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Abstract

This paper documents the sedimentary characteristics of the widespread deposits associated with the 2011 Tohoku-
oki tsunami on the lowlands along the Pacific coast of the Sendai and Fukushima regions, northern Japan, and
observed tsunami inundation depths. In eight areas of the region, field observation was carried out at a total of 123
locations and sampling at a total of 49 locations. Grain-size analysis and soft X-ray imaging reveal that the tsunami
deposits are usually composed of sheetlike sandy beds and generally show landward-thinning and landward-fining
trends and a landward increase in mud content, although site-specific distributional patterns are apparent along each
transect. These thickness and grain-size patterns indicate a landward decrease in flow capacity. This information on
the sedimentology of tsunami deposits and observed inundation depths will assist with the identification of paleo-
tsunami deposits in the geological record and provide valuable constraints for mathematical analyses of tsunami
hydraulic conditions related to sedimentary characteristics.
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1 Introduction

Tsunami deposits are reliable evidence for recent,
historical, and prehistoric tsunamis and can be exploited
to reconstruct tsunami recurrence intervals by dating
(Nanayama et al. 2003; Cisternas et al. 2005; Kelsey
et al. 2005; Jankaew et al. 2008; Sawai et al. 2009b; Dura
et al. 2017; Ishizawa et al. 2017, 2019; Rubin et al. 2017;
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Fujino et al. 2018; Shimada et al. 2019; Higaki et al. 2021),
tsunami inundation areas on the basis of their spatial
distributions (Maclnnes et al. 2010; Sawai et al. 2012,
2015; Sugawara et al. 2013; Pilarczyk et al. 2021), and the
hydraulic conditions of tsunamis by inverse modeling
(Jaffe and Gelfenbaum 2007; Jaffe et al. 2012; Goto et al.
2014; Naruse and Abe 2017; Tang and Weiss 2015; Tang
et al. 2017; Mitra et al. 2020, 2021). In general, tsunami
deposits are initially identified as coarse layers within
fine strata by visual observation and soft X-ray imaging
and are then diagnosed using multiple approaches (e.g.,
sedimentological, paleontological, and/or geochemical
analyses; Goff et al. 2012). To eliminate other possibilities
for the origins of the coarse-grained event deposits, such
as river flooding and storm surge events (e.g., Tuttle et al.
2004; Morton et al. 2007), a comparison of paleo- and
modern tsunami deposits is essential.
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The tsunami deposits associated with the 2011 Tohoku-
oki tsunami have been well documented (e.g., Goto
et al. 2011, 2012, 2014; Abe et al. 2012, 2020; Chagué-
Goff et al. 2012a, b; Jaffe et al. 2012; Naruse et al. 2012;
Szczucinski et al. 2012; Pilarczyk et al. 2012; Richmond
et al. 2012; Takashimizu et al. 2012; Matsumoto et al.
2016; Tanigawa et al. 2018; Iijima et al. 2021). For
example, Goto et al. (2011) and Abe et al. (2012) observed
sandy and muddy tsunami deposits on the Sendai Plain
and compared their distributions to the area inundated
by seawater during the tsunami event. Additionally, Goto
et al. (2014) described changes in the thicknesses of the
tsunami deposits from approximately 1300 locations, as
well as flow-depth and elevation data on the Sendai Plain,
to investigate the relations between these parameters.
Those reports provided valuable information on the
2011 tsunami deposits as modern analogs for identifying
paleo-tsunami deposits; however, detailed descriptions of
sedimentary features and grain-size data in each location
have not yet been published. Thus, although the 2011
tsunami provided considerable knowledge and abundant
data on tsunami deposits have been obtained in previous
studies, these data are uneven in their spatial and vertical
resolution.

In this paper, we provide archives of visual images
including soft X-ray images and thickness and grain-
size data for the 2011 Tohoku-oki tsunami deposits,
allowing direct comparison between the various
locations and areas. The archives of the tsunami deposits
were obtained from the Sendai Plain and the Fukushima
coast, which were little investigated immediately after
the tsunami, to document their sedimentological
features. We also provide thickness and grain-size data
at 1-cm vertical intervals along leveled transects. This
unparalleled dataset will serve as an archive that will
improve the identification of paleo-tsunami deposits and
enable precise estimates of the hydraulic conditions of
inundation flow via inverse modeling.

