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Abstract 

Aftershocks are a fundamental characteristic of seismicity, and their generation mechanism is mainly characterized 
by two physical models, stress transfer from large earthquakes and afterslip-induced stress loading. However, the 
contribution of each mechanism to aftershock generation remains unclear. Here we investigate the spatiotemporal 
variations in aftershock activity following the 2011 Tohoku-Oki earthquake by applying the Hierarchical Space–Time 
Epidemic-Type Aftershock Sequence (HIST-ETAS) model to the decade of recorded seismicity since the mainshock. 
Using the estimated HIST-ETAS model, we categorize the aftershocks into background earthquakes (which are caused 
by aseismic phenomena) and triggered earthquakes (which are caused by earthquake-to-earthquake interactions). 
Most of the earthquakes that occurred updip of the large coseismic slip zone along the Japan Trench are triggered 
earthquakes, consistent with the lack of afterslip in this area. Conversely, background earthquakes are the predomi-
nant earthquake type in the long-term downdip of the large coseismic slip zone, and they positively correlate with 
the afterslip evolution. Our results suggest the importance of combining these two end-member aftershock genera-
tion models to explain aftershock activity and thus provide new insights into the relationship between afterslip and 
spatiotemporal aftershock distribution. Our classifications may also contribute to the monitoring of afterslip in a given 
region that hosts a large earthquake, particularly where geodetic observation networks are too sparse to evaluate 
afterslip evolution.
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1 Introduction
The 2011 M9 Tohoku-Oki earthquake occurred on 
March 11, 2011, along the boundary between the sub-
ducting Pacific Plate and the overriding Okhotsk 
Plate (Fig.  1). Previous studies reveal the aftershock 
distribution in and around the focal area of this 

megathrust earthquake (e.g., Asano et  al. 2011; Kato 
and Igarashi 2012). Asano et  al. (2011) estimated the 
centroid moment tensors of earthquakes before and 
after the 2011 Tohoku-Oki earthquake and revealed 
that interplate earthquakes did not occur within the 
large coseismic slip area of this megathrust earthquake, 
whereas both interplate and non-interplate earthquakes 
occurred downdip of the large coseismic slip area and 
along the Japan Trench, as shown in Fig.  1b. Asano 
et  al. (2011) also suggested that the interplate earth-
quakes that occurred downdip of the coseismic slip area 
were primarily loaded by coseismic slip and would be 
promoted by postseismic slip, with normal fault-type 
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aftershocks occurring in the hanging wall owing to ten-
sional stress changes and thrust aftershocks occurring 
in the footwall owing to compressional stress changes. 
Very few interplate earthquakes have occurred near the 

trench and in the outer rise, and the observed normal 
fault-type aftershocks were activated by tensional stress 
changes induced by the mainshock rupture (Asano et al. 
2011; Obana et al. 2012, 2013).

Fig. 1 Epicenter distributions of the detected earthquakes (01/10/1997–20/02/2021) in the study region. a Earthquake distribution ( Mj ≥ 4.0

, ≤ 100 km depth) before the 2011 Tohoku-Oki earthquake (01/10/1997–11/03/2011). b Earthquake distribution ( Mj ≥ 4.0, ≤ 100 km depth) after the 
2011 Tohoku-Oki earthquake (11/03/2011–20/02/2021). The yellow star is the epicenter of the 2011 Tohoku-Oki earthquake. Dashed lines denote 
the trench axes of the Japan Trench and the Sagami Trough. Red and blue rectangular regions denote the downdip and updip regions, respectively, 
that are mentioned in the discussion. c Magnitude–time plot of the earthquakes (01/10/1997–20/02/2021) that occurred in the study region. The 
Mj ≥ 4.0 earthquakes are shown in green. The yellow star denotes the 2011 Tohoku-Oki earthquake
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Various physical models have been suggested to explain 
the spatiotemporal aftershock distribution of large earth-
quakes, with most models considering either coseismic 
stress changes (Dieterich 1994; King et  al. 1994; Stein 
1999; Toda and Stein 2003, 2022; Kroll et al. 2017; Ozawa 
and Ando 2021) or afterslip-induced stress loading (Mar-
one et al. 1991; Perfettini and Avouac 2004, 2007; Perfettini 
et al. 2005; Hsu et al. 2006). However, the contribution of 
each mechanism to aftershock generation remains unclear. 
Here we investigate the aftershock generation mechanism 
following the 2011 Tohoku-Oki earthquake. We first apply 
the Hierarchical Space–Time Epidemic-Type Aftershock 
Sequence (HIST-ETAS) model (Ogata et  al. 2003; Ogata 
2004) to the decade of recorded seismicity since the 2011 
Tohoku-Oki earthquake. Using the estimated HIST-ETAS 
model, we then separate the seismicity into background 
events (which are generated by either tectonic loading or 
aseismic phenomena) and triggered events (which are gen-
erated by earthquake-to-earthquake interactions). Finally, 
we discuss the plausible physical processes that generated 
the aftershocks following this megathrust event based on 
spatiotemporal variations in the background and triggered 
events.

