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Abstract 

Foreshock detection before mainshock occurrence is an important challenge limiting the short-term forecasts of large 
earthquakes. Various models for predicting mainshocks based on discrimination of foreshocks activity have been pro-
posed, but many of them work in restricted scenarios and neglect foreshocks and mainshocks out of their scope. In 
disaster prevention, it is often necessary to change the forecast period and the magnitude of target mainshocks. This 
paper presents a cluster-based statistical discrimination of foreshocks which is applicable all over Japan and adjust-
able with respect to forecasting time span and mainshock magnitudes. Using the single-link clustering method, the 
model updates the expanding seismic clusters and determines in real time the probabilities that larger subsequent 
events will occur. The foreshock clusters and the others show different trends of certain feature statistics with respect 
to their magnitudes and spatiotemporal distances. Based on those features and the epicentral location, a nonlinear 
logistic regression model is used to evaluate the probabilities that growing seismic clusters are foreshocks that will 
trigger mainshocks within 30 days. The log of odds is estimated between the foreshock clusters and other clusters for 
respective feature values as nonlinear spline functions from a Japanese hypocenter catalog for the period 1926–1999. 
Based on the estimated odds functions, foreshock clusters tend to have smaller differences in their two largest magni-
tudes, shorter time durations, and slightly longer epicentral distances within the individual clusters. Given a potential 
foreshock cluster, its mainshock magnitude can be predicted by the Gutenberg–Richter law over the largest foreshock 
magnitude. The timing of mainshock occurrences from foreshocks is also predicted by multiplying the portion of 
mainshocks within a shorter span from those within 30 days by the evaluated foreshock probabilities. The predictive 
performance of our model is validated by the holdout method using a Japanese hypocenter catalog before and after 
2000. The evaluated foreshock probabilities are roughly consistent with the actual portion of foreshocks in the valida-
tion catalog and could serve as an alert for large mainshocks.
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1 Introduction
Foreshocks are promising clues for short-term forecast-
ing of large mainshocks. Many studies have addressed 
certain features of foreshocks and predictability of main-
shocks by foreshock detection (e.g., Papazachos 1974, 
1975; Jones and Molnar 1979; Smith 1981; von Seggern 
et  al. 1981; Xu et  al. 1982, Jones 1985; Wong and Wyss 
1985; Agnew and Jones 1991; Console et al. 1993, Savage 
and dePolo 1993; Maeda 1996). Ogata et al. (1995, 1996) 
composed and classified seismic clusters into foreshock, 
swarm, and mainshock–aftershock types. They discussed 
different trends in spatiotemporal distances and magni-
tude increments among those cluster types. The initially 
proposed methods are mainly based on anomalies to find 
potential foreshocks (e.g., Jones 1985; Console et al. 1993; 
Maeda 1996). Such anomaly-type methods provide high 
performances with optimized anomaly thresholds; how-
ever, they miss some portions of foreshocks that do not 
satisfy their anomaly classification.

Ogata et al. (1996) proposed a logistic regression model 
to evaluate the probabilities that seismic clusters will 
be the foreshock type or other clusters. This model can 
be applied to all earthquake clusters that may be fore-
shocks by defining the odds functions over all the feature 
spaces. Furthermore, Ogata and Katsura (2012) validated 
the predictive performance of the model by Ogata et al. 
(1996) in their catalog after its publication and proved 
that its probability forecast was as good as that shown 
in the original paper. The probability forecasts given by 
Ogata et  al. (1996), however, were not robust for large 
cluster sizes, and it was recommended to use feature 
statistics of the first several events in the clusters (Ogata 
et al. 2018).

In this study, we modified certain aspects of the fore-
shock discrimination model proposed by Ogata et  al. 
(1996). Specifically, (1) we do not classify foreshocks and 
swarms by magnitude differences; (2) we forecast main-
shock magnitudes as well as their occurrences; and (3) we 
set the forecasting period at 30 days from the last event. 
Those modifications provide mainshock forecasting in 
more practical ways that are comparable to the Collabo-
ratory for the Study of Earthquake Predictability (CSEP) 
tests (e.g., Tsuruoka et al. 2012).

