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Abstract 

An original particle swarm clustered optimization (PSCO) method has been developed for the implementations 
in applied sciences. The developed PSCO does not trap in local solutions in contrary to corresponding solutions 
obtained by the applications of particle swarm optimization algorithm that is frequently used in many disciplines of 
applied sciences. The integrations of PSCO with multilayer perceptron neural network, adaptive neuro‑fuzzy infer‑
ence system (ANFIS), linear equation, and nonlinear equation were applied to predict the Vistula river discharge. The 
performance of PSCO was also compared with autonomous groups particle swarm optimization, dwarf mongoose 
optimization algorithm, and weighted mean of vectors. The results indicate that the PSCO has no tendency to trap in 
local solutions and its global solutions are more accurate than other algorithms. The accuracy of all developed models 
in predicting river discharge was acceptable (R2 > 0.9). However, the derived nonlinear models are more accurate. The 
outcome of thirty consecutive runs shows that the derived PSCO improves the performance of machine learning 
techniques. The results also show that ANFIS‑PSCO with RMSE = 108.433 and R2 = 0.961 is the most accurate model. 
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1 Introduction
Prediction of river discharge is essential for planning 
environmental programs and water management pro-
jects (Shakti and Sawazaki 2021). Linear stochastic mod-
els are commonly and predominantly used methods for 
the prediction of hydrological and environmental events 
(Papacharalampous et  al. 2019). Most environmental 
problems, are complex problems and nonlinear methods, 
as more accurate, have been recommended to be applied 
to achieve solutions. Machine learning (ML) models are 
robust nonlinear methods that have been widely applied 
to solve a number of engineering and scientific problems.

Dibike and Solomatine (2001) used two types of arti-
ficial neural networks (ANNs) including multilayer 
perceptron network (MLP) and radial basis function net-
work (RBF) for river flow forecasting. The results showed 
that the ANNs models are slightly better than the con-
ceptual rainfall–runoff model. Solomatine and Dulal 
(2003) showed that the ANNs are slightly better than 
model trees (MTs) in rainfall–runoff modeling. Behzad 
et al. (2009) investigated the performance of support vec-
tor machine (SVM) in runoff modeling and showed that 
the prediction accuracy of SVM is close to the ANNs 
models. Badrzadeh et al. (2013) developed wavelet neural 
networks (WNN) and wavelet neuro-fuzzy (WNF) mod-
els for forecasting river flow. The study indicated that 
the results of hybrid models are significantly better than 
the outcome of the original ANN and ANFIS models. 
FajardoToro et  al. (2013) developed a hybrid case-based 
reasoning (CBR) model for river flow forecasting. The 
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results showed the superiority of the developed methods 
over the ANNs models. Daliakopoulos and Tsanis (2016) 
showed that the performance of ANN models in the 
simulation of ephemeral streamflow is higher than the 
performance of conceptual models (CM). Bomers et  al. 
(2019) applied an ANN model for the reconstruction of 
historic floods. The results confirm the capability of ANN 
models to predict complex hydraulic phenomena. Linh 
et al. (2021) investigated the application of a wavelet neu-
ral network (WNN) for the prediction of river discharge. 
The results showed that the WNN is more accurate than 
ANNs. Gauch et al. (2021) applied long short-term mem-
ory (LSTM) and tree models (TR) for the prediction of 
streamflow and showed the superiority of the LSTM over 
the tree model.

All ML models have some coefficients that must be 
calculated and optimized during a training process. 
Recent studies have indicated that the application of 
meta-heuristic algorithms, as a training approach for 
optimizing part or all of these coefficients, increases 
the performance of original models. Azad et al. (2018) 
applied ANFIS integrated with ant colony optimiza-
tion (ACOR), particle swarm optimization (PSO), and 
genetic algorithm (GA) to simulate river flow. The 
results demonstrated the ability of optimization algo-
rithms to increase the performance of original ANFIS 
and showed the advantages of PSO over ACOR and 
GA. Yaseen et al. (2019) applied ANFIS integrated with 
PSO, GA, and differential evolution (DE) to forecast 
river flow. The results confirmed the advantages of PSO 
over GA and DE. Zounemat-Kermani et al. (2021) used 
several ML models including ANNs, ANFIS, LSTM, 
group method of data handling (GMDH), wavelet neu-
ral network (Wavenet), and ANN integrated with PSO 
and GA for forecasting river flow. The outcome indi-
cated that the integrated models result in better fore-
casting than the original methods. Arora et  al. (2021) 
applied ANFIS integrated with PSO, GA, and DE for 
flood susceptibility prediction mapping. The results 
showed the advantages of ANFIS-GA over ANFIS-PSO 
and ANFIS-DE.

In recent years various types of meta-heuristic algo-
rithms have been introduced by researchers. Recently 
developed algorithms comprise moth-flame optimization 
(MFO) (Mirjalili 2015), whale optimization algorithm 
(WOA) (Mirjalili and Lewis 2016), butterfly optimization 
algorithm (BOA) (Arora and Singh 2019), black widow 
optimization (BWO) (Hayyolalam and Pourhaji Kazem 
2020), carnivorous plant algorithm (CPA) (Ong et  al. 
2021), Poplar optimization algorithm (Chen et al. 2022), 
etc.

It has been claimed that the performance of new algo-
rithms is better than the corresponding performance 

of widely recognized PSO or GA, especially in obtain-
ing global solutions for benchmark functions. However, 
several approaches, especially applications of ML mod-
els integrated with optimization algorithms, indicated 
that the new algorithms are often overrated. Zounemat-
Kermani and Mahdavi-Meymand (2019) indicated that 
the performance of the MFO as integrative method with 
ANFIS and ANN for predicting the piano key weir dis-
charge is worse than PSO, and GA. Zounemat-Kermani 
and Mahdavi-Meymand (2021) compared the ability of 
GA, PSO, firefly algorithm (FA) with MFO and WOA as 
integrative method with ANFIS for predicting hydrau-
lic jump length and height. The results indicated that 
PSO, GA, and FA act better than new algorithms (WOA 
and MFO). Memar et  al. (2021) applied BWO and PSO 
as integrative methods with ANFIS and support vector 
regression (SVR) models to predict the maximum wave 
height of the Baltic Sea. The results indicated that PSO 
acts better than the BWO in high-dimensional problems 
(ANFIS).