2  Methods
We applied the HIST-ETAS model (e.g., Ogata et al. 2003; 
Ogata 2004; Bansal and Ogata 2013; Ueda et  al. 2021) to 
the observed seismicity rate to investigate spatial variations 
in the seismicity characteristics and evaluate the probabil-
ity of a given event being a background event. This model 
is a point process model that includes the Omori-Utsu law 
(Utsu 1961; Utsu et al. 1995), which formulates the typical 
aftershock temporal decay, the Utsu-Seki law (Utsu and 
Seki 1954), which formulates the relationship between the 
aftershock area and mainshock magnitude, the decay in 
aftershock density with distance (e.g., Felzer and Brodsky 
2006), and a branching process, such that each earthquake, 
regardless of magnitude, has the ability to increase the 
probability of triggering a future earthquake (Iwata 2009).

The earthquake occurrence rate � at time and location 
(

t, x, y
)

 and occurrence history Ht can be expressed by:

where µ is the background seismicity rate, and the sec-
ond term expresses the rate of the earthquake occurrence 
triggered by a magnitude Mi earthquake at time and 
location ti, xi, yi  , where K  , p , and c are the parameters 
of the Omori-Utsu law, Si is a non-dimensional positive 
definite symmetric matrix for anisotropic clusters that is 
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determined by identifying the aftershock cluster using a 
magnitude-based clustering algorithm (Ogata et al. 1995; 
Ogata 1998) and then choosing the best-fit ellipsoid that 
represents the cluster, α is the aftershock magnitude 
sensitivity, q is the aftershock spatial decay rate, d is a 
constant, and Mc is the cutoff magnitude, 4.0 in this anal-
ysis. We note that Ht includes earthquakes that occurred 
before the target period (precursory period) because they 
are potentially influential to the seismicity in the target 
period (Ogata 2011).

The five seismicity parameters ( µ , K  , α , p , and q ) are 
given as a function of space and are expressed as:

where µ̂ , K̂  , α̂ , p̂ , and q̂ correspond to the geometric 
mean value of each parameter averaged over the analy-
sis region. We adapt each ϑ

(

x, y
)

 value to the data by 
expressing each function using many coefficients that are 
placed in the locations of each earthquake epicenter and 
some additional points on the boundary of the analysis 
region. Each ϑ

(

x, y
)

 value at an arbitrary location is lin-
early interpolated using the three values at the vertices of 
each Delaunay triangle. The other parameters c and d are 
location independent.

The unknown parameters can be estimated via the 
maximum likelihood estimation method. The log-like-
lihood is expressed as:

where k is the index of each event in the analysis, S is the 
analysis region, and [0,T ] is the analysis interval. How-
ever, it is hard to estimate the seismicity parameters sta-
bly because the number of unknown parameters is about 
five times larger than the number of data (events) used 
in the analysis. We obtained stable solutions by penaliz-
ing the spatial gradient of the parameter functions under 
the assumption of using smoothed functions (the facets 
of the piecewise linear function being as flat as possible):

where θ is a set of seismicity parameters, and 
τ = (w1, . . . ,w5) is a set of weights that is used to tune 
the strength of the constraints. We then estimated the 
seismicity parameters that maximized the penalized log 
likelihood function (Good and Gaskins 1971):
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The weights τ were objectively tuned by maximizing the 
integrated posterior distribution:

where π(θ |τ) ∝ exp{−Q(θ |τ)} is the probability dis-
tribution. The solution of θ was then obtained for fixed 
weights τ by maximizing the penalized log-likelihood in 
Eq.  (5), which yields the optimal maximum a posteriori 
estimates. See Ogata et  al. (2003) and Ogata (2004) for 
the details of the parameter estimation.

