age of the Mado MM OCC forma-
tion, nine gabbroic samples were chosen for zircon U–Pb 
geochronology (Table  1). Samples were collected with 
dredge hauls during the R/V Hakuho-maru KH-18-2 
cruise (D05 and D12) and by HOV Shinkai 6500 during 

the R/V Yokosuka cruises YK18-07 (Dive #1515), YK19-
04S (Dive #1536), and YK20-18S (Dive #1569). Onboard 
descriptions of the samples analyzed ranged from altered 
coarse-grained gabbro (6K1515-R14), olivine gab-
bro (6K1536-R14a, -R18, -R20, and D05-101A), gabbro 
mylonite (6K1569-R04, -R06), and diorite (D12-401). 
Sample D05-101B is a felsic domain of the gabbro sam-
ple -101A. More detailed petrography and geochemistry 
of the gabbroic samples analyzed will be undertaken in 
separate studies.

Most of the zircon crystals and fragments separated 
from gabbroic rocks have euhedral to subhedral, equant 
to stubby morphologies of ~ 30 to several hundred 
microns long. Zircon U–Pb age analyses were conducted 
using the laser ablation inductively coupled plasma mass 
spectrometry system at the National Museum of Nature 
and Science, Japan. The reported ages for each sample 
(with 95% confidence intervals) in Fig.  4 are weighted 
means of 207Pb-corrected 206Pb/238U age data (n = 5–22 
analyses per sample). Details of sample preparation and 
analytical procedures can be found in Additional file  1: 
S-1, along with data on zircon isotope compositions and 
ages.

Among the samples analyzed, six samples (6K1515-R14, 
6K1536-R14a, -R18, -R20, 6K1569-R06, and D05-101A) 
yielded well-grouped weighted mean ages ranging from 
11.74 ± 0.61  Ma to 12.96 ± 0.30  Ma (Fig.  4). The remain-
ing three samples (6K1569-R04, D05-101B, and D12-401) 

Table 1 Sampling locations and mineralogy of the studied samples

Pl, plagioclase; Cpx, clinopyroxene; Amp, amphibole; Ol, Olivine; and Ox, Fe-oxide

Reference 1, Basch et al. (2020); 2, Akizawa et al. (2021)

Ages in italic are for reference only

Pb* indicates the radiogenic portion

Cruise Dredge/
Dive 
number

Sampling 
location 
(WGS84)

Depth (mbsl) Sample name Rock type Mineralogy 238U/206Pb* 
age (this 
study)

Reference Map key

KH-18-2 D05 23° 51.7310′ N 
138° 57.8930′ E

4522 D05-101A Varitextured 
gabbro

Pl, Cpx, Amp, Ol 12.96 ± 0.30 Ma 1, 2 6

D05-101B Hybridized 
gabbro

Pl, Cpx, Amp, 
Ol, Ox

13.12 ± 0.37 Ma 1, 2 6

D12 23° 49.3060′ N 
138° 47.6350′ E

5403 D12-401 Diorite Pl, Amp 13.17 ± 0.71 Ma 7

YK18-07 6K1515 23° 50.4372′ N 
138° 48.3942′ E

5073 6K1515-R14 Oxide gabbro Pl, Cpx, Ox, 
Amp

12.54 ± 0.56 Ma 1, 2 3

YK19-04S 6K1536 23° 49.7226′ N 
138° 56.6931′ E

3608 6K1536-R14a Coarse‐grained 
olivine gabbro

Pl, Cpx, Ol, Amp 12.70 ± 0.33 Ma 1 9

23° 49.6782′ N 
138° 56.6738′ E

3540 6K1536-R18 Coarse‐grained 
olivine gabbro

Pl, Cpx, Ol, Amp, 
Ox

11.74 ± 0.61 Ma 1, 2 9

23° 49.6532′ N 
138° 56.6656′ E

3498 6K1536-R20 Mylonitic oli-
vine gabbro

Pl, Cpx, Amp, 
Ol, Ox

12.83 ± 0.41 Ma 1 9

YK20-18S 6K1569 23° 53.3793′ N 
138° 49.0433′ E

5713 6K1569-R04 Olivine gabbro No thin section 13.15 ± 2.27 Ma 2 13

23° 53.3793′ N 
138° 49.0433′ E

5713 6K1569-R06 Oxide gabbro No thin section 12.22 ± 0.37 Ma 2 13
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are less reliable (shown in italic in Fig. 4) because of the 
small numbers of analyzed zircons (n < 6). However, they 
fall within the age variation of the other samples (Fig. 4).

We cannot know the sample occurrence for dredge 
samples (diamonds in Fig. 4), and these samples are pos-
sibly ex situ. During the HOV dives (circles in Fig. 4), it 
appears that the samples are rubbles on the slope; hence 
the possibility of the ex situ origin of these samples can-
not be completely ruled out. However, since the outcrops 
were observed just above or upper slope of each sampling 
point, the collected samples, even if they had shifted 
from their original positions at outcrops, can be consid-
ered as in situ. Moreover, the tracks of HOV dives were 
across the remnant transform fault wall or the corruga-
tion, and the shift of rubbles from the original positions 
at outcrops, even if it occurred, should have been parallel 
to the isochrons, not toward the axis. Therefore, we con-
sider that the determined age represents the age of the 
detachment surface at each sampling point.