2 Study area

2.1 Geomorphological setting

Our field investigations were conducted along an approx-
imately 80-km north—south distance along the coasts
of the Sendai Plain and the northern part of Fukushima
Prefecture (Fig. 1). We considered eight study areas that
extend up to 5 km inland (Fig. 1B), which are, from north
to south, the Onuma, Arahama, Natori, Watari, Yama-
moto, Suijin-numa, Shinchi, and Odaka areas (Fig. 1B).
The first five areas are located on the Sendai Plain, which
extends about 50 km from north to south. The Sendai
Plain is approximately 10 km wide in its northern part
around the Onuma and Arahama areas, and narrows
toward the south to less than 5 km wide around the
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Yamamoto area (Fig. 1). The Sendai Plain is a flat lowland,
generally has an elevation above sea level of less than
5 m, and is characterized by beach ridges and muddy
inter-ridge swales (now used as paddy fields) that lie par-
allel to the coastline (Tamura and Masuda 2004). The
average gradient is gentle within the study areas in the
Sendai Plain: about 0.3%o in the Natori area, 0.4—0.5%o in
the Onuma, Arahama, and Watari areas; and 0.8%o in the
Yamamoto area. The three southernmost study areas are
located on lowlands in narrow valleys between the hills
(known as the Soso Hills, Fukushima Prefecture), which
are up to several tens of meters high. These lowlands
are generally at less than 5 m elevation, and each has a
narrow (maximum 1 km wide) eastward opening and
extends 2—4 km in the east—-west direction. The average
gradient is relatively high in these three areas: about 3%o
in the Suijin-numa area; 2%o in the Shinchi area; and 1%o
in the Odaka area.

2.2 The 2011 Tohoku-oki tsunami in the study area

Field surveys of inundation depths, heights, and areas
associated with the 2011 tsunami in the study areas
have been conducted by many researchers. Inundation
depths above the surrounding ground levels in these
areas were measured by using watermarks and calibrated
to provide inundation heights relative to the mean sea
level of Tokyo Bay (Tokyo Peil). These survey results
were compiled by the joint survey group (The Tohoku
Earthquake Tsunami Joint Survey Group 2011; Mori et al.
2012). The Geospatial Information Authority of Japan
provided the inundation map, which was estimated from
interpretations of aerial photographs and satellite images
(Nakajima and Koarai 2011). The maximum inundation
distance and inundation heights within each study area
are summarized in Table 1. In addition, Goto et al. (2012)
concluded that the first wave was the largest and reached
the furthest inundation distance on the Sendai Plain.

3 Methods

We conducted field investigations in April and May 2011,
January 2012, and November 2015 (Table 2). We selected
a total of 123 study locations within the eight study areas:
Onuma (ON1-17); Arahama (AR1-21); Natori (NT1-
16); Watari (WT1-17); Yamamoto (YM1-27); Suijin-
numa (SJ1-9); Shinchi (SN1-8); and Odaka (OD1-8)
(Figs. 1, 2; Table 2). We excavated small pits, observed
the grain size and sedimentary structures of the tsunami
deposits, and measured their thicknesses at every study
location (white and pink circles in Fig. 2), except for two
locations (AR21 and ODS8) at which no tsunami depos-
its, not even thin mud drapes, were found. We obtained
samples of the tsunami deposits for laboratory analysis at
49 locations with a plate-shaped plastic case (pink circles
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Fig. 1 Location map of study areas along the Pacific coast around the Tohoku district, northeastern Japan. A Index map of northeastern Japan
showing the Pacific coast around the Tohoku district. The epicenter of the 2011 Tohoku-oki earthquake (star) and the coseismic slip distribution
(dashed lines; Ozawa et al. 2011) are marked. B Detailed index map of the eight study areas along the Pacific coast. Study locations within each area
are shown in Fig. 2. The inundation limit of the 2011 tsunami (dashed blue line) follows the “1:100,000 tsunami flood area overview map”on the GSI

Web site (Nakajima and Koarai 2011)

Table 1 Summary of maximum inundation distances and
heights within the studied areas

Area Maximum inundation Maximum

distance (km) inundation
height (m)

Onuma and Arahama 53 19.7

Natori 53 13.1

Watari 43 8.6

Yamamoto 35 10.3

Suijin-numa 2.1 13.5

Shinchi 2.2 8.7

Odaka 2.1 12.2

Maximum inundation distances are based on the “1:100,000 tsunami flood area
overview map” on the GSI Web site (Nakajima and Koarai 2011), and heights are
according to The Tohoku Earthquake Tsunami Joint Survey Group (2011) and

Mori et al. (2012)

in Fig. 2). Inundation depths were measured using water-
marks at seven locations within the study areas (blue
squares in Fig. 2; Table 3). We also surveyed the topog-
raphy along east—west transects within the Shinchi and
Odaka areas using VRS-GNSS survey instruments (Viva
GS10, Leica Geosystems AG, Heerbrugg, Switzerland) in
November 2015 (Figs. 2G, H, 3).