We estimated the uncertainties in the HIST-ETAS 
parameters at each location following the method out-
lined in Ueda et al. (2021). We first resampled the data 100 
times by randomly extracting 90% of the earthquake data 
used in this analysis. Note that we did not exclude the M9 
mainshock from the resampled data set. We then applied 
the HIST-ETAS model to each resampled dataset and esti-
mated the spatial patterns of the five seismicity param-
eters. We note that the reference parameters ( ̂µ , K̂  , α̂ , p̂ , 
and q̂ ) may vary significantly among the 100 resampled 
datasets owing to the trade-offs between each parameter. 
Herak et al. (2001) investigated the interdependence of the 
ETAS model parameters using the aftershock sequences 
of the 1996 Ston-Slano earthquake and highlighted that 
the degree of correlation can be large, especially for pairs 
of aftershock parameters. Therefore, we normalized the 
model parameters by dividing the reference parameters 
estimated from each resampled dataset and then calcu-
lated the standard deviation of ϑ

(

x, y
)/

ln 10 (common 
logarithm of the normalized parameter) at each location 
to evaluate the significance of the relative differences in 
each parameter, independent of the trade-offs between 
parameters.

We used the JMA unified hypocenter catalog (the prelim-
inary Determination of Epicenters) as the earthquake data 
in our analysis. We applied the HIST-ETAS model to the 
Mj ≥ 4.0 earthquakes that occurred between the timing of 
the 2011 Tohoku-Oki mainshock (11 March 2011) and 20 
February 2021 and were located at ≤ 100 km depth beneath 
Japan (20–50° N, 120°–150° E). The Mj ≥ 6.0 earthquakes 
that occurred since 1922 and the Mj ≥ 4.0 earthquakes 
that occurred since February 2011 were used as the precur-
sory occurrence history of the HIST-ETAS model.

(5)R(θ) = ln L(θ)− Q( θ |τ).

(6)�(τ) =
∫

�
L(θ)π(θ |τ)dθ ,

3  Results
The spatial distributions of the seismicity parameters that 
were estimated via the HIST-ETAS model, and their uncer-
tainties are shown in Fig.  2. Here we focus on the spatial 
variations in the background seismicity rate µ and purified 
aftershock productivity K

/(

cpdq
)

 , which expresses the i
-th event’s aftershock intensity when and where the i-th 
event occurs in the Tohoku region (Fig. 2). The background 
seismicity rate after the 2011 Tohoku-Oki earthquake is 
low within the large coseismic slip zone (Yokota et al. 2011; 
Iinuma et  al. 2012; Kato and Igarashi 2012), whereas it is 
high downdip of the large coseismic slip zone along the 
Pacific coast (Fig. 2a). These spatial differences are signifi-
cant, given the low uncertainties (Fig. 2c). The purified after-
shock productivity after the 2011 Tohoku-Oki earthquake 
is high around the large coseismic slip area (Fig.  2b). A 
comparison of the background seismicity rate and purified 
aftershock productivity suggests that triggered earthquakes 
have predominantly occurred near the large coseismic 
slip zone along the Japan Trench, where many aftershocks 
have occurred (Fig. 1). We don’t discuss the other seismic-
ity parameters (e.g., α ) because there are no significant spa-
tial variations in these parameters in and around the large 
coseismic slip zone (Additional file 1: Fig. S1).