4.3  Magnetic anomalies
The deskewed magnetic anomalies and equivalent 
magnetization distribution are shown in Fig. 5a and b. 
The magnetic anomaly pattern is generally consistent 
with the morphological features. The western edge of 
the survey area at 138°  20′  E, where the N–S trending 
abyssal hill pattern  develops, is characterized by N–S 
extending strong positive anomaly zone. This suggests 
the occurrence of east–west seafloor spreading in the 
first half of the basin formation. Previous studies (Sdro-
lias et al. 2004; Okino 2015) have recognized the simi-
larly strong and broadly positive magnetic anomaly in 

the northern extension of this area and have identified 
this anomaly as Chron 6 (18.748–19.722 Ma). The mag-
netic anomaly lineation rotates anticlockwise east of 
138° 30′ E, indicating the change in the spreading direc-
tion. The anomaly pattern is not easy to identify, which 
is partly due to the fine segmentation of the spreading 
axis and the complex evolution process before and after 
the cessation of the spreading.

The southwestern flank of the Mado segment shows 
a relatively clear magnetic reversal pattern, compris-
ing magnetic lineation of approximately 20 km-long in 
length. These short lineations change their trend gradu-
ally from N175° E at 138° 30′ E to N128° E at the axis. 
These anomalies enable us to identify their chrons, as 
described later. The general magnetic anomaly pattern 
looks similar in the southwestern flank of the neighbor-
ing segment, suggesting the occurrence of continuous 
crust accretion, at least on the southwestern side of the 
spreading axis during the second half of the basin his-
tory. Contrary to the relatively well-ordered magnetic 
anomaly pattern, the seafloor spread to the northeast 
shows an ambiguous and complex magnetic anomaly 
pattern. The NW–SE trending stripes can be partially 
observed, but the anomalies are irregularly distrib-
uted. This likely suggests a more complicated crustal 
structure, the effect of thick sediment cover, and post-
spreading volcanism.

The Mado MM OCC is characterized by a wide zone 
of positive magnetic anomaly from the termination to 
14  km off-axis, comprising more than half of the OCC. 
This positive zone is wider than the magnetic lineation on 
the southwestern side. The repeated negative and positive 
stripes can be recognized near the breakaway zone and 
the northeastern off-axis. The NTO massif at the ridge-
transform-ridge intersection shows weak magnetization, 
which is consistent with its non-volcanic origin.

Figure 5a also shows the loci and strike of the magnetic 
boundaries derived from the vector magnetic anomaly 
analysis. This generally builds on the observations of total 
magnetic anomalies. The length of the red bar is propor-
tional to the cosine of the boundary inclination, and the 
length of the thin black cross bar indicates the angular 
standard deviation of the boundary strike. The magnetic 
boundary can be caused by magnetic reversal, change 
of magnetization strength, and topographic change of 
the magnetized layer. The systematic change in bound-
ary strike in the southwestern off-axis area indicates the 
gradual rotation of the spreading axis in the latter half 
of the basin formation. Some boundaries exist on the 
Mado MM OCC, but the pattern is not well organized. 
The high standard deviation and large boundary incli-
nation suggest the three-dimensionality of the magnetic 
body (Seama et  al. 1993). The NTO massif southeast of 

Fig. 4 Weighted means of 207Pb-corrected 206Pb/238U age data. Less 
reliable data due to a small number of analyzed zircons are in italic. 
See Additional file 4: Table S1 for the map keys
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the Mado MM OCC is not accompanied by any magnetic 
boundaries.

To identify the magnetic anomalies and to deepen our 
knowledge of the spreading history, we first conducted a 
simple forward modeling of the magnetic profiles across 
the Mado segment (Fig. 6a). Two profiles were modeled 
by using the reduced-to-the-pole magnetic anomaly, 
in which Profile A was across the Mado MM OCC, and 
Profile B was located south of the OCC. The length of 
the profiles selected was approximately 320 km, stretch-
ing ~ 180  km and 140  km on the northern and south-
ern flanks, respectively. We assumed that there was a 
500  m-thick single source layer with constant 3 A/m 
magnetization, draping the bathymetric profile. The 
conditions of constraint for the modeling were (1) the 
identification of N-S trending strong positive anomaly at 
138° 20′ E as Chron 6 following the previous studies, and 
(2) the results of rock age dating, that is, 12–13  Ma all 

across the Mado MM OCC. Figure 6b shows the result of 
the forward modeling. This model includes two spread-
ing phases, namely symmetric spreading with a half rate 
of 22  mm/yr. until 16  Ma, symmetric slower spreading 
with half rate of 11 mm/yr. between 16 Ma and 12.5 Ma. 
We identified magnetic chrons from C5Er (18.7  Ma) to 
C5Ar (13.0 Ma-) in the southwestern off-axis flank. The 
same chrons were also identified in the northeastern off-
axis flank, although the pattern matching was not as well 
defined as on the southwestern off-axis flank.