Although some researches indicated that the new opti-
mization algorithms are better than widely recognized 
traditional models (Fadaee et al. 2020; Milan et al. 2021; 
Aalimahmoody et  al. 2021; Fattahi and Hasanipanah 
2022), there is still a space for improving traditional 
models. Several modifications of PSO have been intro-
duced in the literature. Kennedy (1999) tested the effect 
of different neighborhood topologies such as circles, 
wheels, stars, and random edges on PSO performance. 
The results indicated that the performance of PSO sub-
stantially depends on the neighborhood topology. Bergh 
and Engelbrecht (2002) investigated the stagnation weak-
ness of PSO and proposed a different equation for the 
global best particle movement. Mendes et al. (2003) and 
Huang and Mohan (2005) suggested that the swarms 
receive information and knowledge only from the part 
of neighborhood populations. They modify PSO and 
the outcome indicated that the new approach results in 
better performance. Liang and Suganthan (2005) intro-
duced a dynamic multi-swarm particle swarm optimizer. 
In this approach, the population is divided into several 
independent subgroups. The sub-swarms are regrouped 
using different operations. Lim and Isa (2014) purposed 
PSO with increased connectivity (PSO-ITC). In this 
approach, initially, each member of a population is con-
nected to a randomly selected agent of a population. By 
increasing the number of iterations of the algorithm, the 
particle connections are increasing gradually till mem-
bers are fully connected. Tsujimoto et al. (2012) analyzed 
the application of deterministic PSO (DPSO) to find a 
global solution. The DPSO approach was introduced to 
eliminate the stochastic factors. The DPSO improves 
traditional approaches to finding a global solution. 
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Bonyadi et  al. (2014) introduced hybrid PSO variants 
with a time-adaptive approach. In this approach, the 
population is divided into several sub-swarms and opti-
mization processes are applied. Suryanto et  al. (2017) 
introduced multi-group particle swarm optimization 
with random redistribution (MGRR-PSO) algorithm. 
In the MGRR-PSO, the population is divided into two 
groups with different acceleration coefficients. Lv et  al. 
(2018) introduced the improved eliminate particle swarm 
optimization (IEPSO) algorithm which works based 
on the last-eliminated principle. Song et  al. (2021) pur-
posed a new version of PSO and showed the superiority 
of improved PSO in benchmark functions and for the 
smooth path planning of mobile robots.

The PSO is a fast, recognized, and widely used meta-
heuristic algorithm. The main weakness of the PSO is 
its tendency to trap in the local solutions (Rehman et al. 
2019; Tu et  al. 2020). In this study, an original particle 
swarm clustered optimization (PSCO) method is derived 
to overcome this weakness. First, the particle swarm clus-
tered optimization (PSCO) technique is developed. Ten 
mathematical benchmark functions were selected to ana-
lyze the performance of PSCO. Each benchmark func-
tion predicts an applied or scientific problem. The results 
obtained by the application of PSCO are compared with 
the results of PSO and recently developed meta-heuris-
tic algorithms including autonomous groups particles 
swarm optimization (AGPSO), dwarf mongoose optimi-
zation algorithm (DMOA), and weighted mean of vectors 
(INFO). Then, the derived method is used as a training 
algorithm to optimize ANFIS, MLPNN, linear equa-
tion (LE), and nonlinear equation (NE) for the predic-
tion of river discharge. The tuning the ANFIS, MLPNN, 
and regression equations coefficients represent a high-, 
moderate-, and low-dimensional optimization problems, 
respectively. The performance of the derived algorithms is 
evaluated based on the outcome of 30 consecutive runs. 
Finally, the stabilities of the derived models in reaching a 
global solution are analyzed and conclusions are specified.

2  Materials and methods
2.1  Particle swarm optimization
Particle swarm optimization (PSO) is a population-based 
stochastic optimization algorithm introduced by Eber-
hart and Kennedy (1995). The PSO algorithm is inspired 
by the behavior of flocking birds or fishes. In general, the 
meta-heuristic algorithms are divided into two categories, 
namely swarm and evolutionary algorithms. The PSO is a 
swarm computation algorithm. The structure of evolution-
ary algorithms comprises crossover and mutation evolution 
operators. The swarm algorithms use another computation 
process to find a solution. In the PSO, each particle in a 
search space is identified by velocity and position vectors. 

At the first iteration of PSO, all particles in a search space 
are distributed randomly, which means that the parti-
cle position vector is randomly initialized. The velocity of 
particles at the first iteration is equal to zero. In each itera-
tion, the values of particle position and velocity vectors are 
updated based on the following equations:

where v is the velocity vector, x is the position vector, t is 
the iteration, r1 and r2 are the random number between 
0 to 1, w is the inertial weight, Pbest

i  is the best position 
achieved by the particle i, Gbest is the best position of the 
particles, and C1 and C2 are the personal learning and 
global learning coefficients, respectively.

2.2  Particle swarm clustered optimization
The PSO is a fast, recognized, and widely used meta-
heuristic algorithm. The main weakness of the PSO is its 
tendency to trap in a local solution, and in consequence, 
it fails to reach the global solution (Rehman et al. 2019; 
Tu et  al. 2020). Particle swarm clustered optimization 
(PSCO) is a novel technique derived in this study to over-
come the weaknesses of PSO. In PSCO, the particles are 
divided into m  clusters. Up to a specified iteration,  Im, 
each cluster follows the PSO procedure to find a solu-
tion. In the following iterations, the particles increase 
their knowledge using other particle knowledge. In other 
words, in the first stage particles move toward the cluster 
leader, and in the next stage, they move toward the best 
particle of the whole population. With this strategy, the 
clusters at  Im  iteration are close to different local solu-
tions. The strategy of moving particles from the local 
solutions to the best particle causes that the algorithm 
overcomes trapping at local solutions. The particle veloc-
ity vectors are updated based on the following equations:

where Pbest
i,j  is the best-observed position of ith particle of 

jth cluster, Gbest
j  is the position of the leader of jth cluster, 

and Gbest is the best particle position. The position of par-
ticles is updated according to the following equation:

(1)
vt+1
i = wvti + C1 × r1 × Pbest

i − xti + C2 × r2 × Gbest
− xti

(2)xt+1
i = xti + vt+1

i

(3a)
vt+1
i,j =wvti,j + C1 × r1 ×

(

Pbest
i,j − xti,j

)

+ C2

× r2 ×
(

Gbest
j − xti,j

)

If t ≤ Im

(3b)
vt+1
i,j =wvti,j + C1 × r1 ×

(

Pbest
i,j − xti,j

)

+ C2

× r2 ×
(

Gbest
− xti,j

)

If t > Im
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Figure 1 shows the flowchart of PSCO algorithm. It is 
worth noting that PSCO topology, contrary to topolo-
gies applied by, e.g., Liang and Suganthan (2005) and 
Bonyadi, et  al. (2014), assumes that the size or shape 
of groups/clusters is constant during the iterations. 
Moreover, Liang and Suganthan (2005) and Bonyadi, 
et al., (2014) use the Gbest topology during the iterations 
to update the positions of particles, while PSCO uses 
leader topology up to a specified iteration, and then, it 
is switched to the Gbest for the rest of iterations.