4  Discussion
4.1  Spatiotemporal distributions of background 

and triggered seismicity after the 2011 Tohoku‑Oki 
earthquake

We find a significantly high background seismicity rate 
downdip of the large coseismic slip zone and relatively high 
aftershock productivity along the Japan Trench near the 
large coseismic slip zone compared with the background 
seismicity rate. Here we discuss the spatiotemporal distri-
butions of the background and triggered seismicity after 
the 2011 Tohoku-Oki earthquake (Figs.  3, 4 and 5). We 
evaluate the numbers of background and triggered earth-
quakes in each 0.1° × 0.1° grid by calculating the summation 
of the probability that each event is classified into a back-
ground event and a triggered event, respectively, using the 
estimated HIST-ETAS parameters. The probability that 
each event is classified into a background event is explicitly 
given by Zhuang et al. (2002):

(7)ϕi =
µ(xi ,yi)

�
(

ti ,xi ,yi|Hti

) ,

Fig. 2 Spatial distribution of the optimal maximum posterior estimates and their uncertainties of the HIST-ETAS model. a Common logarithm of 
the background seismicity rate µ . b Common logarithm of the purified aftershock productivity K

/

(cpdq) . c Standard deviations of the common 
logarithm of µ . d Standard deviations of the common logarithm of K

/

(cpdq) . Black dashed lines denote the Japan Trench axis. Blue solid lines 
denote the outer edge of the large coseismic slip zone of the 2011 Tohoku-Oki earthquake, as proposed by Kato and Igarashi (2012). Blue dashed 
and dotted lines denote the iso-slip contours (15-m contour) that were estimated by Iinuma et al. (2012) and Yokota et al. (2011), respectively

(See figure on next page.)
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Fig. 2 (See legend on previous page.)



Page 6 of 14Ueda and Kato  Progress in Earth and Planetary Science           (2023) 10:31 

Fig. 3 Spatiotemporal distributions of the number of background earthquakes calculated using the estimated HIST-ETAS model. a–j Spatial 
distributions of the number of background earthquakes by year. The black dashed line denotes the Japan Trench axis. The blue solid line denotes 
the outer edge of the large coseismic slip zone of the 2011 Tohoku-Oki earthquake, as proposed by Kato and Igarashi (2012)
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Fig. 4 Spatiotemporal distributions of the number of triggered earthquakes calculated using the estimated HIST-ETAS model. a–j Spatial 
distributions of the number of triggered earthquakes by year. Black dashed and blue solid lines are the same as in Fig. 3
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Fig. 5 Spatiotemporal distributions of the ratio of background seismicity to the total seismicity calculated using the estimated HIST-ETAS model. 
a–j Spatial distributions of the seismicity ratio by year. Black dashed and solid lines are the same as in Fig. 3
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where the numerator and the denominator are the back-
ground seismicity rate and total seismicity rate when and 
where the i-th event occurs, respectively (Eq.  1). The 
probability that each event is classified into a triggered 
event is:

The spatiotemporal distributions of the background 
and triggered seismicity in the decade since the Tohoku-
Oki earthquake (from 11 March 2011 to 11 March 
2021) are shown in Figs.  3 and 4, respectively, and the 
spatiotemporal distribution of the ratio of background 
events to the total number of earthquakes is shown in 
Fig.  5. Along the Japan Trench near the large coseismic 
slip zone, few background earthquakes occurred dur-
ing the analysis period (Fig.  3), whereas many triggered 
earthquakes occurred shortly after the 2011 Tohoku-Oki 
earthquake (Fig.  4a), followed by a decay in triggered 
seismicity over time (Fig.  4b–j); these spatiotemporal 
trends were expected based on the background seismicity 
rate and purified aftershock productivity results (Fig. 2a 
and b, respectively). The predominance of triggered seis-
micity relative to background seismicity is further con-
firmed in Fig. 5, thereby suggesting that the aftershocks 
along the Japan Trench after the 2011 Tohoku-Oki earth-
quake are largely due to earthquake-to-earthquake inter-
actions. Many background and triggered earthquakes 
occurred downdip of the large coseismic slip zone right 
after the 2011 Tohoku-Oki earthquake (Figs. 3a and 4a), 
followed by decays in seismicity over time (Figs.  3 and 
4). The background earthquakes contributed to the long-
term evolution of seismicity following the Tohoku-Oki 
earthquake (Figs. 3b–j and 5), whereas the triggered seis-
micity temporarily increased when M7-class earthquakes 
(e.g., the 2016 and 2021 Fukushima-Oki earthquakes) 
occurred (Fig. 4f and j). We discuss the factors related to 
the temporal variations in background seismicity in the 
following section.