Theses preliminary analyses indicate a reduction in 
the spreading rate in the final stage. However, the incon-
sistency of the calculated and observed profiles is still 
existed, especially on the northeastern flank where the 
Mado MM OCC is hosted. This inconsistency has indi-
cated that there was a fluctuation in the spreading rate 
and/or a more complex magnetic structure. We then 
applied the methods of Zhou and Dyment (2022) to 

Fig. 5 Magnetic features of the surveyed area. a Reduced to pole (RTP) magnetic anomalies and the loci and strike of magnetic boundaries 
with ISDV magnitude and standard deviation (red bars with black crossing lines). The data points are shown in gray. b Equivalent magnetization 
of the seafloor. White lines show 1A/m-contours of magnetization. Bathymetry contours (black, 200 m interval) and major morphological features 
are plotted
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model the lithospheric structure and evolution. In this 
detailed forward modeling, a 3  km thick magnetized 
layer was assumed to comprise a maximum 500 m thick 
basalt layer, a 1500  m thick gabbro layer, and a 1000  m 
thick peridotite layer. We simulated the gradual decrease 
in thickness from the center to the end of each magmatic 
crust to smooth transit to the tectonic crust. The basalt 
layer bears a remanent magnetization of 3 A/m, the 
underlying gabbro layer bears a remanent magnetization 
of 1A/m, and the peridotite layer bears an induced mag-
netization of 0.2 A/m. Intrusive gabbro bodies beneath 
the detachment footwall obtained a higher remanent 
magnetization of 2 A/m because the faster cooling rate 
resulted in a higher degree of fractionation. We set a 
remanent magnetization of 0.5 A/m for the exposed 
peridotite during tectonic spreading episodes, although 
the value can vary widely depending on the degree of 
serpentinization.

The modeling results (Fig.  7b) show an acceptable fit 
between the synthetic and observed magnetic anomalies 
along the two profiles. The seafloor spreading of the two 
profiles was dated to ~ 22  Ma to the north and ~ 20  Ma 
to the south. The intervals of the magnetic isochrons 
were adjusted to better fit the synthetic and observed 
magnetic anomalies with a calculation of half-spreading 
rates in each episode. There was generally a decrease in 
the spreading rate from 22 to 11  mm/yr. at ~ 16.0  Ma, 
and seafloor spreading finally stopped at ~ 11.9 Ma. The 

Mado MM OCC was formed during ~ 12.2–14.1  Ma 
on Profile A, during which time the seafloor spreading 
showed a significant asymmetry with a half-spreading 
rate of 34 mm/yr. on the hosted northern flank compared 
with a 5 mm/yr. on the southern flank.

The magnetic anomaly pattern cannot straightfor-
wardly be interpreted because of the geological complex-
ity of the OCC, and our forward modeling results show 
one possibility. We will discuss this issue later.

4.4  Gravity anomalies
The result from the gravity anomaly analyses is consistent 
with other datasets. Figure 8 shows the free-air (Fig. 8a) 
and mantle Bouguer anomalies (MBA) (Fig. 8b) and the 
estimated crustal thickness (Fig. 8c) and density variation 
(Fig. 8d) assuming the constant density contrast and con-
stant crustal thickness, respectively. The Mado MM OCC 
and the NTO massif are accompanied by strong positive 
MBA, suggesting high-density material in the shallower 
part. The western edge of the survey area also shows a 
positive MBA. This may be related to the change in the 
spreading stage, but we have not explored this further in 
this study in the absence of detailed bathymetry data.

The Mado MM OCC shows a significant MBA value 
of ~ 20 mGal larger than the surrounding area. The large 
MBA area extends southeastward, out of the domed high, 
encompassing the entire Mado segment. This value cor-
responds to a 3.4  km decrease in magmatic crust or a 

Fig. 6 Simple one-layer forward modeling of the magnetization structure across the Mado segment. a Wiggle plot of RTP magnetic anomalies 
along two lines on the bathymetry map. b Magnetization block model (top) and observed (blue) and synthetic (red) profiles along Lines A and B
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270 kg/m3 decrease in density. The weaker positive MBA 
area extends to the eastern part of the Mado segment, 
where the seafloor is relatively deep and flat without any 
corrugation. The NTO massif also shows a positive MBA 
as large as the Mado MM OCC. In contrast, the elon-
gated OCC at 23° 20′ N, 139° 10E in the eastern segment 
does not show a significantly positive MBA. This is likely 
consistent with the clear magnetic anomaly lineations 
over this OCC, suggesting the presence of a thicker mag-
matic layer.

Another positive circular MBA is observed at 22° 55′ N, 
139° 07′ E. This anomaly likely corresponds to the bathy-
metric high (Fig. 2a) immediately southwest of the neigh-
boring rift axis.

5  Discussion
5.1  Detachment faulting at Mado MM OCC
The geophysical characteristics described in the previ-
ous chapter and the rock samples collected (Basch et al. 
2020; Akizawa et al. 2021; Hirauchi et al. 2021; Sen et al. 
2021) have indicated that the Mado MM OCC is a result 
of tectonic-dominant extension along a detachment. 
The Mado MM OCC is located at the inside corner of 
the relict ridge-transform intersection. The across-axis 
length is ~ 25 km, which is a typical horizontal scale for 
other OCCs along slow-spreading ridges. The bathym-
etry profile (Fig. 3c) shows a single dome-like shape with 

a relatively steeper slope on the breakaway side. Continu-
ous corrugations develop at ~ 10 km on the flat top of the 
dome.