2.3  Other meta‑heuristic algorithms
Three other algorithms, namely autonomous groups par-
ticles swarm optimization (AGPSO), dwarf mongoose 
optimization algorithm (DMOA), and weighted mean 
of vectors (INFO), are used to compare and verify the 
performance of PSCO. The AGPSO is a variant of PSO 
developed by Mirjalili et al. (2014). The AGPSO assumes 
that the individuals of the population are not similar. The 
population is divided into four groups. The individual 
learning and global learning coefficients, C1  and C2, are 

(4)xt+1
i,j = xti,j + vt+1

i,j
different and are updated in an iteration procedure by 
applying the following equations:

where MaxIt is the maximum number of iterations and 
it denotes the current iteration. The INFO is a novel 
algorithm introduced by Ahmadianfar et  al. (2022). The 
INFO is developed based on the weighted mean of vec-
tors. In this algorithm, each member of population is a 
vector. At the first step of INFO, the vectors are distrib-
uted randomly in the search domain. The vectors are 

(5)

C1 = 1.95− 2

(

It

MaxIt

)
1
3

, C2 = 0.05+ 2

(

It

MaxIt

)
1
3

Group I

(6)
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(

It

MaxIt

)3
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(
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Fig. 1 The flowchart of PSCO algorithm
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updated by using the weighted mean strategy. The weight 
of two vectors is calculated as follows:

where x1 and x2 are vectors, f denotes the objective func-
tion, and ω is a coefficient.

Three vectors of population are chosen randomly. 
Three values of w between vectors are calculated. The 
mean of weights is used to generate two new vectors. In 
the vector combining stage, the generated vectors are 
combined in one vector by applying a specific random 
strategy. Finally, in the local search stage the new value of 
vectors is obtained. This stage is designed to prevent the 
vectors to trap into local solutions. More details of INFO 
can be found in Ahmadianfar et al. (2022).

The DMOA is a swarm-based optimization algorithm 
developed by Agushaka et  al. (2022). The DMOA is a 
nature-inspired algorithm that models the behavior of 
dwarf mongoose in foraging. In the DMOA, the pop-
ulation is divided to the alpha, scouts, and babysitters 
groups. The number of population, N, and babysitters, 
Nb, must be initialized before optimization process. The 
number of alpha members, n, is N-Nb. The alpha group 
members are selected by probability index:

where F is the fitness of the population. The position 
of candidates is generated by applying the following 
formula:

where δ  is the parameter that must be initialized before 
iterations and φ is a random number between − 1 and 1 
that is uniformly distributed. The members of the scout 
group select a new place for sleeping according to:

where r is the random number between 0 and 1, M is 
a vector that controls the movement of agents to new 
sleeping positions, and CF is the parameter obtained 
from:

where t is the current iteration and  Itmax is the maximum 
number of iterations. In the last step, the babysitters 

(9)

w = cos
(

f (x1)− f (x2)+ π
)

× exp

(

−

∣

∣

∣

∣

f (x1)− f (x2)

ω

∣

∣

∣

∣

)

(10)a =
Fi

∑n
i=1 Fi

(11)xt+1
= xt + ϕ × δ

(12)

xt+1
=

{

xt − CF× ϕ × r
(

xt −M
)

ifϕt+1 > ϕt

xt + CF× ϕ × r
(

xt −M
)

else

(13)CF =

(

1−
t

Itmax

)
2t

Itmax

are exchanged. This step is repeated until the algorithm 
reaches the global solution.

2.4  Multilayer perceptron neural network
Multilayer perceptron neural network (MLPNN) is a 
recognized and widely used neural network algorithm. 
The MLPNN is a robust machine learning method that 
can be applied in the modeling of complex scientific 
and engineering problems. In general, the MLPNN 
consists of three layers including the input layer, middle 
or hidden layers, and output layer. Each layer is made 
of several nodes/neurons. The parameters of a model 
enter into the network through the input layer and its 
neurons. The output of  l + 1th middle layer neurons is 
calculated by applying the following equation:

where f is the activation function, b is the bias coefficient, 
w  is the weight coefficient, and N  is the number of neu-
rons of  lth layer. Different types of activation functions 
such as sigmoid, hyperbolic tangent, and log-sigmoid 
may be used in the middle and output layers (Orhan et al. 
2011). Like other ML models, the differences between 
the predicted and actual values are used for training the 
MLPNN. The MLPNN will turn to a deep network by 
increasing the number of middle layers.

2.5  Adaptive neuro‑fuzzy inference system
Adaptive neuro-fuzzy inference system (ANFIS) is a 
hybrid machine learning model that combines artificial 
neural networks (ANNs) with fuzzy logic techniques. 
This combination has created an attractive method capa-
ble of solving complex problems. The ANFIS was intro-
duced by Jang (1993), and so far it has been applied in 
numerous scientific and engineering problems. In gen-
eral, the ANFIS forms a fuzzy logic, if–then rules, and 
uses neural networks for altering these rules and train a 
network. The ANFIS structure consists of 5 layers. The 
first layer is the fuzzification layer. The fuzzification pro-
cess is based on membership functions (MFs), e.g., the 
trapezoidal, bell, triangular, or Gaussian functions. For an 
ANFIS with two inputs, the outputs may be defined as:

where x1 and x2 are the inputs to the ith node, and µA 
and µB are the membership functions. In this study, the 

(14)yl+1
j = f

(

bj +

N
∑

i=1

wixi

)

(15)O1
i = µAi(x1) i = 1, 2

(16)O1
i = µBi(x2) i = 3, 4
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Gaussian and linear MFs were used for inputs and output 
parameters, respectively. In the second layer, the firing 
strength of the rules is calculated as follows:

The third layer is the normalized layer. The output of 
this layer is defined as:

The fourth layer output is calculated by applying the 
following formula:

The output of the network is obtained in the fifth layer 
from the following formula:

2.6  Regression equations
The linear and nonlinear regression equations are simple 
and useful tools for solving regression problems. Actu-
ally, the regression equations (REs) are simple machine 
learning models. The application of meta-heuristic algo-
rithms in REs training process makes them more accu-
rate. In this study, the following equations are used to 
predict a river discharge:

where x  is the input vector, y  is the output, and w  is the 
weight vector. In this study, the performances of PSCO, 
PSO, and other algorithms in optimizing Eq.  (21) and 
Eq. (22) are investigated.