4.2  Relationship between background earthquakes 
and similar earthquakes downdip of the large 
coseismic slip zone

Previous studies have discussed the physical processes 
that control temporal variations in background seismic-
ity (e.g., Hainzl et al. 2013; Kumazawa and Ogata 2013; 
Kumazawa et al. 2016; Nishikawa and Ide 2017; Nishi-
kawa et  al. 2021). Kumazawa and Ogata (2013) evalu-
ated temporal variations in the background seismicity 
rate of the inland seismicity before and after the 2011 
Tohoku-Oki earthquake using the non-stationary ETAS 
model and attributed the background seismicity rate 
changes to fluid-based aseismic triggering. Nishikawa 

(8)ρi = 1− ϕi.

and Ide (2017) and Nishikawa et  al. (2021) detected 
earthquake swarms, which yielded sudden increases in 
the seismicity rate that could not be explained by the 
aftershock activity, and they suggested that aseismic 
phenomena, such as slow-slip events, could introduce 
temporal variations in the background seismicity rate. 
We compare the spatiotemporal variations in the back-
ground seismicity with those of similar earthquakes 
including repeating earthquakes, which indicate creep 
movement along the plate interface (Igarashi 2020), to 
discuss the physical processes that control the spati-
otemporal variations in background seismicity down-
dip of the large coseismic slip zone. The spatial pattern 
of background seismicity resembles that of the similar 
earthquakes after the Tohoku-Oki earthquake (Fig.  6). 
The temporal variability in the number of background 
earthquakes downdip of the large coseismic slip zone 
(red rectangular region in Fig.  1) is shown in Fig.  7a, 
and a clear decay in background seismicity is observed. 
The relationship between the number of background 
earthquakes (Fig.  3) and aseismic slip amount, which 
was calculated using a similar earthquake catalog (Iga-
rashi 2020), is shown in Fig.  7b. We used the method 
of Uchida et  al. (2003) to calculate the aseismic slip 
amount from the similar earthquake catalog, whereby 
the slip amount of each similar earthquake is estimated 
from the following relationship between slip ( d ; cm) 
and the seismic moment ( Mo ; dyne·cm) (Nadeau and 
Johnson 1998):

The seismic moment for each event is estimated from 
its magnitude using the following relationship between 
magnitude and seismic moment (Hanks and Kanamori 
1979):

The temporal variability in the number of background 
earthquakes closely follows a function of the form 1/t 
(Fig. 7a) and asymptotically approaches the background 
seismicity rate before the 2011 Tohoku-Oki earth-
quake, which is roughly estimated from Fig. 3 in Ogata 
(2011). Note that it will take more time to evaluate at 
what level the background seismicity will actually set-
tle down to. The number of background earthquakes 
in each year positively correlates with the aseismic slip 
amount (Fig.  7b), which suggests that the increase in 
background seismicity downdip of the large coseismic 
slip zone is due to the afterslip of the 2011 Tohoku-Oki 
earthquake, which accumulates linearly with log time 
(Marone et al. 1991; Perfettini and Avouac 2007).

(9)log10 (d) = −2.36+ 0.17 log10 (Mo).

(10)log10 (Mo) = 1.5M + 16.1.
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4.3  Implications for afterslip and aftershocks 
after the 2011 Tohoku‑Oki earthquake

This study suggests that the spatiotemporal variations in 
the background events are due to the afterslip driven by 
the 2011 Tohoku-Oki earthquake (Fig. 7). The post-earth-
quake deformation following the Tohoku-Oki earthquake 
has been observed using land-based and seafloor geodetic 
instruments; however, the contributions of viscoelastic 
relaxation and afterslip to this deformation have been 
debated (e.g., Fukuda et al. 2013; Sun et al. 2014; Wata-
nabe et al. 2014; Agata et al. 2019; Fukuda and Johnson 
2021). Sun et  al. (2014) indicated that numerical mod-
els of the transient viscoelastic mantle rheology could 
explain the landward motion of the trench area, thereby 
suggesting that viscoelastic relaxation plays the dominant 
role in short-term postseismic deformation, and Fukuda 
and Johnson (2021) separated the contributions of after-
slip and viscoelastic relaxation under the assumption that 
these mechanisms are driven by coseismic stress changes 
and interact mechanically with each other to reveal the 
spatiotemporal afterslip distribution. Figure  7c shows a 
positive correlation between the number of background 
earthquakes (Fig.  3) and afterslip (Fukuda and Johnson 