In the laboratory, soft X-ray imaging was carried out on
the samples from 49 locations (Table 2) with a soft X-ray
apparatus (SOFRON SRO-i503-2, SOFTEX Co., Ltd.,
Tokyo, Japan) and a digital X-ray sensor (NAOMI NX-
04SN, RF Co., Ltd., Nagano, Japan). Grain-size analyses
of the samples were conducted using an image analyzer
(Retsch Camsizer, Verder Scientific, Haan, Germany),
which has a wide effective measuring range that can
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Fig. 2 continued

Table 3 Measured inundation depths and distances from the
neighboring coastline

Area Location Distance (m) Inundation
depth (cm)
Onuma D1 2801 155
Arahama D2 1733 205
D3 1791 270
D4 3062 176
ID5 3103 126
Natori D6 4660 65
Yamamoto D7 770 260
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capture grain sizes from silt to pebbles. Prior to the grain-
size analysis, all samples were subsampled vertically at
1-cm intervals, and the subsamples were sieved in water
to remove the mud component. The mud content of
each subsample was calculated from the resulting weight
reduction. Large pieces of organic matter such as roots
and leaves in the subsamples were removed by hand prior
to analysis. The measurement range of grain-size analysis
was set from —5.25 to+6.25 phi at intervals of 0.25 phi.
Finally, grain-size distribution properties such as mean
grain size and sorting were calculated from the measure-
ments of each subsample using the logarithmic graphical
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Fig. 3 Topographic profiles along the transects in the A Shinchi and B Odaka areas; survey transects are indicated in Fig. 2G and H, respectively.
Arrows indicate study locations for tsunami deposits. Several tiny peaks indicate footpaths between rice fields

method of Folk and Ward (1957). The average values of
these grain-size properties and the mud contents at each
location were re-calculated based on the results of the
subsamples.

4 Results
4.1 General characteristics of tsunami deposits
in the study area

The tsunami deposits were widely distributed over the
lowlands in the study areas, and extended up to 4 km
inland from the coastline. The tsunami deposits were
composed mainly of sand, with occasional gravels, mud
clasts, shells, and plant fragments, and sometimes were
overlain by a mud drape. The tsunami deposits were eas-
ily recognized because they generally overlie the muddy
soil of paddy fields or pavement. In addition, the tsunami
deposits generally showed an upward-fining trend and
parallel lamination, with occasional upward-coarsening
or repeated upward-fining trends (Figs. 4, 5, 6, 7, 8 and 9).

The average mud contents of the tsunami deposits
and the pre-tsunami deposits (underlying soils) over
all locations were 10.6% and 32.9%, respectively. The
location-averaged mud contents of the tsunami deposits
had a range of 0.4-96.6%. In general, the mud content
increased landward, although this pattern varied within
study areas (Fig. 10A). In contrast, the location-averaged
mud contents of the underlying soils had a range of
2.7-70.3%, and showed no discernible relationship with

distance from the coastline (Fig. 10B). The average mud
content of the muddy post-tsunami deposits that were
found only in the Odaka area was 71.1%. The location-
averaged values of these deposits were 30.8%—87.0% and
appeared to show a positive correlation with distance
from the coastline (Fig. 10B).

The maximum observed thickness of the tsunami
deposits was 65 cm, and the average thickness was
8.6 cm. The thickness decreased exponentially landward;
however, the thickness varied widely within each study
area (Fig. 11).

The mean grain size of the tsunami deposits aver-
aged over all locations was 1.6 phi, and the range of
location-averaged values was—0.5 to+2.7 phi. The tsu-
nami deposits showed a faint landward-fining trend, but
this varied widely within the study areas (Fig. 12A). The
mean grain size of the underlying soil was 1.7 phi, which
was not significantly different from that of the tsunami
deposits. The range of location-averaged soil grain sizes
was 0.7-2.4 phi, and soil grain size appeared to show no
relationship with distance from the coastline (Fig. 12B).
The mean grain size of the post-tsunami deposits in the
Odaka area was on average 2.5 phi, and the location-
averaged values were 1.4-2.9 phi, with a landward-fining
trend (Fig. 12B). Additionally, the tsunami deposits usu-
ally consisted of moderately well-sorted to moderately
sorted sand (Figs. 4, 5, 6, 7, 8 and 9; see Additional file 1:
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Fig. 4 Schematic diagrams of A stratigraphic columns, B soft X-ray images, and C grain-size analyses at study locations within the Arahama and

Natori areas. Scale bars represent 5 cm. Tsunami deposits are indicated by double-headed arrows beside the columns. Horizontal dashed lines in C
indicate the basal boundary of the tsunami deposits. Mud contents (black circles) are plotted against the bottom logarithmic axis; mean grain sizes
(crosses) and sorting values (white squares) are plotted against the top axis

Text S1 and Additional file 2: Data S1 for details), except
for muddy layers such as mud drapes.