2.7  Integrative machine learning models
All ML models have some coefficients that are optimized 
during a training process based on available data. It is 
possible to use meta-heuristic algorithms to optimize 
the part or all of the model coefficients. In this study, 
multilayer perceptron neural network (MLPNN), adap-
tive neuro-fuzzy inference system (ANFIS), and regres-
sion equations (REs) are integrated with particle swarm 
optimization (PSO), autonomous groups particles swarm 
optimization (AGPSO), dwarf mongoose optimization 
algorithm (DMOA), weighted mean of vectors (INFO), 
and particle swarm clustered optimization (PSCO) 

(17)O2
i = wi = µAi(x1).µBi(x2) i = 1, 2

(18)O3
i = wi =

wi

w1 + w2
i = 1, 2

(19)O4
i = wifi = wi(pix1 + qix2 + ri) i = 1, 2

(20)O5
i =

∑

i

wifi i = 1, 2

(21)y = w0 + w1x1 + w2x2 + · · · + wNxN

(22)
y = w0 + w1x1

w2 + w3x2
w4 + · · · + w2N−1xN

w2N

algorithms. The meta-heuristic algorithms are applied to 
optimize the weights and biases of MLPNN, the Gauss-
ian and linear membership functions of ANFIS, and the 
weights/coefficients of REs. The optimization process of 
each model is similar. At the first stage, a cost function 
must be introduced. In this study, the root-mean-square 
error (RMSE) between predicted and observed values is 
considered as a cost function. In the next stage, the meta-
heuristic algorithm parameters are initialized. Table  1 
shows the values of initial parameters. These values were 
selected based on recommendations in the literature and 
a trial-and-error procedure (Mirjalili et al. 2014; Zoune-
mat-Kermani and Mahdavi-Meymand 2019; Babanezhad 
et  al. 2021; Agushaka et  al. 2022). In the final stage, an 
iteration procedure is applied to find the best solution 
for the problem based on the training and validation data 
sets.

Table 1 The initial values of PSCO and PSO

Method Parameter

PSO Population ANFIS and MLPNN: 1000, 
REs: 100

Iteration 1000

Search space range [− 10, 10]

Momentum factor (w) 0.99

Personal learning coefficient 
(c1)

1

Global learning coefficient (c2) 2

PSCO Population ANFIS and MLPNN: 1000, 
REs: 100

Iteration 1000

Clusters iteration (Im) 300

Number of clusters (m) 10

Search space range [− 10, 10]

Momentum factor (w) 0.99

Personal learning coefficient 
(c1)

1

Global learning coefficient (c2) 2

AGPSO Population ANFIS and MLPNN: 1000, 
REs: 100

Iteration 1000

Search space range [− 10, 10]

Momentum factor (w) 0.99

INFO Population ANFIS and MLPNN: 1000, 
REs: 100

Iteration 1000

Search space range [− 10, 10]

DMOA Population ANFIS and MLPNN: 1000, 
REs: 100

Number of baby sister 10

Iteration 1000

Search space range [− 10, 10]

δ (Eq. 11) 2
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2.8  Implementation
2.8.1  Benchmark functions
In this study, particle swarm clustered optimization 
(PSCO) algorithm is derived and then applied to predict 
a river water discharge. Before the PSCO is applied in real 
problems, it is reasonable to evaluate its performance using 
mathematical benchmark functions. Ten benchmark func-
tions are selected to compare the performance of PSCO 
with particle swarm optimization (PSO), autonomous 
groups particles swarm optimization (AGPSO), dwarf 
mongoose optimization algorithm (DMOA), and weighted 
mean of vectors (INFO). These functions belong to two 
main categories comprising unimodal and multimodal 
functions. The unimodal functions have an extremum. 
Hence, finding the solution of unimodal function is not 
a difficult task and the convergence rate of algorithms is 
more important. Multimodal functions, in addition to a 
global solution, have several local extrema points. Thus, 
the ability of algorithms to deviate from local solutions may 
be evaluated. Table 2 shows the selected benchmark func-
tions, the search space, and the considered dimensions. To 
obtain solutions for the benchmark functions, the popula-
tion, c1, c2, Im, m, and the number of iterations are assumed 
to be 500, 1, 2, 300, 10, and 1000, respectively.

2.8.2  Study area and model development
The Vistula is the 9th-longest river in Europe and the long-
est river in Poland. The Vistula rises at Barania Góra in the 
Beskidy Mountains in the south of Poland and empties 
into the Gdansk Bay of the Baltic Sea. The Vistula has a 

significant effect on the European residents, environment, 
and economy, so the prediction of its discharge is essen-
tial. In this study, data recorded at the Torun station were 
used to simulate Vistula discharge. In Fig.  2, the location 
of the Torun station is shown. The available data comprise 
daily water temperature (T), water surface level (WSL), and 
water discharge (Qw) from January 1984 to December 2017. 
The number of data is 12419, which creates an attractive 
data set for simulating and comparing the performance 
of different machine learning models. The T and WSL are 
assumed to be the model input parameters to predict Qw. 
The whole data set is randomly divided into three sub-data 
sets including the training (70%), validation (15%), and test-
ing (15%) data sets. The training data set is used for train-
ing the models, the validation data set is used to overcome 
overfitting, and the testing data set was used for the evalu-
ation of models. Details of applied data sets are presented 
in Table 3.