The gabbroic rocks and serpentinized peridotite col-
lected from the entire OCC suggest that the lower crust/
upper mantle materials are exposed at the shallow sub-
surface. Our gravity analysis showing a high MBA for 
the Mado MM OCC has supported this idea (Fig. 8b). A 
more in-depth discussion about the crustal thickness is 
difficult especially in the absence of seismic data. How-
ever, the equivalent crustal thickness from gravity analy-
sis assuming standard density contrast between crust 
and mantle could have dropped by up to 50% (Fig.  8c). 
The previous numerical model studies (Buck et al. 2005; 
Tucholke et  al. 2008) suggest that a long-lived detach-
ment develops when the melt supply rate M is ~ 0.5. The 
50% reduction in the estimated crustal thickness does not 
necessarily mean that M is 0.5 because of the trade-off 
between the thickness and the density and of the com-
plex lithology, but it suggests that the melt supply fluctu-
ated and was reduced during the OCC formation.

The higher MBA zone extends southeast of the OCC 
and along the western relict transform fault to the north, 
where no corrugation is observed. The MBA is relatively 
low northeast of the OCC, but it may reflect the post-
spreading off-axis volcanism (Fig.  2b). The southwest-
ern flank of the Mado segment within ~ 40 km from the 

Fig. 7 Three-layered forward modeling of the magnetization structure across the Mado segment. a Wiggle plot of RTP magnetic anomalies 
along two lines on the equivalent magnetization map. b Lithology model with assumed magnetization (top) and observed (blue) and synthetic 
(red) profiles along Lines A and B
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Fig. 8 Gravity features of the surveyed area. a Free-air gravity anomalies with contours of 10 mGal intervals. The data points are shown in gray. b 
Mantle Bouguer gravity anomalies. White lines show 10mGal-contours. c Inferred crustal thickness variation. White lines show 0.5 km-contours. The 
reference crust thickness is 6 km. d Inferred density variation. White lines show 50 kg/m3-contours. In b, c, and d, bathymetry contours (black, 200 m 
interval) and major morphological features are plotted



Page 13 of 22Okino et al. Progress in Earth and Planetary Science           (2023) 10:37  

axis shows a relatively thinner crust than the far off-axis 
(Fig. 8c). This area shows a regular abyssal hill morphol-
ogy and was formed in the period when the spreading 
rate was halved (Fig. 6). These observations suggest that 
the melt supply was generally declining as the spreading 
rate had decreased and that the transition from the typi-
cal accretion style forming well-ordered abyssal hills to 
the detachment faulting with corrugations could result 
from a modest variation in melt supply.

The lineated magnetic anomalies in the southwestern 
off-axis of the Mado segment (Fig.  5), where the well-
ordered abyssal hill develops, record the spreading his-
tory, whereas the anomalies over the Mado MM OCC 
cannot be explained by a simple normal-reverse model 
(Fig.  6). Xu and Tivey (2016) investigated the magnetic 
polarity reversals over the Kane Megamullion using 
near-bottom magnetic field data collected by HOV. They 
found the large variation of magnetic anomaly identified 
as the magnetic polarity boundaries in the scarp, suggest-
ing that the gabbros and mantle peridotites potentially 
record a magnetic reversal history. Sato et al. (2009) ana-
lyzed the scalar and vector magnetic field over the 25°S 
OCC near the Rodrigues Triple Junction in the Indian 
Ocean. The 25° S OCC is weakly magnetized and records 
a polarity boundary that is consistent with the mag-
netic lineation around the OCC. Baines et al. (2008) also 
reported that the magnetic lineation age correlates well 
with the U–Pb zircon age in the Atlantis Bank. These 
studies indicated that OCCs could record the spread-
ing history, but this is not true for all OCCs. Generally 
speaking, the magnetic structure of OCCs is much more 
complex because of the geological complexity in the orig-
inal lithology and the deformation associated with the 
detachment faulting.

The first factor in the complexity of the magnetization 
of OCCs is the inherent heterogeneous lithology. Hay-
man et al. (2011) analyzed the aeromagnetic data over the 
ultraslow Mid-Cayman Spreading Center (MCSC) and 
concluded that the magnetizations were heterogeneous 
and quite patchy, with a rough correlation with bathym-
etry and lithology. The most prominent OCC along the 
MCSC, the Mount Dent displays a relatively low level of 
magnetization, reflecting the predominance of gabbros 
and peridotites. Zhou and Dyment (2022) interpreted 
the variability of magnetic anomalies at the Southwest 
Indian Ridge using the intruded gabbro bodies on the 
footwall of the detachment faults. Our three-layer for-
ward model (Fig.  7) uses the similar methodology and 
tried to model the observed profile by heterogeneous 
crust with frequent gabbro intrusions. If serpentinized 
peridotite occupies a substantial proportion of the OCC, 
induced magnetization also may play an essential role in 
OCC magnetization. However, quantitative estimation is 

rather difficult because the magnetic susceptibility pre-
dominantly depends on the degree of serpentinization, 
which varies in an OCC. In our magnetic structure model 
(Fig. 7b), the peridotite body is assumed to have 0.5 A/M 
magnetization, but other values can also be applicable. 
Our result is one possible interpretation of the observa-
tion, but it is not a unique solution.

Other factors also influence the magnetization of OCCs 
and make the variable magnetic anomaly pattern. The 
doomed surface of OCCs is a result of flexural rotation 
along the fault (Buck 1988), causing the change in incli-
nation. Mallows and Searle (2012) analyzed the deep-tow 
magnetic data across the OCC1320 and OCC1330 along 
the MAR and showed that the observed magnetic pro-
file could be effectively modeled by weaker magnetiza-
tion and 45° rotation for the OCCs. A similar conclusion 
was obtained by Searle et al. (2019) using magnetic data 
obtained from an autonomous underwater vehicle. These 
studies are based on higher spatial resolution magnetic 
and bathymetry data by near-bottom surveys. Although 
our surface magnetic data do not have enough resolu-
tion to discuss the detachment rotation, disordered mag-
netic anomalies may reflect the rotation effect as well as 
the heterogeneous lithology. The footwall rotation of the 
Atlantis Massif was proposed using paleomagnetic data 
of the IODP (Integrated Ocean Drilling Program) core 
samples (Morris et  al. 2009; Pressling et  al. 2012) that 
instead, the magnetic record of the OCCs is influenced 
by the flexural rotation of the detachments.