2  Method
2.1  Dataset and seismicity clustering
We analyzed the Japan Meteorological Agency (JMA) 
catalog of M ≥ 4 in the region 128–148°  E, 30–46°  N as 
observed from January 1, 1926, to October 31, 2017, at a 
depth shallower than 100 km. To define mainshocks and 
their sub-events, we first compiled data of earthquake 
clusters from that catalog by the same procedure used 

in Ogata et al. (1995, 1996); namely, the seismic clusters 
were constructed by the so-called single-link clustering 
(SLC) algorithm of Frohlich and Davis (1990). Specifically, 
earthquake pairs whose spatiotemporal distances were 
less than 0.3° (33.33 km or 30 days) were linked as belong-
ing to the same cluster. The spatiotemporal distance of 
SLC is defined by (�d)2 + (c�t)2 , where �d is the 
epicentral distance in degrees, and �t is the difference of 
occurrence times in a day. For conversion between space 
and time distances, we set c = 0.01°/day, which is approxi-
mately equal to 1.111 km/day, as suggested by Davis and 
Frohlich (1991). In addition, to separate clusters between 
earthquakes in the shallow crustal zones and deep plate 
subduction zones in Japan, we only linked earthquake 
pairs whose depth difference was less than 70  km. The 
spatiotemporal distance threshold of 0.3°, or 30 days, for 
M ≥ 4.0 catalog, was determined by Ogata et  al. (1995) 
to be consistent with the clusters of the algorithm based 
on the magnitudes of the mainshocks. These space–time 
parameters were deliberately determined by comparison 
with the Magnitude-based clustering (MBC) algorithm 
that determines a main shock before the formation of a 
cluster for several threshold magnitudes based on physi-
cally sensible empirical laws, whereas no magnitudes are 
used in the SLC. However, a drawback with the MBC is 
that it cannot be used for cluster identification until after 
the main shock is identified (while the SLC can). A draw-
back of the SLC is that it is very sensitive to the temporal 
change in detectability, while the MBC is not, as shown in 
Ogata et al. (1995). Furthermore, Ogata et al. (1995, 1996) 
use both algorithms to confirm the stability of the results. 
Another advantage of the SLC method is that cluster 
membership can be easily updated by adding new links 
between a new event and members of growing clusters.

After seismic clusters are constructed, the mainshock 
of each cluster is defined by the largest event of the clus-
ter. In this study, we then defined a foreshock cluster 
based on an evolving seismic cluster whose mainshock 
occurred within 30  days from the last event. Thus, our 
goal was to discriminate in real time the foreshock clus-
ters from the growing clusters.

Ogata et  al. (1995) discriminated the foreshock-type 
cluster and swarm by the magnitude gap between the 
mainshock and its largest foreshock. However, this 
definition does not consider the case in which the larg-
est foreshock may be preceded by smaller foreshocks; 
that is, the foreshock sequence itself is a foreshock- or 
swarm-type cluster, which may change on account of 
the mainshock occurrence. Therefore, our method does 
not distinguish foreshocks and swarms, and it forecasts 
mainshocks whose magnitudes exceed the largest magni-
tude of the current cluster.
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We obtained data on 4,150 earthquake clusters, includ-
ing more than two events. We divided the clusters into 
those ending before 1999 as the training dataset for our 
model, and those ending after 2000 as the validation 
dataset. The training dataset was thus comprised of 408 
foreshock-type clusters out of 2916 clusters, and 166 
foreshock-type clusters out of 1234 clusters comprised 
the validation dataset.