Normal and inverse grading were common within
the tsunami deposits; for example, at location AR1, the
tsunami deposits showed inverse and normal grading in
the lower and upper parts, respectively, with a gradual
upward change in mean grain size from approximately
1.4 phi through 1.1 phi to 2.0 phi (Fig. 4). These
grading structures sometimes overlay each other and
were associated with mud drapes within the deposits,
indicating that the tsunami deposit contained multiple
units.

Parallel lamination was also common within the sandy
tsunami deposits. The tsunami deposits in this study
usually had an erosional contact with the underlying
soil, and the lower parts of the tsunami deposits often
contained mud clasts and gravel. Below, we describe the
sedimentological characteristics of the tsunami deposits
in each study area. Detailed descriptions including
grain-size data of the tsunami deposits at each location
are provided in Table 2, Additional file 1: Text S1 and
Additional file 2: Data S1.

4.2 Description of the tsunami deposits in each study area
4.2.1 Onuma Area

The furthest landward inundation limit (5.3 km) and the
greatest maximum inundation height (19.7 m) of the
study areas occurred in the Onuma and Arahama areas
(Table 1). The inundation depth was 155 cm at location
ID1 (Fig. 2A, Table 3). Field observations at 17 locations
in the Onuma area demonstrated that the tsunami depos-
its extended about 4 km inland from the coastline and
showed an obvious landward-thinning trend: the deposit
thickness changed from 14 cm at ON2 (1042 m inland
from the coastline) to almost 0 cm at ON17 (4030 m
from the coastline) (Fig. 11, Table 2). Visual inspection
revealed that the tsunami deposits were generally com-
posed of fine to medium sand, and a mud drape was
common at the top of the tsunami deposits. At locations
more than 3 km inland from the coastline, the tsunami
deposits were predominantly composed of mud.

4.2.2 Arahama area
In the Arahama area, the tsunami reached its furthest
inundation limit and highest inundation height, as
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described above. The inundation depths were 205, 270,
176, and 126 cm at locations ID2, ID3, ID4, and ID5,
respectively (Fig. 2B and Table 3). Field observations
at the 21 sampling locations revealed that the tsunami
deposits extended about 3.6 km inland and showed a
landward-thinning trend with a wide variation of thick-
nesses, from 17 cm at AR1 (262 m), to almost 0.1 cm
at AR20 (3617 m), and finally disappearing at AR21
(3744 m) (Fig. 11, Table 2). Visual inspection revealed that
the tsunami deposits were generally composed of fine to
medium sand, and a mud drape was common at the top
of the unit (Fig. 4, Table 2). At locations farther than 3 km
inland from the coastline, the tsunami deposits were
mostly composed of mud drape. Laboratory analysis of
samples from seven locations in this area demonstrated
that the tsunami deposits had a mean grain size of 1.6 phi
with a mud content of 24.0%, whereas the underlying soil
had a mean grain size of 1.5 phi and a mud content of
25.4%. The thick mud drape (maximum thickness 5 cm)
at the top of the tsunami deposits greatly contributed to
the high mud content relative to the soil. The tsunami
deposits showed an obvious trend of landward-increasing

mud content and a slight landward-fining trend, whereas
the soil showed almost no correlation of those properties
with distance from the coastline. An upward-fining trend
was also common in the tsunami deposits, but parallel
lamination was rare.

4.2.3 Natoriarea

In the Natori area adjacent to Sendai Airport, field obser-
vations at 16 locations demonstrated that the tsunami
deposits extended more than 4 km inland, with a wide
range of thicknesses from 1 cm at NT6 (1782 m) to 18 cm
at NT5 (1730 m) (Fig. 2C, Table 2); thus, in this area,
there was almost no trend in thickness with distance
from the coastline. Visual inspection revealed that the
tsunami deposits were generally composed of medium
to coarse sand, occasionally including gravel, and a thin
mud drape was commonly present at the top of the tsu-
nami deposits (Table 2). Parallel lamination and upward
fining were common in the tsunami deposits, and upward
coarsening was rarely observed in this area. At locations
more than 3 km from the coastline, the tsunami depos-
its were predominantly composed of mud. Laboratory
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analysis of a sample from location NT10 showed that the
tsunami deposits had a mean grain size of 1.2 phi and a
mud content of 1.3%, whereas the mean grain size of the
underlying soil was 1.3 phi and the mud content was 4.3%
(Fig. 4, Table 2).