Moreover, the hypothesis that the surface of OCCs 
shows a sequential unit is not always correct. The trans-
position of units, incorporation of hanging wall mate-
rial into the footwall of the detachment fault and other 
surface processes such as erosion and mass wasting (e.g., 
Escartín et al. 2022) hinder the straightforward interpre-
tation of observed magnetic anomalies. The chaotic mag-
netic boundaries over the Mado MM OCC derived from 
our vector magnetic analysis (Fig.  5a) also support the 
heterogeneous structure of the detachment fault, both 
inherent and subsequent deformation.

The complexity of the magnetic structure of the OCCs 
prevents us from obtaining definitive magnetic ages, but 
the identification of lineated magnetic anomalies in the 
conjugate seafloor can provide an essential constraint of 
OCC formation. The magmatic crust in the southwestern 
flank of the Mado segment comprised well-ordered abys-
sal hills from chron C6 to C5Ar (Fig. 6b). The half-spread-
ing rate decreases from 22 to 11 mm/yr. around 16 Ma, 
and the Mado MM OCC was considered to form under 
this final, slower (close to ultraslow) spreading environ-
ment. The northeastern off-axis area that was formed 
before the Mado MM OCC formation shows unclear 
abyssal hills, and the overprinted volcanic constructions 
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(Fig.  2b) likely suggest the tectonic-dominant spreading 
and complex lithology. The magnetic anomaly pattern 
in this area is also ambiguous and does not provide the 
definitive timing of the initiation of detachment faulting.

The zircon age data (Fig.  4) do not exhibit system-
atic spatial variation over the detachment surface. All 
of the analyzed ages cluster around 12–13 Ma, overlap-
ping within the margin of error, which indicates that 
the gabbroic rocks were formed almost simultaneously. 
As described in Section  “Age dating,” the reliable sam-
ples collected from HOV dives can be treated as in situ, 
not the ones rafted from a long distance. Therefore, we 
can say that the data do not show a progression in age 
(Fig. 9) over the Mado MM OCC. Euhedral to subhedral 
morphologies of the zircons and magmatic zoning visible 
under cathodoluminescence (Additional file  3: Fig.  S2) 
strongly suggest that the analyzed ages represent the tim-
ing of igneous crystallization of the zircons. If we take 
the difference between the oldest age (D05-101A gab-
bro, 12.96 ± 0.30 Ma) and the youngest age (6K1536-R18 
gabbro, 11.74 ± 0.61 Ma), there is potentially a magmatic 
duration of approximately 1.2 million years.

Such duration of magmatism may represent prolonged 
accretion of the gabbroic crust at the spreading cent-
ers (e.g., Grimes et  al. 2008). If we assume that zircon 
crystallization occurred as a result of cooling from the 
detachment faulting, the above variation in the zircon 
ages may represent the minimum estimate of the lifespan 
of the fault.

As for the spreading asymmetry during the Mado MM 
OCC formation, both our magnetic analysis and the zir-
con age dating do not provide the decisive denudation 
rate of the detachment fault. Our three-layer magnetic 
forward analysis suggests a possibility of a higher spread-
ing rate on the detachment side than on the conjugate 

side. However, as we discussed above, the magnetic sig-
nal from the detachment surface cannot be straight-
forwardly interpreted, and the proposed model is not a 
decisive one. If we could assume that the denudation of 
the 23-km long Mado MM OCC occurred within the 
estimated lifespan from the zircon age dating, 1.2 mil-
lion years, the spreading rate might be ~ 19 mm/yr. This 
value may support the spreading asymmetry since the 
full spreading rate in the final stage of the Mado segment 
is 22 mm/yr. Although our results contain uncertainties, 
they are at least consistent with previous studies (e.g., 
Allerton et al. 2000; Okino et al. 2004; Searle and Bralee 
2007) that the detachment faulting took a larger portion 
of the plate separation.

5.2  Tectonics of the Mado segment and its neighboring 
segment

Near the eastern end of the remnant axial rift of the 
Mado segment, a semicircular domed high with a 1900 m 
elevation and 20  km diameter is present at the ridge-
transform intersection (Fig.  2). We cannot distinguish 
the prominent corrugations above the surface. How-
ever, the MBA is approximately 20 mGal higher than the 
ambient seafloor (Fig.  8b), which is the same as at the 
Mado MM OCC. Only one dredge haul was conducted 
on the KH-18-2 cruise, and peridotites and serpenti-
nized peridotites were collected (Akizawa et  al. 2021). 
These observations suggest that this structure is com-
parable to the NTO massifs including the Rainbow and 
other massifs along the Mid-Atlantic Ridge (MAR) (Gra-
cia et al. 2000; Andreani et al. 2014; Paulatto et al. 2015; 
Eason et al. 2016; Dunn et al. 2017), where deep materi-
als are exposed along a detachment. The geometry of the 
detachment fault is unknown, but the southern edge of 
the massif is likely the hanging wall cutoff, because the 

Fig. 9 Age versus distance plot for samples from Godzilla MM (Tani et al. 2011) and Mado MM OCCs. (Errors are 95% confidence intervals.) 
Diamonds: dredged samples, Circles: HOV samples. Less reliable data due to a small number of analyzed zircons are in gray
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deeper axial basin is located south of the massif and the 
eastern corrugated seafloor described below appears to 
be continuous to the massif.