2.8.3  Evaluation criteria
The root-mean-square error (RMSE), the coefficient of 
determination (R2), the mean absolute error (MAE), the 
Nash–Sutcliffe model efficiency  (NSE), and the index of 
agreement (IA) indices were used to compare the per-
formance of developed machine learning models. These 
parameters are calculated from the following formulas:

(23)RMSE =

√

1

N

∑N

i=1

(

Qw
m
i − Qw

o
i

)2

Table 2 Details of selected benchmark functions

Category Test function Bounds Dimension

Unimodal F1(x) =
∑D

i=1xi
2 [− 100,100] D = 30, 50

F2(x) = (x1 − 1)2 +
∑D

i=2 i
(

2xi
2
− xi−1

)2 [− 10,10] D = 30, 50

F3(x) =
∑D

i=1

(

∑i
j=1 xj

)2 [− 100,100] D = 30, 50

Multimodal F4(x) =
∑D−1

i=1 (wi − 1)2
[

1+ 10sin2(πwi + 1)
]

+ (wD − 1)2
[

1+ 10sin2(2πwD+)
]

[− 10,10] D = 30, 50

F5(x) =
1

4000

∑D
i=1 xi

2
−

∏n
i=1 cos

(

xi
i0.5

)

+ 1 [− 600,600] D = 30, 50

F6(x) = 0.1
{

sin2(3πx1)+
∑D

i=1 (xi − 1)2
[

1+ sin2(3πx1)
]

+ (xn − 1)2
[

1+ sin2(2πxn)
]

}

+
∑D

i=1 g(xi , 5, 100, 4)

g(xi , 5, 100, 4) =







b(xi − a)c xi > a
0 −a < xi > a
b(−xi − a)c xi < −a

[− 50,50] D = 30, 50

F7(x) =
∑D

i=1 xisin(xi)+ 0.1xi [− 10,10] D = 30, 50

F8(x) =
∑D

i=1 1− cos

(

2π

√

∑D
i=1 xi

2

)

+ 0.1

√

∑D
i=1 xi

2
[− 100,100] D = 30, 50

F9(x) =
(

x1
6
+ x2

4
− 17

)2
+ (2x1 + x2 − 4)2 [− 500,500] D = 2

F10(x) = −
1
30
exp

(

1−

√
x12+x22

π

)

cos2(x1)cos
2(x2)

[− 10,10] D = 2
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(24)

R2
=

(

∑N
i=1

(

Qw
m
i − Qw

m
)(

Qw
o
i − Qw

o
))2

∑N
i=1

(

Qw
m
i − Qw

m
)2

∑N
i=1

(

Qw
o
i − Qw

o
)2

(25)MAE =
1

N

N
∑

I=1

∣

∣Qw
m
i − Qw

o
i

∣

∣

Fig. 2 The Vistula and the location of Torun station

Table 3 Statistical characteristics of used data sets

Max, maximum; Min, minimum; Avg, average; SD, standard deviation; and R, correlation coefficient

Parameter Statistical parameter Whole data set Training data set Validation data set Testing data set

Qw  (m3/s) Max 6190 5850 5140 6190

Min 218 218 228 229

Avg 916.93 917.45 919.90 911.48

SD 538.44 535.71 551.67 537.70

WLS (cm) Max 836 816 771 836

Min 94 94 94 94

Avg 289.87 290.14 289.57 288.90

SD 93.53 93.37 95.36 92.32

R (vs. Qw) 0.95 0.95 0.95 0.95

T (C) Max 27 27 27 25.4

Min 0 0 0 0

Avg 10.58 10.62 10.51 10.48

SD 7.79 7.79 7.81 7.77

R (vs. Qw) − 0.14 − 0.14 − 0.11 − 0.15
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where Qw
m
i  and Qw

o
i  are the simulated and measured 

water discharge and Qw  is the average value of water 
discharges.

3  Results
3.1  Benchmark functions
The performance of particle swarm clustered optimization 
(PSCO), particle swarm optimization (PSO), autonomous 

(26)NSE = 1−

∑N
i=1

(

Qw
m
i − Qw

o
i

)2

∑N
i=1 (Qw

o
i − Qw

o)
2

(27)

IA = 1−

∑N
i=1

(

Qw
m
i − Qw

o
i

)2

∑N
i=1

(∣

∣

∣
Qw

m
i − Qw

o
∣

∣

∣
+

∣

∣

∣
Qw

o
i − Qw

o
∣

∣

∣

)2

groups particles swarm optimization (AGPSO), dwarf 
mongoose optimization algorithm (DMOA), and weighted 
mean of vectors (INFO) is compared for unimodal and 
multimodal benchmark functions. The results obtained by 
the application of algorithms for unimodal functions and 
30 consecutive runs are presented in Table 4.

Table 4 presents the rank of the applied algorithms for 
each function. The results show that the performance 
of PSCO is better than PSO, AGPSO, and DMOA. Both 
PSCO and INFO achieved the same excellent scores, 
which indicates that the performances of both methods 
are similar. However, the PSCO provides more accurate 
results than PSO and AGPSO. The DMOA is a newly 
developed algorithm that provides results of limited 
accuracy. The convergence rates for applied algorithms 
are presented in Fig. 3.