4.2.4 Watariarea

In the Watari area, field observations were carried out at
17 locations. The tsunami deposits were found more than
2.6 km inland and showed a landward-thinning trend,
from 33 cm at WT1 (164 m from the coastline) to 3 cm
at WT14 (1754 m from the coastline) (Fig. 11, Table 2).
Visual inspection revealed that the tsunami deposits were
generally composed of fine to medium sand, and a mud
drape was occasionally observed at the top of the tsunami
unit (Fig. 5, Table 2). The tsunami deposits were predom-
inantly composed of mud at locations more than 1.7 km
from the coastline. On the basis of samples from nine
locations in this area, the tsunami deposits had a mean
grain size of 1.6 phi and a mud content of 11.1%, whereas
the grain size of the underlying soil was 1.3 phi and the
mud content was 26.5%. The tsunami deposits showed an

increase in mud content and a slight fining trend land-
ward, but the soil showed a faint increase in mud content
and almost no trend in mean grain size landward. An
upward-fining trend was common in the tsunami depos-
its, and parallel lamination was occasionally observed.

4.2.5 Yamamoto area

In the Yamamoto area, our field observations at 27 loca-
tions demonstrated that the tsunami deposits extended
more than 3.4 km inland and showed a clear exponential
thinning trend landward, from 65 cm thickness at YM2
(154 m from the coast) to 0.5 cm at YM27 (3417 m from
the coast) (Fig. 11, Table 2). Visual inspection revealed
that the tsunami deposits were generally composed of
fine to medium sand, and, particularly at landward loca-
tions, included a mud drape at the top of the unit (Fig. 6,
Table 2). At locations more than 2.7 km from the coast-
line, the tsunami deposits were predominantly composed
of mud. Samples from nine locations in this area were
analyzed: the tsunami deposits had a mean grain size of
1.5 phi and a mud content of 5.7%, whereas the mean
grain size of the underlying soil was 1.4 phi and the mud
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content was 17.2%. The tsunami deposits showed a clear
increase in mud content and became finer landward; the
soil showed a clear increase in mud content but an almost
constant mean grain size landward. Upward-fining and
parallel lamination was common in the tsunami deposits,
and upward coarsening was occasionally visible.

4.2.6 Suijin-numa area

In the Suijin-numa area, we carried out field observa-
tions at nine locations and identified that the tsunami
deposits extended more than 1.5 km inland and showed
a faint thinning trend landward, from 27 c¢m thickness at
SJ1 (211 m from the coast) to 6 cm at SJ7 (999 m from
the coast) (Fig. 11, Table 2). Visual inspection revealed
that the tsunami deposits were generally composed of
fine to coarse sand, with gravelly sediments occurring
at SJ1 (Fig. 7, Table 2). A mud cap was commonly pre-
sent at the top of the tsunami deposits (Fig. 7, Table 2).
Based on the laboratory analysis of samples from seven
locations in this area, the tsunami deposits had a mean
grain size of 1.3 phi and a mud content of 10.1%, whereas

the underlying soil had a mean grain size of 1.7 phi and
a mud content of 23.3%. The tsunami deposits showed
a faint increase in mud content and a faint fining trend
landward, albeit with wide variation, but the soil showed
a clear increase in mud content and an almost constant
mean grain size landward. Upward fining and parallel
lamination were common in the tsunami deposits, and
upward coarsening was occasionally present.

4.2.7 Shinchiarea

In the Shinchi area, a topographic survey demonstrated
that the lowland in the narrow valley had a relatively high
average gradient of 2%o within the area of the tsunami
deposit (Fig. 3A). Field observations at eight locations
demonstrated that the tsunami deposits extended more
than 1.5 km inland and gradually thinned landward, from
22 c¢cm at SN1 (304 m from the coast) to 5 cm at SN5
(712 m from the coast) (Fig. 11, Table 2). Visual inspec-
tion revealed that the tsunami deposits were mainly
composed of medium sand, and a mud cap was common
at the top of the unit (Fig. 8). Based on the laboratory
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analysis of samples from all locations in this area, the
mean grain size of the tsunami deposits was 1.7 phi and
the mud content was 7.4%, whereas the mean grain size
of the underlying soil was 1.4 phi and the mud content
was 43.7%. The tsunami deposits showed a faint increase
in mud content and almost no trend in mean grain size
landward, whereas the mud content and grain size of
the soil increased and slightly fined landward, respec-
tively. An upward-fining trend and parallel lamination
were very common in the tsunami deposits, and upward
coarsening was occasionally observed. These upward
coarsening—fining trends were repeated, especially at
locality SN3.