The NTO massifs along the MAR are generally located 
within the 2nd-order discontinuities rather than at the 
1st-order discontinuities, that is, transform faults. Sec-
ond-order discontinuities along slow-spreading ridges 
are often oblique to the plate motion, and the resultant 
trans-extension causes a magma-poor extension along 
a detachment. In the case of the Mado segment and the 
surroundings, we recognize that short ridge segments are 
offset by relict transform faults because the discontinu-
ity is narrow, generally stable, and long-lived. However, 
the fracture zones, traces of transform faults, have shown 
a characteristic sigmoidal curve (Fig.  2). This geometry 
indicates the continuous counterclockwise rotation of the 
spreading direction in line with that of the Parece Vela 
Rift (Kasuga and Ohara 1997; Spencer and Ohara 2014). 
Meanwhile, the rigid plate motion on a single Euler pole 
should produce a set of parallel fracture zones along 

small circles. This rotation causes the shortening of the 
ridge segment (Spencer and Ohara 2014), which likely 
enhances the complex, locally oblique geometry of the 
ridge-transform intersections. The Mado NTO massif 
may be located at a 1st-order discontinuity in terms of its 
appearance, but the unusual kinematics may have caused 
a magma-starved spreading at the segment discontinuity.

East of the Mado segment, a set of corrugations extends 
on the northeastern side of the remnant rift (Fig.  2). 
Although the corrugations are prominent and continu-
ous, the seafloor does not have a single, dome-like struc-
ture. At least three corrugations were recognizable. The 
most prominent ~ 40 km long corrugation extended in a 
flow-line direction, where three peaks could be identi-
fied along the corrugation (Fig.  10b). This may indicate 
the potential for multiple detachments. The high MBA 
area continues from the NTO massif to this long cor-
rugation (Fig.  8b), and there are two short corrugations 
located between them. The gravity anomalies suggest 
that higher-density material is present in the shallow 

Fig. 10 Slope and depth profiles across three OCCs in the same scale. The locations of the profiles are shown in Fig. 11a, b and e. Raw slope profiles 
are shown in thin black lines, and 3 km-slope Gaussian moving averages are in red. The loci of termination (hanging wall cutoff ) and breakaway 
of detachment faults are plotted on depth profiles. The corrugated areas are also shown. a Mado MM OCC, b 23° 20′ N OCC, and c Godzilla MM
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subsurface, possibly an intermittent gabbro intrusion, but 
no rock samples have been collected here.

A small, circular MBA high was observable along the 
fracture zone at 22° 55′ N, 139° 07′ E (Fig. 8b). We do not 
have multibeam bathymetry here, but the public bathym-
etry data of 30′′ resolution has indicated the existence of 
a conical high. We cannot reliably calculate the MBA and 
cannot investigate its detailed morphology on it. How-
ever, this structure is a candidate for being another OCC 
that has developed at the remnant axis.

These observations suggest that the final stage of the 
back-arc opening in this area was generally magma-poor, 
and detachment faulting likely played a key role.

5.3  Magma‑starved spreading at the final stage 
of back‑arc opening

In the previous section, we have shown that detachment 
faulting is the main process of the back-arc opening at 
the final stage in the Mado and neighboring segments. 
Although many OCCs have been reported along global 

ridge systems ranging from ultraslow (e.g., Searle et  al. 
2003; Cannat et al. 2006; Hayman et al. 2011; Sauter et al. 
2013; Grevemeyer et al. 2018; Haughton et al. 2019; Cor-
balán et al. 2021), slow (Cann et al. 1997, 2015; Tucholke 
et  al. 1998, 2008; Ranero and Reston 1999; Smith et  al. 
2006, 2014; Escartín et al. 2008) to intermediate (Okino 
et  al. 2004) rates, the reports from back-arc spreading 
systems are highly limited. All of the back-arc basin OCC 
studies have been conducted in the Philippine Sea.

Many OCCs are distributed along the Parece Vela rem-
nant back-arc rift (PVR, Fig.  11). The rift axis is highly 
segmented and hosts anomalous massifs, although the 
well-ordered abyssal hills are dominant in the far off-axis. 
The Godzilla Megamullion (GMM), which is a large and 
well-studied OCC, is located at 15°  N (Fig.  11e). Here, 
125  km-long corrugated surfaces are exposed (Fig.  10c) 
and have developed across the entire segment (Ohara 
et  al. 2001; Harigane et  al. 2008, 2010, 2011b, 2011a, 
2019; Tani et  al. 2011; Loocke et  al. 2013; Spencer and 
Ohara 2014; Ohara 2016, 2021). North of the GMM 