Table 4 Results obtained by the application of unimodal functions

Dimension Result type Result type Algorithm

PSCO PSO AGPSO DMOA INFO

30 F1 Best 1.15 ×  10–150 2.35 ×  10–56 1.39 ×  10–18 3.14 ×  10–4 6.45 ×  10–57

Worst 5.69 ×  10–140 8.78 ×  10–54 2.11 ×  10–14 6.72 ×  10–4 4.19 ×  10–56

Average 4.37 ×  10–141 1.90 ×  10–54 6.09 ×  10–15 4.78 ×  10–4 2.17 ×  10–56

Rank 1 3 4 5 2

F2 Best 6.67 ×  10–1 6.67 ×  10–1 6.67 ×  10–1 5.9 6.67 ×  10–1

Worst 6.67 ×  10–1 6.67 ×  10–1 6.67 ×  10–1 8.35 6.67 ×  10–1

Average 6.67 ×  10–1 6.67 ×  10–1 6.67 ×  10–1 7.02 6.67 ×  10–1

Rank 1 1 1 2 1

F3 Best 3.17 ×  10–17 4.22 ×  10–7 9.95 ×  10–7 2.53 ×  10+4 2.54 ×  10–55

Worst 2.33 ×  10–13 1.54 ×  10–4 1.41 ×  10–6 4.45 ×  10+4 3.03 ×  10–53

Average 2.91 ×  10–14 3.62 ×  10–5 3.27 ×  10–7 3.48 ×  10+4 1.07 ×  10–53

Rank 2 4 3 5 1

50 F1 Best 1.03 ×  10–76 5.82 ×  10–30 4.16 ×  10–18 8.67 ×  10+2 8.49 ×  10–57

Worst 6.88 ×  10–71 1.5 ×  10–27 1.5 ×  10–13 1.17 ×  10+3 2.09 ×  10–55

Average 5.05 ×  10–72 4.63 ×  10–28 1.23 ×  10–14 1.03 ×  10+3 6.72 ×  10–56

Rank 1 3 4 5 2

F2 Best 6.67 ×  10–1 6.67 ×  10–1 6.67 ×  10–1 2 ×  10+5 6.67 ×  10–1

Worst 6.67 ×  10–1 6.67 ×  10–1 6.79 ×  10–1 3.69 ×  10+5 6.67 ×  10–1

Average 6.67 ×  10–1 6.67 ×  10–1 6.68 ×  10–1 2.97 ×  10+5 6.67 ×  10–1

Rank 1 1 1 2 1

F3 Best 2.29 ×  10–3 1.70 9.64 ×  10–1 1.31 ×  10+5 1.2 ×  10–53

Worst 6.37 ×  10–1 7.20 ×  10+1 5 ×  10+3 2.11 ×  10+5 2.43 ×  10–52

Average 7.14 ×  10–2 2.30 ×  10+1 3.38 ×  10+2 1.76 ×  10+5 6.03 ×  10–53

Rank 2 3 4 5 1

Final score 8 15 17 24 8

Final Rank 1 2 3 4 1
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The convergence rates presented in Fig. 3 indicate that 
PSCO is more efficient in finding a final solution than 
PSO, AGPSO, and DMOA. The convergence of PSCO is 
better than INFO for  F1, while the convergence of INFO 
is better than PSCO for  F3. It can be concluded that 
both of them are robust algorithms that can be recom-
mended for unimodal functions. At the initial stage, the 
PSO convergence rate is better than the convergence rate 
of its counterpart as expected. This is because at the ini-
tial stage the PSCO population consists only of 10 clus-
ters and each cluster is trying to find a solution based on 
cluster knowledge, while the PSO population is many 
times larger what implies a faster convergence. However, 
after the initial stage, the convergence rate of PSCO sig-
nificantly improves. Multimodal functions, in addition 
to the global solution, have also several local solutions, 
so finding a final solution for these types of functions is 
more difficult. Table  5 presents the results obtained by 
the application of algorithms for multimodal functions 
and D = 30, and D = 50.

The results presented in Table 5 clearly show that there 
are significant differences between the best, the worst, 
and the average outcome of PSO. It means that PSO 
easily traps in local solutions. The results show that the 
approach applied in PSCO is successful and has no ten-
dency to trap in local solutions. The PSCO obtained the 
lowest final score and the best rank among the tested 
algorithms. The performance of INFO for multimodal 
functions is not as good as for the unimodal functions. 
This shows the weakness of INFO and a tendency to trap 
in local solutions. The results also show that by increas-
ing the dimension of a problem, the probability of trap-
ping in local solution increases. This is because stochastic 
algorithms need more population for higher-dimensional 
problems. The results of PSCO, PSO, AGPSO, INFO, and 
DMOA for  F9 and  F10 functions are the same. The dimen-
sions of these two functions are low, so it is easy to find a 

solution. The convergence rate for multimodal functions 
and D = 50 is presented in Fig. 4.

The plots in Fig. 4 indicate that the PSCO, contrary to 
PSO, has no tendency to trap in local solutions and finds 
a global solution with higher accuracy. The convergence 
rate of PSCO for multimodal functions is far better than 
for unimodal functions. At the initial stage, the conver-
gence rate of PSO is better than PSCO as expected. After 
the initial stage, the convergence rate of PSCO rapidly 
increases. In practical problems, such as the prediction of 
river discharge, the accuracy of the final solution is more 
important than a convergence rate.

3.2  River discharge prediction
In this study, several machine learning models were 
used to predict Vistula water discharge. The applied 
models comprise multilayer perceptron neural net-
work (MLPNN), adaptive neuro-fuzzy inference system 
(ANFIS) as well as ANFIS, MLPNN, linear equation 
(LE), and nonlinear equation (NE) integrated with par-
ticle swarm optimization (PSO), particle swarm clus-
tered optimization (PSCO), autonomous groups particles 
swarm optimization (AGPSO), dwarf mongoose optimi-
zation algorithm (DMOA), and weighted mean of vectors 
(INFO). The average results obtained for 30 continuous 
runs in training and validations stages are presented in 
Table 6.

The results presented in Table  6 indicate that in the 
training and validation stages the performances of all 
applied models are acceptable. The average R2  is higher 
than 0.90 which indicates, among others, that the applied 
models have the correct structure. The results show that 
the prediction of river discharge with high accuracy is 
possible with just two input parameters and randomized 
data sets (no time series). It is worth noting that most 
ML models provide different results in different runs. 
This may create a problem for users in real projects. 

Fig. 3 The convergence rate for unimodal functions, D = 50
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Table 5 Results obtained by the application of multimodal functions