4.2.8 Odaka area

In the Odaka area, a topographic survey revealed that
the lowland in the narrow valley had a relatively high
average gradient of 1%o within the area of the tsunami
deposits (Fig. 3B). Field observations at eight locations
demonstrated that the tsunami deposits extended to a
distance of 1.7 km inland. Visual inspection revealed that
the deposits were mainly composed of fine to medium
sand and showed a gradual upward change from sand

plotted against the bottom logarithmic axis; mean grain sizes (crosses) and

to muddy sand and/or sandy mud, and finally a thick
mud cap at the top, which was characteristic of the tsu-
nami unit in this area (Fig. 9). Distinguishing the tsunami
deposits from post-tsunami reworked sediments was
difficult in this area, because our survey was conducted
4 years after the tsunami. Here we define the tsunami
deposits as layers of sand and muddy sand, and post-tsu-
nami deposits as layers of mud and sandy mud, though
some uncertainty about these identifications remains.
Abundant rootlets were found penetrating the post-tsu-
nami deposits toward the top of the tsunami deposits.
The tsunami deposits showed a faint landward-thinning
trend from 12 cm at OD2 (983 m from the coast), to 8 cm
at OD7 (1699 m from the coast), and finally disappear-
ing at OD8 (2271 m from the coast) (Fig. 11, Table 2).
Samples from all locations in this area were analyzed. The
tsunami deposits had a mean grain size of 1.6 phi and a
mud content of 11.1%; the corresponding values for the
underlying soil were 2.2 phi and 46.9%, respectively. The
tsunami deposits contained an almost constant percent-
age of mud and become slightly finer landward, whereas
the soil showed no trend in mud content and almost con-
stant mean grain size. The thick mud cap (mud content
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71.1%) at the top had a mean grain size of 2.5 phi and
showed a clear increase in mud content and a gradual fin-
ing trend landward. Within the tsunami unit, upward fin-
ing and parallel lamination were very common, and mud
clasts and plant fragments were occasionally present.
Additionally, rootlets penetrating down into the tsunami
deposits were well developed in this area.

5 Discussion

5.1 Spatial distribution of tsunami deposits

The wide extent of tsunami inundation and the spatial
distribution of tsunami deposits may be attributed to the
low-gradient topography of the study areas, where the
average gradient is 0.3-3%o. In contrast, in areas with
steeper gradients, the distribution of tsunami deposits is
generally limited; for example, Goto et al. (2017) found
gravelly tsunami deposits within approximately 1 km of
the coastline with an average gradient of ca. 2% in a nar-
row valley on the ria-type Sanriku coast. Naruse et al.
(2012) reported the presence of tsunami deposits within
approximately 1.5 km of the coastline in a bay-head delta
on the Sanriku coast, where the average gradient is 1%.

The tsunami inundation limit and the distribution of tsu-
nami deposits are controlled by the gradient and the sur-
rounding environment.

Our observations revealed that the widely distributed
tsunami deposits on the Sendai Plain and the northern
coast of Fukushima Prefecture generally showed a land-
ward-thinning trend. This trend is a common feature of
the 2011 tsunami deposits (e.g., Goto et al. 2011; Abe
et al. 2012, 2020; Richmond et al. 2012; Matsumoto et al.
2016) and other tsunami deposits elsewhere (e.g., Gelfen-
baum and Jaffe 2003; Hori et al. 2007; Fujino et al. 2010),
suggesting a general landward decrease in the flow capac-
ity of tsunamis (Hiscott 1994). Goto et al. (2011) reported
that the 2011 tsunami deposits became thin and mud-
dominated landward around Sendai Airport, near the
Natori area of this study. Abe et al. (2020) and Iijima et al.
(2021) also studied the 2011 tsunami deposits in narrow
valleys near Suijin-numa and in the Odaka area, respec-
tively. Both studies concluded that the deposits generally
thinned landward; however, there were some fluctua-
tions resulting from the micro-geomorphology and arti-
ficial structures. These results are concordant with our
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findings that there is an overall landward-thinning trend,
but some non-negligible fluctuations occur in each area.

5.2 Grain-size composition

The mud content of the tsunami deposits as a whole
tended to obviously increase with distance from the
coastline (Fig. 10A), concomitant with the landward-
fining trend (Fig. 12A), whereas the mud content and
mean grain size of the underlying soil did not seem to
correlate with distance from the coast (Figs. 10B, 12B).
These trends in the tsunami deposits have been reported
by previous studies in the Sendai Plain (e.g., Goto et al.
2011; Abe et al. 2012, 2020), and can be explained by
the continual entrainment of mud from the surface soil
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(Nanayama and Shigeno 2006; Matsumoto et al. 2010;
lijima et al. 2021) and the selective sedimentation of
coarser grains (Bondevik et al. 1997; Fujino et al. 2010)
during landward inundation. However, the mud con-
tent in each area did not tend to show a regular increase,
especially in the three southern areas. Abe et al. (2020)
studied a location very near the Suijjin-numa area in this
study and showed that the thicknesses of the mud layers
of tsunami deposits, such as mud drapes, varied indepen-
dently of the inundation distance or topographic eleva-
tion. They concluded that the thicknesses of the mud
layers were affected by sediments from Suijin-numa Pond
located in the middle of the valley.