Fig. 11 Wide-spread OCC-like structures along remnant spreading centers in the Philippine Sea. a Mado MM OCC, b 23° 20′ N OCC, c Parece 
Vela Rift S1, d Parece Vera Rift S2, e Godzilla MM, f Southern Parece Vela Rift, g Southernmost Parece Vela Rift, h eastern CBF Rift. The Godzilla MM 
(Fig. 11e) is shown on a different scale
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segment, two segments host massifs immediately south-
west of the remnant rift axis (Fig.  11c and d). The sur-
face of these massifs is relatively smooth without clear 
corrugations, and peridotite samples have been reported 
(Ohara et al. 2003; Ohara et al. 2011). These massifs can 
be categorized as “smooth seafloor” (Cannat et al. 2006), 
which has indicated a much melt-starved condition. The 
area south of the GMM has not been well studied, but 
the limited multibeam bathymetry has indicated that the 
OCC-like structures with corrugations have developed 
adjacent to the remnant rift axis (Fig. 11f ). A corrugated 
dome structure is located at the southwestern flank of the 
remnant rift (top of Fig. 11f ), and another set of corruga-
tions seem to extend more than 50 km far off-axis. Gong 
et al. (2022) have reported the exposure of gabbroic rocks 
and altered peridotites at the southernmost PVR near the 
junction of the Yap Trench. Their samples were collected 
from the topographic high without any clear corruga-
tions (Fig. 11g).

The widely distributed OCCs and OCC-like structures 
along the remnant back-arc spreading axis indicate that 
the detachment faulting was dominant at the end of the 
back-arc spreading over the entire PVR. In the process 
of reaching this final stage, the spreading direction and 
rate have changed. The general pattern is as same as that 
of the Shikoku Basin, with the east–west spreading in 
the first half, and then, the spreading direction gradually 
changes to a NNE–SSW ~ NE–SW direction with rift axis 
segmentation. The average half-spreading rate is esti-
mated to be as 40–50 mm/yr. in the east–west spreading 
stage (26–18.7 Ma) and decreases to ~ 30 mm/yr. (Okino 
2015) in the later stage before the GMM formation. Tani 
et  al. (2011) investigated the development of the GMM 
using the zircon age dating of the gabbroic samples col-
lected and found a constant of 25.4  mm/yr. spreading 
across the entire GMM from 13 to 7.9  Ma (Fig. 9). The 
bathymetric profile and the variation in seafloor slope 
(Fig.  10c) have shown that the large GMM comprises 
three domed highs, suggesting multiple occurrences 
of detachment faulting. Even if the information on the 
denudation rate of each detachment was insufficient, the 
repeated detachment faulting caused pronounced and 
constant spreading over the long GMM. Unfortunately, 
there are no age data on the conjugate side, and we can-
not know if the spreading was asymmetric or not. The 
decrease in spreading rate in the later stage is common 
in both the Shikoku and Parece Vela Basins. However, the 
duration of the final tectonic-dominant phase is different. 
The GMM suggests that the melt-poor extension contin-
ued at slow rate over six million years, whereas the Mado 
MM OCC was formed over approximately one million 
years after further reduction of spreading rate (Figs.  6 
and 9).

Another group of OCCs has been recognized in the 
northern off-axis of the eastern part of the CBF Rift 
(Fig.  11h). The CBF Rift is a remnant spreading center 
of the West Philippine Basin, alternatively known as 
the Central Basin Spreading Center (Okino and Fujioka 
2003). The origin of this basin is still debated, but it 
formed from Eocene to Oligocene time (Hilde and Lee 
1984; Fujioka et  al. 1999; Deschamps et  al. 1999, 2002; 
Deschamps and Lallemand 2002; Okino and Fujioka 
2003; Sasaki et al. 2014). The magnetic lineation has indi-
cated that the basin extended in a NE–SW direction in 
the early phase and the spreading direction then rotated 
100° clockwise to a north–south direction, and the axis 
became segmented in the later phase (Deschamps et  al. 
1999; Deschamps and Lallemand 2002; Okino and 
Fujioka 2003). Several OCCs are densely located at the 
northern off-axis of the eastern CBF Rift, near the junc-
tion of the CBF Rift and the Kyushu–Palau Ridge (Ohara 
et  al. 2015). This OCC area extends across an approxi-
mately 70 × 70 miles area. Each OCC is approximately 
10–20 km in extent and is accompanied by N-S trending 
corrugations on them.

The estimated age and spreading rate are different 
among previous studies. Early work by Hilde and Lee 
(1984) has proposed the occurrence of NE–SW spreading 
from 59 to 40 Ma with a half-spreading rate of 4.4 cm/yr. 
and N–S spreading rate at 1.8 cm/yr. from 40 to 33 Ma. 
Deschamps and Lallemand (2002) revised the early stage 
from 54 to 30  Ma and the late extension episode until 
26 Ma. However, Sasaki et al. (2014) have suggested that 
the age of cessation of spread was approximately 36 Ma, 
and a change in the spreading rate was not required. 
Their work is predominantly based on the southern flank 
of the WPB and does not include the identification of the 
northern flank where the OCCs have developed.

Inactive back-arc basins have indicated that the back-
arc opening continued for approximately 10–15 million 
years and then ceases opening. The mature stage of the 
back-arc opening is highly similar to those of the mid-
ocean ridge process, although the early stage is influ-
enced by subducted slab and arc magmatism to a greater 
or lesser degree (e.g., Arai and Dunn 2014). However, to 
date, the ending process of back-arc formation has not 
yet been investigated. The common features in the later 
and final stage of the back-arc basins in the Philippine 
Sea are the change in spreading direction, the decrease 
in spreading rate, and the melt-poor, asymmetric detach-
ment faulting at the end. It is a remaining question if the 
termination of back-arc spreading is a passive response to 
far-field processes or is triggered by the waning of mag-
matism. We cannot answer this question with certainty, 
but the presence of a long detachment along the Parece 
Vela Rift, such as GMM (Fig. 11e) and the southern one 
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(Fig. 11f ), indicates that the extension can continue over 
a few million years under magma-poor environment, 
which likely suggests that the primary control may be the 
far-field process.