2021) averaged downdip of the large coseismic slip zone 
(red rectangle in Fig. 1). Although it is difficult to sepa-
rate the contributions of afterslip and viscoelastic relaxa-
tion from the geodetic data, our study suggests that the 
contribution of afterslip can be extracted via a seismicity 
analysis of the aftershock distribution (Fig. 7).

Although many background and triggered earth-
quakes have occurred downdip of the large coseismic 
slip zone, triggered earthquakes were the predominant 
earthquake type right after the 2011 Tohoku-Oki earth-
quake (Figs. 3a, 4a, and 5a), thereby suggesting that these 
earthquakes were caused by the coseismic stress change. 
This result is consistent with the implication that the 
aftershocks in the surrounding regions were caused by 
the stress concentration due to the large coseismic slip 
(Asano et al. 2011; Kato and Igarashi 2012). Conversely, 
background earthquakes are the predominant earth-
quake type in the long term (Figs.  3b–j and 5b–j), and 
they positively correlate with the aseismic slip amount 
(Fig.  7b and c), thereby suggesting that temporal varia-
tions in the tectonic loading rate (afterslip) have a greater 
impact on the physical aftershock generation mechanism 
than the coseismic stress change due to the mainshock 

Fig. 6 Spatial distributions of the numbers of background earthquakes and similar earthquakes during the 11/03/2011–11/03/2020 period. a 
Spatial distribution of the number of background earthquakes calculated using the estimated HIST-ETAS model. b Spatial distribution of the 
number of similar earthquakes ( Mj ≥ 4.0 ) (Igarashi 2020). Black dashed and blue solid lines are the same as in Fig. 3
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rupture (Fig. 8). Predominance of triggered earthquakes 
right after the 2011 Tohoku-Oki earthquake and their 
faster decay compared with background earthquakes can 
also be confirmed by temporal variations in background 
and triggered earthquakes (Additional file 1: Fig. S2).

However, the reverse trend is observed updip of the 
large coseismic slip zone, as triggered earthquakes are 
the predominant earthquake type in the long term 
(Figs. 3, 4, and 5), thereby suggesting that the aftershocks 
are caused by earthquake-to-earthquake interactions, 

and that there is a lack of afterslip in this updip region 
along the Japan Trench (Fig.  8). This result supports 
previous findings of the normal fault aftershocks in 
the outer rise potentially being activated by an abrupt 
increase in extensional stress caused by the mainshock 
rupture (earthquake-to-earthquake interactions, Asano 
et al. 2011; Obana et al. 2012, 2013), the lack of afterslip 
in the updip region (Sun et al. 2014; Agata et al. 2019), 
and the observation of very few interplate earthquakes in 
the updip region (Obana et al. 2013, 2021).

Fig. 7 Temporal variations in the number of background earthquakes compared with the aseismic slip amount. a Temporal variations in the 
number of background earthquakes downdip of the large coseismic slip zone (red rectangle in Fig. 1). The blue curve is the best fit of the function 
a+ b

/

(t + c) to the observed number of background earthquakes per year (red points). The two black dashed lines provide a possible range 
for the number of background earthquakes per year before the 2011 Tohoku-Oki earthquake, which is deduced from Fig. 3 in Ogata (2011). b 
Relationship between the number of background earthquakes calculated using the estimated HIST-ETAS model and the aseismic slip amount, 
which was calculated using the similar earthquake catalog (Igarashi 2020) and the method outlined by Uchida et al. (2003). Black dashed lines are 
the same as in a. c Relationship between the number of background earthquakes calculated using the estimated HIST-ETAS model and the afterslip, 
which was estimated via a geodetic inversion analysis (Fukuda and Johnson 2021). Black dashed lines are the same as in a 