2.2  Feature extraction for foreshock discrimination
Many articles have reported properties of foreshocks 
in terms of magnitudes, spatiotemporal distances, and 
hypocenter locations. Some of them discuss a means of 
discriminating between foreshock clusters and other 
cluster types by using these properties. Nevertheless, 
Ogata et  al. (1995) revealed statistics within an earth-
quake cluster that are useful for discriminating fore-
shocks. In this study, we considered the following feature 
statistics, which are similar to those used in the work of 
Ogata et al. (1996). We calculated them each time a clus-
ter grew by adding a new event:

• N: Size of the cluster
• M1: Largest magnitude of the cluster
• ΔM: Magnitude gap between the two largest magni-

tudes of the cluster
• T: Time duration of the cluster (day)
• D: Mean pairwise epicentral distance in the cluster 

(km)
• (X, Y): Mean longitude and latitude of the epicenter 

(degree)

We limited the cluster size N from 2 to 100 in our 
analysis. Before constructing the foreshock models, we 
examined empirical distributions of those feature statis-
tics, as shown in Figs. 1, 2, and 3. The figures show the 
histograms and normalized cumulative distributions of 
ΔM, T, and D of foreshock and non-foreshock clusters 
under a fixed cluster size N, and a certain range of the 
largest magnitude M1. The distributions of those three 
features shift as the cluster size N and largest magnitude 
M1 change. Thus, we can identify differences in their dis-
tributions between foreshock clusters and the others.

Figure 1 shows that the magnitude gaps ΔM in fore-
shock clusters tend to be small relative to those in the 
other clusters. In Fig.  2, seismic clusters with shorter 
time spans are more likely to be foreshocks and vice 
versa. We should note that those trends in Figs. 1 and 
2 become more apparent as the cluster sizes increase. 
With respect to the mean pairwise distances in the 
clusters, obvious trends cannot be observed in Fig.  3. 

However, when we perform Wilcoxon rank sum tests 
(see, e.g., Section 4.1 of Hollander et al. 2013) for those 
features ΔM, T, and D, respectively, all the tests show 
that there are significant differences in distributions 
between foreshock and non-foreshock clusters with P 
values less than  10–16. The regional foreshock trend in 
Japan is discussed in the next section.

Because the number of clusters rapidly decreases as 
cluster size N increases, we transform N into Nc for use 
in our analysis by: Nc = {number of clusters whose sizes 
are less than N}. Then, Nc is approximately uniformly 
distributed through this normalization as seen from its 
cumulative distribution in Fig.  4. Time duration T is 
also transformed into its logarithm by Tl = max(log10 
T, − 4) as the normalization. Mean pairwise distance D 
is not transformed; it is used as it currently exists.

2.3  Learning foreshock probability by nonlinear logistic 
regression

In this section, we construct a statistical model to evalu-
ate the foreshock probability of an evolving seismic clus-
ter—that is, the probability that a mainshock will occur 
within 30  days from the last event in the cluster. We 
extract the feature statistics (Nc, M1, �M, Tl, D, X , Y ) 
that were introduced in the previous section from the 
evolving clusters. We evaluate their foreshock probabili-
ties p(foreshock|Nc, M1, �M, Tl, D, X , Y ) by using 
the following logistic regression model:

where logit p = loge {p/(1− p)} is the logit or log odds 
of the probability to be a foreshock cluster. The functions 
f1, f2, f3 and g are nonlinear spline functions defined 
below and indicate the effect on log odds by their varia-
bles. The feature statistics in each function are dependent 
on each other and may influence the foreshock probabili-
ties, as observed from Figs. 1, 2, and 3.