Dimension Result type Result type Algorithm

PSCO PSO AGPSO DMOA INFO

30 F4 Best 1.5 ×  10–32 1.5 ×  10–32 1.5 ×  10–32 2.34 ×  10–1 8.95 ×  10–2

Worst 6.39 ×  10–30 1.82 1.5 ×  10–32 6.97 ×  10–1 8.06 ×  10–1

Average 1.17 ×  10–30 6.90 ×  10–1 2.16 ×  10–32 5.55 ×  10–1 3.88 ×  10–1

Rank 2 5 1 5 4

F5 Best 0 0 0 1.14 ×  10–2 0

Worst 1.09 ×  10–14 4.66 ×  10–2 1.72 ×  10–2 4.25 ×  10–2 0

Average 1.99 ×  10–15 1.9 ×  10–2 4.27 ×  10–3 2.17 ×  10–2 0

Rank 2 4 3 5 1

F6 Best 1.35 ×  10–32 1.35 ×  10–32 1.35 ×  10–32 1.71 ×  10+1 1.35 ×  10–32

Worst 4.69 ×  10–31 9.89 ×  10–2 5.99 ×  10–31 2.43 ×  10+1 1.76 ×  10–1

Average 4.83 ×  10–32 1.32 ×  10–2 5.94 ×  10–32 2.13 ×  10+1 1.54 ×  10–2

Rank 1 4 2 5 3

F7 Best 0 0 0 5.79 ×  10–7 4.94 ×  10–8

Worst 0 1.11 ×  10–16 4.44 ×  10–16 2.75 ×  10–4 1.07 ×  10–4

Average 0 1.11 ×  10–17 4.86 ×  10–17 7.52 ×  10–5 1.56 ×  10–5

Rank 1 2 3 5 4

F8 Best 2 ×  10–1 2 ×  10–1 3 ×  10–1 6 ×  10–1 1.49 ×  10–29

Worst 4 ×  10–1 5 ×  10–1 5 ×  10–1 8.95 ×  10–1 2.88 ×  10–29

Average 3.33 ×  10–1 3.93 ×  10–1 3.39 ×  10–1 7.38 ×  10–1 2.15 ×  10–29

Rank 2 3 3 4 1

50 F4 Best 1.5 ×  10–32 4.28 ×  10–18 6.81 ×  10–15 1.05 ×  10+2 6.27 ×  10–1

Worst 5.94 ×  10–29 5.91 1.25 ×  10–6 1.44 ×  10+2 1.79

Average 8.57 ×  10–30 2.73 1.13 ×  10–7 1.25 ×  10+2 1.02

Rank 1 4 2 5 3

F5 Best 0 2.22 ×  10–16 0 8.62 0

Worst 2.46 ×  10–2 4.41 ×  10–2 9.45 ×  10–2 1.35 ×  10+1 0

Average 4.92 ×  10–3 1.54 ×  10–2 1.43 ×  10–2 1.1 ×  10+1 0

Rank 2 4 3 5 1

F6 Best 1.97 ×  10–32 2.35 ×  10–16 4.03 ×  10–13 1.51 ×  10+8 9.85 ×  10–32

Worst 2.10 ×  10–2 2.13 1.1 ×  10–2 2.85 ×  10+8 1.08 ×  10–1

Average 2.87 ×  10–3 2.33 7.34 ×  10–7 2.21 ×  10+8 1.67 ×  10–2

Rank 2 4 1 5 3

F7 Best 0 0 0 9.46 ×  10–6 4.24 ×  10–8

Worst 0 1.11 ×  10–16 0 4.93 ×  10–4 2.6 ×  10–4

Average 0 7.86 ×  10–18 0 1.37 ×  10–4 4.4 ×  10–5

Rank 1 2 1 4 3

F8 Best 5 ×  10–1 6 ×  10–1 5 ×  10–1 6.06 1.23 ×  10–29

Worst 9 ×  10–1 1.20 8 ×  10–1 7.32 5.3 ×  10–29

Average 6.33 ×  10–1 9.07 ×  10–1 7.13 ×  10–1 6.79 3.26 ×  10–29

Rank 2 4 3 5 1

Final score 16 36 22 48 24

Final rank 1 4 2 5 3



Page 12 of 16Mahdavi‑Meymand and Sulisz  Progress in Earth and Planetary Science           (2023) 10:17 

Fig. 4 The convergence rate for multimodal functions, D = 50

Table 6 Results obtained in training and validation phases

Method Statistical index

Training Validation

RMSE  (m3/s) R2 NSE RMSE  (m3/s) R2 NSE

ANFIS 110.535 0.957 0.957 116.537 0.958 0.955

MLPNN 114.984 0.954 0.954 118.557 0.956 0.954

LE‑PSCO 168.998 0.904 0.9 170.641 0.907 0.904

NE‑PSCO 119.507 0.95 0.95 120.53 0.954 0.952

MLPNN‑PSCO 116.915 0.952 0.952 115.478 0.959 0.956

ANFIS‑PSCO 108.333 0.959 0.959 113.878 0.959 0.957

LE‑PSO 169.778 0.904 0.899 171.508 0.907 0.903

NE‑PSO 119.644 0.95 0.95 120.603 0.954 0.952

MLPNN‑PSO 114.332 0.954 0.954 117.354 0.957 0.955

ANFIS‑PSO 110.746 0.957 0.957 115.115 0.959 0.956

LE‑AGPSO 168.022 0.904 0.902 169.287 0.908 0.906

NE‑AGPSO 119.101 0.951 0.951 120.746 0.954 0.952

MLPNN‑AGPSO 118.268 0.951 0.951 121.203 0.954 0.952

ANFIS‑AGPSO 114.407 0.954 0.954 117.222 0.957 0.955

LE‑INFO 167.65 0.904 0.902 169.769 0.908 0.905

NE‑INFO 119.176 0.951 0.951 120.547 0.954 0.952

MLPNN‑INFO 114.712 0.954 0.954 118.262 0.957 0.954

ANFIS‑INFO 116.369 0.953 0.953 116.369 0.953 0.953

LE‑DMOA 167.514 0.904 0.902 169.87 0.908 0.905

NE‑DMOA 119.497 0.95 0.95 120.182 0.954 0.953

MLPNN‑DMOA 168.948 0.917 0.901 190.611 0.918 0.881

ANFIS‑DMOA 126.761 0.944 0.944 126.487 0.949 0.947
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This is why the average from different consecutive runs 
is recommended to be used for the comparisons of the 
performances of different models. Table 6 shows that the 
nonlinear ML models are more accurate than linear ones 
in the training and validation stages. The ANFIS-PSCO, 
with the lowest RMSE and the highest R2 and NSE, pre-
sents the best performance. In general, the results 
obtained in the training and validation stages show that 
the performance of the derived PSCO is better than PSO 
and its variant, AGPSO.

The results obtained in the training and validation 
stages provide important information regarding the per-
formance of the derived models; however, more impor-
tant for the evaluation of the models is the performance 
achieved in a testing stage. Table  7 presents the results 
obtained by the applied models in the testing stage.

The results presented in Table 7 indicate that in the test-
ing stage the accuracies of applied ML models are accept-
able (R2 > 0.90). The performances of nonlinear models 
are better than their linear counterparts. On average, the 
nonlinear models are about 33.13% more accurate than 
linear models. The results show that the accuracies of 
all developed models are close to each other. However, 
ANFIS-PSCO, with the lowest  RMSE,  MAE,  and the 
highest R2, NSE, and IA, provides the best performance. 

The results show also that PSO, PSCO, AGPSO, and 
INFO increase the accuracy of ANFIS and MLPNN 
models. The DMOA decreases the ANFIS and MLPNN 
accuracies. The performance of DMOA applied for math-
ematical benchmark functions in high-dimensional prob-
lems was also low. The results also show that DMOA is an 
appropriate method for optimizing ML models with the 
low number of coefficients, as similar conclusion refers 
to LE and NE. Although the performances of PSCO and 
other algorithms are similar, the PSCO provides more 
accurate results in both high- and low-dimensional 
problems. The application of PSCO increases the accu-
racy of MLPNN and ANFIS by about 1.33% and 1.91%, 
respectively. Scatter plots are widely recognized visual 
techniques which may be applied for comparisons of the 
performances of different models. Figure  5 presents the 
average scatter plots for the testing stage.