Fig. 8 Interpretation of the aftershock generation mechanisms following the 2011 Tohoku-Oki earthquake. The red line denotes the plate interface 
(Nakajima and Hasegawa 2006; Kita et al. 2010), and the gray circles are the hypocenters of the events in the F-net hypocenter catalog (11/03/2011–
11/03/2021)
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4.4  Previous aftershock models
Various physical aftershock models have been proposed 
to explain aftershock activity, which can be divided into 
two main categories: static stress changes induced by the 
mainshock and large aftershocks (Dieterich 1994; King 
et al. 1994; Stein 1999; Toda and Stein 2003, 2022; Kroll 
et al. 2017; Ozawa and Ando 2021) and afterslip-induced 
stress loading (Marone et al. 1991; Perfettini and Avouac 
2004, 2007; Perfettini et al. 2005; Hsu et al. 2006). Toda 
and Stein (2022) forecasted the seismicity changes after 
the Tohoku-Oki earthquake based on a rate-and-state 
friction model (Dieterich 1994) that was coupled with 
Coulomb stress transfer, and they qualitatively explained 
the quiescence in the mainshock source region and acti-
vation in the surrounding area, whereas Perfettini et  al. 
(2019) described the aftershock migration away from 
the rupture area of the Tohoku-Oki mainshock using 
an analytical model that was based on afterslip-induced 
seismicity. Although these studies only considered either 
mainshock-induced stress changes or afterslip-induced 
stress loading, our results suggest the importance of 
considering both mechanisms to explain the aftershock 
sequence of the 2011 Tohoku-Oki earthquake. Many 
aftershocks have occurred updip of the large coseismic 
slip zone along the Japan Trench (blue rectangular region 
in Fig.  1) without any detectable afterslip (Sun et  al. 
2014; Agata et al. 2019), whereas the aftershock activity 
downdip of the large coseismic slip zone (red rectangu-
lar region in Fig. 1) has been affected by both mainshock-
induced Coulomb stress transfer and afterslip-induced 
stress loading ((Figs.  3, 4, 5, and 7). Our study success-
fully divides the aftershocks into background earth-
quakes, which are inferred to be afterslip-induced events 
(Fig. 3), and triggered earthquakes, which are inferred to 
be induced by the stress transfer from other earthquakes 
(Fig. 4). The present classification is consistent with both 
the afterslip distribution (Fukuda and Johnson 2021) and 
mainshock-induced stress change (Asano et  al. 2011). 
Our results suggest that the Coulomb stress model and 
afterslip model should be combined in future studies 
to better understand aftershock activity. Furthermore, 
applying our method to the aftershock sequences of other 
large earthquakes and quantifying the afterslip-induced 
seismicity may provide new insights into the relationship 
between afterslip and aftershocks (Churchill et al. 2022). 
Our method can be also applied to estimate the afterslip 
evolution if earthquake catalogs are available, even in 
areas where geodetic observation networks are sparse. It 
is therefore possible to employ the classifications using 
the HIST-ETAS model to advance our understanding of 
the seismicity characteristics following large earthquakes 
and to forecast the spatiotemporal evolution of both 
background and triggered earthquakes. Furthermore, 

afterslip estimates from earthquake catalogs may moti-
vate the construction of new geodetic observation 
networks to better observe and quantify aftershock gen-
eration mechanisms.

5  Conclusions
We investigated the spatiotemporal characteristics of 
the aftershocks following the 2011 Tohoku-Oki earth-
quake by applying the HIST-ETAS model to the decade 
of recorded seismicity since the mainshock. We success-
fully divided aftershocks into background earthquakes, 
which are afterslip-induced events, and triggered events, 
which are induced by the stress transfer from other 
earthquakes. Triggered earthquakes are the predominant 
earthquake type updip of the large coseismic slip zone 
along the Japan Trench, which is consistent with the lack 
of afterslip in this region. Background earthquakes are 
the predominant earthquake type downdip of the large 
coseismic slip zone, and they positively correlate with 
the afterslip evolution that was detected using repeating 
earthquakes and geodetic data. Our results suggest that 
both stress transfer and afterslip should be considered for 
both modeling an aftershock sequence and evaluating the 
relationship between afterslip and aftershocks.
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