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Abstract 

This paper presents the 1000 ensemble flood simulations using ensemble rainfalls simulated by 4D LETKF. The 
number of ensemble rainfall members is large as 1000 compared to the operational rainfall products of two-digit 
numbers to avoid sampling errors in the three-dimensional meteorological simulation based on chaotic theory. Using 
the large data set, 1000 ensemble rainfall–runoff for dam catchments and high-resolution inundation simulations of 
large area are carried out focusing on the Kumagawa river catchment. Herewith, the comparisons were carried out 
with 21-member ensemble rainfalls of an operational forecast by Japan Meteorological Agency and 100-member 
4D-LETKF ensemble rainfalls simulated independent of 1000-member 4D-LETKF. At the same time, the accuracy of 
selective 100-member ensembles out of 1000 members is investigated. As a result, although many previous research 
works show a large number of ensemble simulations are necessary for three-dimensional meteorological field, the 
number could be reduced in the catchment-average rainfall–runoff and 2.5-dimensional inundation simulations 
given that the rainfall prediction has a certain level of accuracy since improving the discharge prediction accuracy 
with lower dimension is sometimes possible by adjusting the horizontally/vertically integrated model parameters 
determined by topography and soil characteristics in advance against the observed rainfall. Also, the 1000 ensembles 
could be classified into several patterns in horizontally accumulated 2D rainfall field. Likewise, the flood flow moves 
toward the low elevation area and river; thus, the resultant 2.5-dimensional flood field does not show much variety as 
three-dimensional meteorological simulation. The paper summarizes these studies. 
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1  Introduction
Numerical weather predictions (NWPs) are the only way 
for quantitative weather forecasting and the necessity of 
predicting future weather accurately is increasing due to 
increasing weather-related disasters by realizing global 
warming. However, NWPs have inherent errors, since 
(1) there are errors in the initial/boundary conditions 
due to a lack of perfect observations representing the 
actual atmosphere; and (2) the governing equation of the 
numerical weather model itself is not perfect due to lack 
of knowledge (Japan Meteorological Agency: JMA 2021). 
Even if errors in the initial condition are very small, the 
NWP in the long future would result in unrealistic pre-
dictions, which is known as the chaotic nature of the 
atmosphere.

To estimate the errors in NWPs, ensemble prediction 
systems (EPS) are gaining more attention nowadays. 
It is widely thought that spreads of EPSs, which consist 
of several model runs, represent errors in the predic-
tions. To incorporate these spreads of prediction varia-
tions, global and mesoscale ensemble weather prediction 
systems-GEPS (Yamaguchi et  al. 2021) and MEPS (Ono 
et  al. 2021), respectively, are in operation now in Japan. 
The specifications of GEPS and MEPS are given in 
Table  1 along with the global ensemble prediction sys-
tem (ENS) by ECMWF. The usefulness of GEPS, MEPS as 
well as ENS ECMWF is now shown by many stakehold-
ers in Japan, not only for weather prediction but also for 
flood prediction including statistical post-processing and 
AI applications (Kobayashi et al. 2016a, b; Sayama et al. 
2020; Nohara and Sumi 2020; Nohara et al. 2022; Hana-
saki 2019).

On the other hand, the point we are paying attention 
to in this paper is that the number of ensemble mem-
bers in MEPS is 21, which is modest. However, the con-
sideration is becoming more prevail that the number of 
ensemble members must be much greater to fulfill the 
probability distribution of the ensemble simulations to 
avoid sampling error. Especially in ensemble data assimi-
lation, increasing the number of ensemble members is 
necessary to be more precise, which helps the estimation 
of the errors owing to decreasing the sampling errors. In 
this context, the research for mesoscale weather mega 

ensembles can be found in Kawabata and Ueno (2020), 
Kunii (2014), Neckar et al. (2020), Duc and Saito (2017), 
Duc et al. (2021) all with more than 1000 members.