The plots in Fig.  5 show that the applied models well 
predict the Vistula water discharge. The nonlinear mod-
els are more accurate than their linear counterparts. The 
points corresponding to linear methods are more scat-
tered than points obtained by applying the nonlinear 
models. This means that the applications of advanced 
machine learning methods are attractive alternatives for 
the modeling of hydrological and hydraulic phenomena 
with high accuracy. The scatter plots of nonlinear mod-
els are located close to each other, which indicates that 
the performances of nonlinear models are similar. The 
ANFIS-PSCO provides the best performance among all 
developed models providing the best fitting of the pre-
dicted and observed results, the highest trendline slope 
coefficient (m = 0.967), and the lowest trendline intercept 
coefficient (C = 54.431).

4  Further discussion
In this study, particle swarm clustered optimization 
(PSCO) was developed to solve optimization problems. 
The performance of PSCO was compared with sev-
eral recognized techniques available in the literature 
including particle swarm optimization (PSO), autono-
mous groups particles swarm optimization (AGPSO), 
dwarf mongoose optimization algorithm (DMOA), and 
weighted mean of vectors (INFO). In the first stage, the 
performances of the derived algorithms were evaluated 
by applying 10 complex mathematical benchmark func-
tions. The applied benchmark functions describe applied 
scientific problems. The results indicate that the perfor-
mance of algorithms depends on the type of problem. 
For some functions, the performances of the available 
algorithms are better than PSCO. However, in general, 
PSCO outperformed other algorithms. The PSCO devel-
oped in this study overcomes the weakness of PSO and 
a tendency to trap in local solutions. The DMOA results 

Table 7 Results obtained in testing phase

Method Statistical index

RMSE  (m3/s) R2 MAE  (m3/s) NSE IA

ANFIS 109.899 0.96 72.315 0.958 0.989

MLPNN 112.101 0.959 73.015 0.956 0.989

LE‑PSCO 171.973 0.906 118.939 0.898 0.974

NE‑PSCO 113.427 0.958 71.583 0.956 0.989

MLPNN‑PSCO 109.963 0.96 72.724 0.958 0.989

ANFIS‑PSCO 108.433 0.961 71.557 0.959 0.99

LE‑PSO 172.53 0.905 119.245 0.897 0.974

NE‑PSO 113.925 0.958 72.444 0.955 0.988

MLPNN‑PSO 111.376 0.959 72.327 0.957 0.989

ANFIS‑PSO 109.221 0.961 71.716 0.959 0.989

LE‑AGPSO 172.824 0.906 120.234 0.897 0.973

NE‑AGPSO 112.847 0.958 72.061 0.956 0.989

MLPNN‑AGPSO 113.091 0.958 70.356 0.956 0.989

ANFIS‑AGPSO 110.429 0.96 71.527 0.958 0.989

LE‑INFO 172.198 0.905 119.756 0.897 0.974

NE‑INFO 113.757 0.958 73.399 0.955 0.988

MLPNN‑INFO 110.984 0.959 70.601 0.957 0.989

ANFIS‑INFO 111.28 0.959 71.098 0.957 0.989

LE‑DMOA 172 0.905 119.26 0.898 0.974

NE‑DMOA 113.891 0.958 73.017 0.955 0.988

MLPNN‑DMOA 159.048 0.929 86.81 0.913 0.974

ANFIS‑DMOA 124.855 0.95 86.934 0.946 0.986
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in high-dimensional problems are relatively poor. The 
application of DMOA may be recommended just for low-
dimensional problems.

In the second stage, the performances of PSCO and 
other algorithms implemented to optimize machine 
learning (ML) models applied to predict Vistula river dis-
charge were analyzed. As expected, the performance of 
DMOA applied in high-dimensional problems is far bet-
ter than its performance in low-dimensional problems. 
The results of other algorithms are close to each other. 
However, the statistical indices indicate that ML models 
integrated with the developed PSCO are more accurate 
than other algorithms.

The inputs were selected based on data recorded by 
the Vistula river stations. This study indicates that the 
prediction of river discharge with high accuracy is pos-
sible with just two input parameters and randomized 
data sets (no time series). It was possible to use lags for 
both discharge and temperature and predict discharge 
by applying a time series modeling strategy (Lin et  al. 
2021; Zounemat-Kermani et  al. 2021). The application 
of lags makes it possible to use more inputs. However, 
the predicted results for the second, third, or consecu-
tive time steps are not accurate in such a modeling. 
In the literature, there are studies that report satisfy-
ing results obtained by applying two input parameters 

Fig. 5 The scatter plots for the testing stage
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(Heřmanovský et al. 2017; Hong et al. 2021; Song 2021). 
However, a more detailed analysis of the consequences 
of the application of more parameters may be recom-
mended for future studies.

5  Conclusion
An original particle swarm clustered optimization 
(PSCO) method has been developed for the imple-
mentations in applied sciences. The performance of 
PSCO was compared with particle swarm optimization 
(PSO), autonomous groups particles swarm optimiza-
tion (AGPSO), dwarf mongoose optimization algorithm 
(DMOA), and weighted mean of vectors (INFO). The 
derived PSCO, in contrary to particle swarm optimiza-
tion technique (PSO) that is frequently used in many 
disciplines of applied sciences, does not trap in local 
solutions. The novel technique was applied as an inte-
grative method with several machine learning (ML) 
models including multilayer perceptron neural net-
work (MLPNN), adaptive neuro-fuzzy inference system 
(ANFIS), linear equation (LE), and nonlinear equation 
(NE) to predict river discharge. Ten benchmark functions 
were used to compare the performance of PSCO with fre-
quently used traditional methods. The results show that 
PSCO provides the most accurate results. The PSCO pro-
vides the most accurate results for both high- and low-
dimensional benchmark functions. The PSCO can escape 
from trapping in local solution and consistently and reli-
ably reaches the global solution. The application of linear 
and nonlinear ML models in the prediction of river dis-
charge shows that the nonlinear models act better. The 
performances of most algorithms are close to each other. 
However, the PSCO results are slightly more accurate 
than other algorithms in optimizing the MLPNN, ANFIS, 
and regression equations (REs). The average results of 30 
continuous runs indicate that PSCO improves the per-
formance of machine learning techniques and shows that 
the ANFIS-PSCO is the most accurate model.
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