The first three functions, f1 , f2 , f3 , are the three-
dimensional tensor products of cubic regression splines 
(see, e.g., Section 5.3.1 and 5.6.1 in Wood 2017) with 3 
knots for each variable. In general, a three-dimensional 
tensor product f  of cubic regression splines with 3 
knots for each variable is defined by

where f xi (x) is a basis function of the cubic regression 
spline for the variable x defined by

(1)
logit p(foreshock | Nc, M1, �M, Tl, D, X , Y )

= f1(Nc, M1, �M)+ f2(Nc, M1, Tl)

+ f3(Nc, M1, D)+ g(X , Y )+ εcl

(2)f
(

x, y, z;β
)

=

5
∑

i=1

5
∑

j=1

5
∑

k=1

βijk f
x
i (x)f

y
j

(

y
)

f zk (z)
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and x1, x2, x3 are the knots allocated at the minimum, 
median, and maximum of the data x. The other spline 
functions f yj

(

y
)

 and f zk (z) are defined in the same way 
as f xi (x) . The coefficients β =

{

βijk ; i, j, k = 1, 2, 3, 4, 5
}

 
of the tensor spline f  are constrained by the following 
conditions:

(3)f xi (x) =







|x − xi|
3 i = 1, 2, 3

x i = 4
1 i = 5

(4)
3

∑

i=1

βijk =

3
∑

i=1

βijkxi = 0, for j, k = 1, 2, 3, 4, 5

(5)
3

∑

j=1

βijk =

3
∑

j=1

βijkyj = 0, for i, k = 1, 2, 3, 4, 5

Fig. 1 Histograms and cumulative relative frequencies of magnitude gap ΔM of two largest events in foreshock (pink bars and red lines) and 
non-foreshock (light blue bars and blue lines) clusters. M1 indicates the largest foreshock magnitude
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where y1, y2, y3 are the knots of f yj
(

y
)

 and z1, z2, z3 are the 
knots of f zk (z) . These constraints contribute stable esti-
mation of the spline function around its edge.

The fourth nonlinear function g  is a thin plate regres-
sion spline function (see, e.g., Section  5.5.1 in Wood 
2017) for isotropic two-dimensional features defined by

(6)
3

∑

k=1

βijk =

3
∑

k=1

βijk zk = 0. for i, j = 1, 2, 3, 4, 5

where r
(

x, y; xl , yl
)

= (x − xl)
2 +

(

y− yl
)2 . The knots 

{(

xl , yl
)

; l = 1, . . . , L = 20
}

 are randomly chosen from 
the epicenters in the training data. The coefficients 
φ =

{

φl; l = 1, . . . , L+ 3
}

 are constrained by

(7)
g
(

x, y
)

=

L
∑

l=1

φlr
(

x, y; xl , yl
)

loge r
(

x, y; xl , yl
)

+ φL+1x + φL+2y+ φL+3

Fig. 2 Histograms and cumulative relative frequencies of log time duration  log10 T of foreshock (pink bars and red lines) and non-foreshock (light 
blue bars and blue lines) clusters. M1 indicates the largest foreshock magnitude
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This constraint avoids the thin plate regression spline 
g  from taking extreme values outside the distribution 
of epicenters in training data. This term is interpreted 
as the baseline log odds of foreshocks for the epicentral 
location.

The last term in Eq. (1), εcl , is a random effect for each 
cluster whose cluster size N  is over ten, which has nor-
mally distributed cluster-specific values. Since there were 
not very many clusters whose sizes had grown over ten, 

(8)
L

∑

l=1

φl =

L
∑

l=1

φlxl =

L
∑

l=1

φlyl = 0
we introduced this term to avoid overfitting by easing the 
correlation within the individual clusters.

We estimated these terms by maximizing the penalized 
log-likelihood with penalties to the integral of second 
derivatives of the respective spline functions. The weights 
of these penalty functions were determined to minimize 
the Akaike’s information criterion (AIC; Akaike 1974).

3  Results and discussion
3.1  Relative trends of foreshocks
We applied the proposed model to JMA catalog of M ≥ 4 
in the region 128–148°E, 30–46°N as observed from 

Fig. 3 Histograms and cumulative relative frequencies of mean pairwise distance D in foreshock (pink bars and red lines) and non-foreshock (light 
blue bars and blue lines) clusters. M1 indicates the largest foreshock magnitude
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January 1, 1926, to December 31, 1999, at a depth shal-
lower than 100 km and obtained relative trends of fore-
shocks as log odds functions shown in Figs. 5, 6, 7, and 8.