Diversity in the grain-size composition of the tsu-
nami deposits was recognized in this study, although
the deposits were composed mainly of well-sorted sandy
sediments at most locations. For example, the tsunami
deposit at SJ1 was characterized by gravelly sediments,
and the tsunami deposits in the Odaka area were char-
acterized by thick mud drapes at their tops (Figs. 7, 9).
These variations in tsunami deposits are commonly rec-
ognized for the deposits formed by modern and paleo
events in the Sendai and Fukushima regions and else-
where (e.g., Hori et al. 2007), and can result from various
factors; for example, bedforms formed under inundation
flow and influenced by the return flow might enhance
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vertical and horizontal grain-size deviations. In general,
tsunamis hit wide areas that contain a range of environ-
ments, so it is difficult to specify the factor(s) causing the
diversity; however, differences in sediment sources along
coastal zones and variations in the depositional processes
owing to topographic differences are possible causes (e.g.,
Szczucinski et al. 2012; Goto et al. 2017; Abe et al. 2020).
Such diversity in grain-size composition and in sedimen-
tary structures, as mentioned below, makes it difficult to
identify paleo-tsunami deposits. In most cases, it is nec-
essary to combine multiple features as supporting evi-
dence for paleo-tsunami deposits (Goff et al. 2012; Sawai
2012). Thus, consideration of the diversity of sedimentary
features of modern tsunami deposits is important when
identifying paleo-tsunami deposits.

5.3 Sedimentary structures
The grain-size properties and sedimentary structures of
the tsunami deposits in this study reflect the sedimentary
processes under the inundation flow at each location.
Normal grading was the most common structure in the
tsunami deposits in this study and has also commonly
been found in other paleo- and modern tsunami deposits
(e.g., Dawson and Shi 2000; Hori et al. 2007; Jankaew et al.
2008). Normal grading results from suspension settling
or bedload during the waning of the flow (Naruse et al.
2012). In this study, normal grading was frequently asso-
ciated with parallel lamination. These combined features
were observed within about 1.1 km of the coast on the
Sendai Plain and 1.6 km of the coast in the three south-
ern areas, implying that these sediments were deposited
from bedload under relatively rapid flow, as mentioned
below. In contrast, normal grading without parallel lami-
nation was mainly found at locations further inland and
might have resulted from suspension settling under rela-
tively slow flow or in stagnant water. Inverse grading was
also observed in this study and has been documented in
other modern tsunami deposits (e.g., Hori et al. 2007;
Paris et al. 2007; Sawai et al. 2009a; Naruse et al. 2010,
2012). Inverse grading results from flow acceleration
during the waxing stage (Naruse et al. 2010; Iijima et al.
2021) or a traction carpet under sheet flow (Sohn 1997;
Moore et al. 2011), indicating a considerable flow. This
suggestion is consistent with the fact that inverse grad-
ing was observed in the relatively thick tsunami deposits
within approximately 700 m of the coast. Multiple-unit
structures usually consist of repeated sets of normal and/
or inverse grading, suggesting multiple stages of inun-
dation and/or return flows (Hori et al. 2007; Paris et al.
2007; Naruse et al. 2010, 2012).

Parallel lamination was commonly detected in this
study, including by soft X-ray imaging (Figs. 4, 5, 6, 7, 8
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and 9, Table 2). In this study, parallel lamination was typi-
cally recognized in tsunami deposits that have a thick-
ness of more than 5 cm. The tsunami deposits showing
parallel lamination were detected as far as approximately
1.7 km inland. These structures are formed by low-ampli-
tude bedforms under a plane-bed flow regime (Allen
1984; Best and Bridge 1992), suggesting that the inunda-
tion flow had a relatively high velocity during the depo-
sition of these sediments. In contrast, cross-lamination/
ripple marks were not found in this study, except at loca-
tion SJ8 (Table 2), and have rarely been reported in other
studies (e.g., Naruse et al. 2012; Takashimizu et al. 2012).
The scarcity of cross-lamination/ripple marks might
imply that there were almost no cases in which the tsu-
nami inundation flow continuously maintained a lower
flow regime.

Mud drapes were recognized in the tsunami deposits at
83 locations over the study areas (Figs. 4, 5, 6, 7, 8 and 9,
Table 2). These drapes were formed from suspension dur-
ing the stagnant stage of the inundation flow. Therefore,
the presence of mud drapes suggests that multiple flows
were produced by the tsunami (Fujiwara and Kamataki
2007). Mud drapes have previously been found in the
2011 tsunami deposits (e.g., Naruse et al. 2012; Abe et al.
2020) and other modern tsunami deposits (e.g., Nanay-
ama and Shigeno 2006; Choowong et al. 2008; Matsu-
moto et al. 2008; Naruse et al. 2010).