The repeated formation of back-arc basins along some 
convergent boundaries has been reproduced by 2D 
thermo-mechanical modeling of subduction by Ishii and 
Wallis (2022). They have shown that trench retreat dur-
ing back-arc opening caused a decrease in slab dip and 
the buckling of the slab, and then, the spreading ceased 
during the buckling phase. Their model predicted an 
approximately constant velocity of trench retreat for 
5–7 million years which then decreased to zero over 
five million years or less. The constant velocity of trench 
retreat likely corresponds to the east–west intermediate 
spreading stage of the Shikoku–Parece Vela Basin forma-
tion and the buckling phase to the later NE–SW slow to 
nearly ultraslow spreading phase. Their model assumes a 
two-dimensional structure and does not reproduce the 
rotation of the spreading direction and its effect on the 
mantle upwelling. Along the Izu–Bonin–Marina trench, 
the Pacific Plate subducts obliquely beneath the Philip-
pine Sea. As the trench retreat wanes, there is a decrease 
in the spreading rate of the back-arc, and the influence of 
oblique subduction likely caused the northward motion 
of the arc-side sliver, resulting in the rotation of the 
spreading direction. This also caused the segmentation of 
the spreading axis because the spreading axis tends to be 
located at the existing mantle upwelling zone parallel to 
the trench. This segmentation likely suppresses the two-
dimensional upwelling and accelerates the melt-starved 
environment.

6  Conclusions
We first reported the geophysical features of the Mado 
Megamullion (Mado MM) oceanic core complex in the 
Shikoku back-arc basin, which ceased to open in the 
mid-Miocene. The Mado MM OCC is located nearby the 
remnant spreading axis and clearly leaves traces of the 
final appearance of the back-arc opening. The following 
conclusions were obtained.

1. The Mado MM OCC shows a typical oceanic core 
complex morphology with prominent flow-line par-
allel corrugations on the domed high. The termi-
nation is a relatively steep slope, partly deformed 
by mass wasting, and is continuous to the remnant 
axial rift valley of the Shikoku Basin. It indicates that 
detachment faulting played a substantial role at the 
end of the back-arc spreading.

2. The Mado MM OCC is accompanied by a high posi-
tive gravity anomaly, indicating that the lower crust/
mantle materials are exposed along a detachment 

fault. The estimated crustal thickness variation is 
−3 km, half of the normal 6 km-thick crust. There is a 
trade-off between the density and structure, but this 
result is consistent with the idea that the melt supply 
rate M is approximately 0.5 for the detachment-dom-
inant phase predicted by numerical modeling.

3. The zircon U–Pb ages were determined for nine 
gabbroic samples collected over the entire Mado 
MM OCC. All of the analyzed ages cluster around 
12–13 Ma and do not exhibit systematic spatial varia-
tion over the detachment.

4. The back-arc spreading in the Shikoku Basin com-
prises former east–west spreading at 30–40  mm/yr. 
(half rate), and later NE–SW ~ NNE–SSW is spread-
ing at a relatively slow rate. Our magnetic analysis has 
shown that the spreading rate decreased to 20 mm/
yr. at ca. 19 Ma when the spreading direction started 
to rotate and again reduced to 11 mm/yr. at 16 Ma. 
The three-layer forward modeling has suggested that 
the Mado MM OCC formed from 14.1 to 12.2 Ma, 
which is concordant with the zircon age data from 
the gabbroic samples. The model has also shown that 
the spreading rate was higher (~ 34  mm/yr.) on the 
detachment side, causing pronounced asymmetric 
spreading at the initiation of the detachment.

5. Other evidence of tectonic-dominant spreading was 
also observed near the Mado MM OCC. A non-
transform offset massif was also present, which likely 
developed along another detachment is in the nodal 
basin at the southeastern end of the Mado segment. 
Another OCC with a corrugated surface potentially 
indicated a multi-detachment, developing at the 
neighboring segment to the east. These features were 
accompanied by a high gravity anomaly and exposure 
of mantle rocks, which suggested the occurrence of 
melt-starved, tectonic-dominant spreading in the 
broader areas.

6. These observations are common features reported 
along the Parece Vela Rift, the remnant spreading 
axis of the Parece Vela back-arc basin, and the east-
ern CBF Rift, the remnant spreading axis of the West 
Philippine Basin. That is, (1) stable, relatively fast 
spreading potentially parallel to the trench, (2) the 
spreading direction rotated, causing the segmenta-
tion of the ridge axis, and (3) detachment faulting 
played a key role at the end of the back-arc opening.

7. In the case of the Shikoku–Parece Vela basins, the 
spreading rate slowed down in the later phase. At the 
Mado segment, the spreading rate moreover slowed 
down immediately before the end of the spreading. 
The segmentation of the axis and slower spreading 
rate constricted the stable mantle upwelling and led 
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to the extensive occurrence of OCC and/or smooth 
seafloors along the remnant rift axis.
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