Figures  5, 6, and 7 depict the log of odds functions 
estimated from the JMA catalog for the period of Janu-
ary 1, 1926, to December 31, 1999. It is confirmed that 
the coincidence that the portion of foreshock clusters 
(red points) from others (blue points) increases as the log 
odds increases. As a common trend in these figures, the 
smaller the M1, the higher the foreshock probability. This 
is because M1 is the lower limit of the mainshock magni-
tude to be predicted.

In Figs. 5 and 6, we can observe the same trends seen 
in Figs.  1 and 2, respectively. The foreshock probability 
is higher as the magnitude difference of the two largest 
events is smaller and the time interval is shorter. Figure 7 
shows the trend of the log odds being slightly higher as 
the D is longer. When the N is larger, the trends shown 
in Figs. 5 and 6 become more apparent, while the trend 
shown in Fig. 7 becomes less apparent.

Figure  8 shows the regional change in log odds esti-
mated from the same catalog. The log odds is relatively 
high in the eastern coast and offshore zones where the 
Pacific Plate and the Philippine Sea Plate are subducting, 
and it is relatively low in inland area except for the central 
Japan on the opposite side. The highest baseline log odds 
is marked off the coast of the Izu Peninsula around the 
middle area depicted in Fig. 8.

3.2  Prediction of mainshock magnitudes
When a foreshock cluster is detected, the magnitude 
of its mainshock may be predicted by examining the 

relationship between the mainshocks and foreshocks. 
Figure  9 shows the cumulative counts of differences in 
magnitude between the mainshocks and the largest fore-
shocks in the JMA catalog for the period 1926–1999. The 
empirical cumulative distribution decreases exponen-
tially along the gray line in Fig. 9. Therefore, we assume 
an exponential distribution for the conditional probabil-
ity distribution of mainshock magnitude Mmain, given the 
largest foreshock magnitude M1 as follows:

where the coefficient 0.89 is obtained by the maximum 
likelihood method, whereas the standard b value is 0.9 
in Japan and vicinity. Ogata et al. (1995) define the fore-
shock-type cluster as a cluster whose magnitude gap 
between the mainshock and its largest foreshock is larger 
than 0.45 for discrimination from swarm clusters. The 
0.45 magnitude gap or over is realized in less than about 
20 percent of clusters, and this boundary between fore-
shocks and swarm pre-shocks has been heuristically set 
by the trade-off between the advantages of a larger mag-
nitude gap (better discrimination) and a greater number 
of foreshock clusters (better statistics).

We note here that our setting generalizes Ogata et al. 
(1995), including their foreshock case; namely, the 0.45 
magnitude gap is equivalent to 0.4 since magnitude 
data is given to the first decimal place, and if we limit 
mainshock magnitudes to be larger than the largest 
foreshock magnitudes + 0.4, the foreshock probability 
is evaluated by 

3.3  Prediction of mainshock timing
Although we evaluate probabilities of foreshocks by 
assuming that their mainshocks occur within 30  days 
from the latest events, it is also important to evaluate 
probabilities of mainshock occurrences using the tim-
ing of mainshock occurrences from foreshocks. We 
demonstrate the cumulative distribution of the tim-
ing of mainshock occurrences from their foreshocks 
in Fig.  10. The cumulative distribution of the time lag 
does not vary considerably by T of the foreshock clus-
ters. From Fig.  10, of the mainshocks within 30  days 
from their foreshocks, about 60% occurred within 
7  days and about 30% occurred within 1  day, which 
are represented by vertical dashed lines, respectively. 
Therefore, the probabilities of mainshock occurrences 

(9)
p
(

Mmain > M1 +m| foreshock,M1

)

= 10
−0.89m

, m = 0.1, 0.2, . . .