The lower contact of the tsunami deposits in this study
was usually a gently undulating sharp erosional surface,
often with mud clasts and basal gravels on the surface,
suggesting that the strong flow eroded the existing muddy
surface to form the tsunami deposits. Some studies have
reported that deformation structures such as load casts
occur at the contact between tsunami deposits and
underlying soft sediments for both ancient (Minoura and
Nakata 1994; Sawai et al. 2015) and modern (Matsumoto
et al. 2008) tsunamis; however, such structures were
rarely found at the lower contact of the tsunami deposits
in this study. This absence is probably because most
of the tsunami deposits in this study were deposited
on rice fields during the fallow period, a relatively hard
preexisting surface that resisted deformation.

5.4 Application to paleo-tsunami research

The differences between the tsunami deposits in the
Odaka area and those in the other areas might imply
the occurrence of post-depositional alteration, because
the field observation in the Odaka area was conducted
3—4 years after that in the other areas. In fact, it is neces-
sary to consider environmental differences: the tsunami
deposits in the Odaka area uniquely possessed thick
mud drapes at their tops that were possible post-tsunami
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reworked sediments (Fig. 9). The lower boundary of
the tsunami deposits was clearly sharp, as in the other
areas; in contrast, the top boundary was vague, possibly
because of downward bioturbation by intruding rootlets.
Spiske et al. (2020) demonstrated that post-depositional
alteration decreased the thickness and mean grain size
of the tsunami deposits, and similar processes would
have occurred in the Odaka area. Such post-depositional
alternation of tsunami deposits could cause problems
when identifying paleo-tsunami deposits and using
them to reconstruct the magnitude of tsunami events.
In this respect, long-term observation of modern tsu-
nami deposits is required for more precise paleo-tsunami
research.

Abe et al. (2012) proposed a 1:1 relationship between
the maximum inundation distance and the extent of
sandy tsunami deposits. They concluded that the rela-
tionship was valid up to 2.5 km inland, and the maximum
extent of recognizable deposits (>0.5 cm) was limited
to within 3 km of the coast. Some differences appear
when plotting the data in this study (Fig. 13): the rela-
tionship seems to be generally valid up to 3.5 km inland,
and the maximum extent of sandy deposits is limited to
within 3.4 km of the coast. Moreover, in places where the
maximum inundation distance exceeded 5 km and the
relationship is totally invalid, a large gap is recognized
between the extent of sand and the distribution of mud
drapes. Some of these differences might arise from the
sparsity of data; however, the fact that a similar tendency
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was recognized in this study is important for future
paleo-tsunami research.

The large amount of data on modern tsunami deposits
provided in this study can be used to validate numerical
modeling methods, leading to a more precise estimation
of the hydraulic conditions of paleo-tsunamis from
their deposits. However, some issues still remain,
including the precise estimation of maximum inundation
distance and post-depositional alteration. Along with
the sedimentological data in this study, geochemical
(Chagué-Goff 2010) and microfossil (Hemphill-Haley
1996) approaches will help to identify the maximum
inundation distance from the deposits, as pointed out by
Goto et al. (2011). Finally, it will be possible to evaluate
how post-depositional processes have altered deposits
by comparing paleo-tsunami deposits and the results of
numerical simulations (Spiske et al. 2020). In this regard,
the Sendai Plain, where extensive research on the 869 CE
Jogan tsunami deposits has been conducted, would be
the best place to conduct such a comparative study.

6 Conclusions

We described the 2011 Tohoku-oki tsunami deposits on
the Sendai and Fukushima coasts, with quantitative data
on their thickness and grain size at 1-cm vertical intervals
along transects. The sedimentary characteristics of the
2011 tsunami deposits can be summarized as follows:
(1) The tsunami deposits in the study areas extended
up to 4 km inland, probably owing to the overall low-
gradient topography. (2) The tsunami deposits showed
landward-fining and landward-thinning trends with
minor fluctuations, and also a trend of landward increase
in the mud content. (3) Diversity in the grain-size
composition of the tsunami deposits was recognized,
resulting from differences in the sediment source and
possibly topographic conditions. (4) Normal grading,
parallel lamination, and mud drapes were found widely
over the study areas, whereas inverse grading and cross-
lamination/ripple marks were recognized at only limited
locations. (5) The lower contact of the studied tsunami
deposits is clearly sharp; however, the top boundary is
vague in the Odaka area, possibly owing to the influence
of post-depositional alteration. (6) The 1:1 relationship
proposed by Abe et al. (2012) is valid only up to 3.5 km
inland in this study.

These findings will contribute to a better understanding
of modern and paleo-tsunami deposits. Furthermore, the
vertically high-resolution dataset representing a range of
environments provided in this study will be useful to vali-
date numerical modeling methods, leading to progressive
enhancement of the spatial and temporal resolution of
estimates of the hydraulic conditions of inundation flows,
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and improved evaluation of the degree of post-deposi-
tional alteration processes.
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