(10)

p(foreshock, Mmain > M1 + 0.4| Nc, M1, �M, Tl, D, X , Y )

= p(foreshock| Nc, M1, �M, Tl, D, X , Y )

× p(Mmain > M1 + 0.4| foreshock, M1)

= p(foreshock| Nc, M1, �M, Tl, D, X , Y )× 0.44.

Fig. 4 Cumulative distribution function of N (upper horizontal axis) 
and Nc (lower horizontal axis)
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within 7 days and 1 day can be approximately evaluated 
by multiplying by 0.6 and 0.3, respectively, the original 
foreshock probabilities that mainshocks occur within 
30 days.

3.4  Validation of foreshock discrimination
To validate our model, we evaluated the foreshock prob-
abilities p(foreshock|  Nc, M1, ΔM, Tl, D, X, Y) for the 
validation dataset for the period from January 1, 2000, 
to October 31, 2017, using the model estimated via the 
training dataset from January 1, 1926, to December 31, 
1999. We compared the evaluated probabilities and the 

actual proportions of foreshocks listed in Table  1. The 
evaluated foreshock probabilities for growing seismic 
clusters of fixed sizes N = 2, 5, 10, 20 are tabulated in 10% 
intervals. Since many of the actual rates of foreshocks 
deviate from the evaluated foreshock probabilities due 
to their small sample sizes, we also calculated the 90% 
confidence interval (CI) of the binomial proportion of 
foreshocks for each cell in Table 1. The 90% CI and the 
range of evaluated probability overlap in every cell and 
hence our model provided roughly consistent prediction 
with the actual proportion of foreshocks. The highest 
foreshock probabilities are marked for a seismic swarm 

Fig. 5 Estimated relative log odds function f1 (Nc, M1, ΔM) for some fixed cluster sizes. Red circles and gray pluses represent foreshock and 
non-foreshock clusters, respectively
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off the Izu Peninsula, where the value of the baseline log 
odds g is the highest, and some of them are actually fore-
shocks. The portions of foreshocks for all clusters have 
similar values ranging from 13 to 16% among the differ-
ent fixed cluster sizes.

In addition, we evaluated the foreshock probabilities 
for mainshocks whose magnitudes are larger than their 
largest foreshock magnitudes + 0.4, by multiplying the 
probabilities evaluated in Table  1 by 0.44 as in Eq. (10). 
Table  2 summarizes the evaluated probabilities and the 
proportions of foreshocks with their 90% CIs. Most of the 
90% CIs overlap with the range of evaluated probabilities. 
Particularly, seismic clusters with foreshock probabilities 

over 10% are more likely to be actual foreshocks than 
those with probabilities under 10%.

Moreover, we evaluated the foreshock probabilities 
for M6+ mainshocks by combining Eqs. (1) and (9) as 
follows:

Table  3 shows the foreshock probabilities evaluated 
by Eq.  (11) and the actual portion of foreshocks for 

(11)

p(foreshock, Mmain

≥ 6| Nc, M1, �M, Tl, D, X , Y )

= p(foreshock| Nc, M1, �M, Tl, D, X , Y )

× p(Mmain ≥ 6|foreshock, M1).

Fig. 6 Estimated relative log odds function f2 (Nc, M1, Tl) for some fixed cluster sizes. Red circles and gray pluses represent foreshock and 
non-foreshock clusters, respectively
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M6+ mainshocks in the contingency tables by 5% inter-
vals. Since foreshock clusters with M6+ mainshocks are 
rare cases, the evaluated probabilities are mostly less 
than 5%. Nevertheless, seismic clusters with foreshock 
probabilities over 5% are more likely to be actual fore-
shocks than those with probabilities under 5% in Table 3. 
The foreshock cluster of the 2016 Kumamoto earthquake 
of M7.3 is evaluated as having a foreshock probability 
of 16% when its N reaches 20. Such a high probability is 
obtained because the difference between the two largest 
foreshock magnitudes is only 0.1 and the time duration 
is approximately one day in that cluster. These factors 
involved high odds, as shown in Figs. 5 and 6.

3.5  Comparison with synthetic ETAS catalogs
In the last subsection, we showed that our foreshock prob-
ability evaluation is empirically consistent with the actual 
foreshock rate. On the other hand, there are some stud-
ies (e.g., Helmstetter and Sornette 2003; Helmstetter et al. 
2003) that criticize foreshock identification models beyond 
the ETAS because foreshock phenomena are also seen in 
the synthetic catalogs simulated from the ETAS model. In 
contrast, Ogata and Katsura (2014) compared probability 
forecasting performance between the real seismic catalog 
and the synthetic ETAS catalogs, and showed that the fore-
shock model by Ogata et al. (1996) performed better for the 

Fig. 7 Estimated relative log odds function f3 (Nc, M1, D) for some fixed cluster sizes. Red circles and gray pluses represent foreshock and 
non-foreshock clusters, respectively
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real catalog than the synthetic catalogs in the log-likelihood 
ratio. Thus, in this subsection, we compare the predictive 
performance in our model between the real seismic catalog 
and the synthetic ETAS catalogs.

We first fitted the space–time ETAS model with the fol-
lowing conditional intensity function to the same catalog as 
that used in this study:

where Ht =
{(

ti, xi, yi,mi

)

: ti < t
}

 is the observation 
history up to time t and mc = 4 is the cutoff magnitude. 
The heterogeneous background rate function μ(x, y) is 
estimated by the kernel method with a Gaussian kernel 
function. All the parameters are estimated by the maxi-
mum likelihood method.

Then, we simulated 100 synthetic catalogs from the fit-
ted ETAS model with the following two types of magnitude 
sequences: (1) the same magnitude sequences as the valida-
tion catalog in the last subsection, (2) the magnitudes inde-
pendently resampled from those of the validation catalog.

We applied our model to those catalogs and evalu-
ated their predictive performances by the mean log-
likelihood score per cluster introduced in Ogata and 
Katsura (2014). For the cth cluster, define pc as the 
mean of the foreshock probabilities evaluated for its 
subclusters which appear during the growth of the 
cluster size. Then we define the log-likelihood score 
for the cth cluster by

(12)

�
(

t, x, y|Ht

)

=µ
(

x, y
)

+
∑

{j:tj<t}

K
(

t − tj + c
)p

×

[

(

x − xj
)2

+
(

y− yj
)2

eα(mj−mc)
+ d

]−q

(13)lc = ηc loge pc + (1− ηc) loge (1− pc)

Fig. 8 Estimated relative log odds function g (X, Y). Red circles and 
gray pluses represent epicenters of foreshock and non-foreshock 
clusters, respectively

Fig. 9 Cumulative counts of differences between mainshock 
magnitudes Mmain and largest foreshock magnitudes M1, which 
exhibits an exponential decrease as shown in gray line

Fig. 10 Empirical distribution of time lag of mainshock occurrence 
from its foreshock with its 95% confidence intervals (dashed curve). 
Those for the foreshock cluster whose time duration T is less than a 
day and over a day are shown in the red and blue lines, respectively
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where ηc = 1 if the cth cluster includes foreshocks and 
otherwise ηc = 0. We obtained the mean log-likelihood 
score over all the clusters in each catalog.

Thus, for 889 clusters in the validation catalog, 
which is the JMA catalog from 2000 to October 31, 
2017, the mean log-likelihood score was − 0.382. Fig-
ure  11 shows the distribution of the mean log-like-
lihood scores for the 100 synthetic ETAS catalogs 
with each type of the magnitude sequence described 
above. Whereas the distribution of the scores is not 

much different between the two types of the magni-
tude sequence, the score − 0.382 obtained from the 
real catalog was much higher than any scores from the 
synthetic catalogs in Fig.  11. That result implies that 
our model takes advantage of foreshock characteris-
tics in the real catalog to improve the predictive per-
formance. These results also encourage us to develop 
a magnitude forecast, other than the ETAS models, in 
order to raise the probability gain of a large earthquake 
forecast (see also Ogata et al. 2018).

Table 2 Contingency table of evaluated foreshock probabilities for mainshocks with magnitudes larger than their largest foreshock 
magnitudes + 0.4 and actual portion of foreshocks with 90% binomial proportion confidence interval in seismic clusters of size N = 2, 
5, 10, 20

Foreshock probability 0–10% 10–20% 20–30% 30–40% Total

N = 2 All clusters 1045 203 5 0 1253

Foreshock clusters 69 28 1 0 98

Portion of foreshocks (90% CI) 7% (5–8%) 14% (10–18%) 20% (1–66%) N/A 8%

N = 5 All clusters 196 36 8 2 242

Foreshock clusters 16 5 1 2 24

Portion of foreshocks (90% CI) 8% (5–12%) 14% (6–27%) 13% (1–47%) 100% (22–100%) 10%

N = 10 All clusters 75 11 5 0 91

Foreshock clusters 6 5 1 0 12

Portion of foreshocks (90% CI) 8% (4–15%) 45% (20–73%) 20% (1–66%) N/A 13%

N = 20 All clusters 36 2 2 3 43

Foreshock clusters 2 1 1 0 4

Portion of foreshocks (90% CI) 6% (1–16%) 50% (3–97%) 50% (3–97%) 0% (0–63%) 9%

Table 3 Contingency table of evaluated foreshock probabilities for M6+ mainshocks and actual portion of foreshocks with 90% 
binomial proportion confidence interval in seismic clusters of size N = 2, 5, 10, 20

Foreshock probability 0–5% 5–10% 10–15% 15–20% 20%– Total

N = 2 All clusters 1234 17 2 0 0 1253

Foreshock clusters 28 0 1 0 0 29

Portion of foreshocks (90% CI) 2% (2–3%) 0% (0–16%) 50% (3–97%) N/A N/A 2%

N = 5 All clusters 212 24 5 1 0 242

Foreshock clusters 12 4 0 0 0 16

Portion of foreshocks (90% CI) 6% (3–9%) 17% (6–34%) 0% (0–45%) 0% (0–95%) N/A 7%

N = 10 All clusters 84 4 2 1 0 91

Foreshock clusters 8 1 1 1 0 11

Portion of foreshocks (90% CI) 10% (5–17%) 25% (1–75%) 50% (3–97%) 100% (5–100%) N/A 12%

N = 20 All clusters 36 4 0 1 2 43

Foreshock clusters 2 1 0 1 1 5

Portion of foreshocks (90% CI) 6% (1–16%) 25% (1–75%) N/A 100% (5–100%) 50% (3–97%) 12%
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4  Conclusions
In this paper, we proposed a foreshock discrimination 
model using the information on magnitudes, space, 
and time in seismic clusters. The actual portion of fore-
shocks in the validation dataset was roughly consistent 
with the foreshock probability evaluated by our model. 
Furthermore, we provided a probabilistic evaluation 
of mainshock magnitudes above the foreshock magni-
tudes based on the Gutenberg–Richter law. Although 
our model showed good performance in discriminat-
ing the foreshock clusters, only approximately 10% of 
M6+ mainshocks were preceded by M4+ foreshock 
clusters. More foreshocks may be found by setting the 
minimum foreshock magnitudes smaller than 4 (e.g., 
Mignan 2014). However, if we lower the cutoff magni-
tude to that level, some events may be missing in the 
seismic clustering. Nevertheless, the features of seismic 
clusters defined in this study are designed to be robust 
to missing events and may not change significantly by 
them. We would like to address this issue in the future. 
Since our model only forecasts mainshock occurrences, 
in future work, we also intend to enrich our forecasts 
with aftershock forecasts given by the ETAS models 
(e.g., Ogata 2011) and submit the ensemble model to 
the CSEP Japan Testing Center (Tsuruoka et al. 2012).
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