Kawabata and Ueno (2020) investigated the non-
Gaussianity of the cumulonimbus prediction with 2  km 
and 1000 members and found the non-Gaussianity was 
initiated in the updraft at low troposphere. Kunii (2014) 
dealt with 1000 members with a 15-km resolution 
and illustrated that sampling errors in the background 
covariances significantly reduced in comparison with a 
100-member ensemble, and concluded that an ensemble 
size larger than 500 is enough large to approximate the 
covariances. Necker et al. (2020) compared a 1000-mem-
ber ensemble with a 15-km resolution by the Japanese 
numerical weather model SCALE and a 40-member 
ensemble by COSMO from the German Weather Ser-
vice, and they found that sampling errors in background 
error covariances reduced in the 1000-member ensem-
ble. The research aims of the above all experiments focus 
mostly on sampling errors and Gaussianity in errors and 
do not show their performances in precipitation predic-
tions, even more in flood predictions.

On the other hand, the research also considering the 
ensemble flood simulation driven by the 1600-member 
ensemble weather predictions (Duc and Saito 2017) can 
be found in Kobayashi et al. (2019, 2020). This was an ini-
tial work on probability flood forecasting using a physi-
cally based distributed rainfall–runoff model and a huge 
number of ensemble rainfall forecasts obtained from a 
four-dimensional variational ensemble assimilation sys-
tem. They showed that the probabilistic consideration in 
the real sense with huge 1600-member ensembles was 
possible along with the significant improvement in rain-
fall and flood simulations. Likewise, the result succeeded 
in indicating the necessity of emergency flood operations 
with enough lead times and probabilities. They also dis-
cussed the difficulty of selecting the best ensemble mem-
bers due to the nonlinearity of the weather.

Recently, Duc et  al. (2021) carried out 1000 ensemble 
weather simulations targeting July 2020 Kyushu heavy 
rain. Since the event brought extreme damage to flooded 
areas, they designed the experiment for predicting heavy 
rain, which is described in Duc et al. (2021), as well as the 

Table 1  Specification of GEPS, MEPS and global ensemble (ENS) by ECWMF

GEPS MEPS ENS by ECWMF

Resolution Approx. 40 km 5 km 18 km

Number of prediction per day 4 (00, 06, 12, 18UTC) 4 (00, 06, 12, 18UTC) 2 (00, 12UTC)

Duration of the prediction 132 (06, 18UTC) 39 360

264 (00, 12UTC)

Number of ensembles 27 21 51
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flood event. Thus, these 1000-member ensemble weather 
simulations are used for the ensemble flood simulations 
of this paper whose overview is explained later. Over-
all, this paper attempted to carry out 1000 ensemble 
flood simulations driven by the 1000 ensemble weather 
simulations using a lumped rainfall–runoff model with a 
Kalman filter, and flood simulations with a shallow water 
equation, which has different aspects from Kobayashi 
et al. (2019) using a physically based distributed rainfall–
runoff model. The scientific question in the paper is that 
in meteorology we have high uncertainty in rainfall fore-
casts based on chaotic nature, and this requires a large 
number of ensemble members. However, in flood fore-
casting of hydrology, given that the rainfall prediction has 
a certain level accuracy, it is not necessarily true because 
certain factors like topography and river networks deter-
mine the flow movement very much, thus may reduce 
uncertainties in flood forecasting compared to weather 
forecasting. The large number may only be important for 
long lead times. The paper attempted to answer this sci-
entific question.

The basic attempts of this paper are: (1) fixing the 
parameters of the rainfall–runoff and inundation model 
using the radar–raingauge rainfall distribution data by 
JMA (hereafter R/A) as observation and (2) investigat-
ing the variations/uncertainties of the flood predictions 
mainly due to the uncertainties of ensemble weather 
simulations only, then (3) estimating the rainfall–runoff 
model state variables to minimize the effect of the runoff 
model uncertainties using a Kalman filter. This is due to 
the fact that, in general, state variables of runoff models 
must be adjusted even against quasi-perfect rainfalls (i.e., 
R/A) at each different rainfall event.

It is noted that Oizumi et al. (2022) also currently carry 
out 1000 ensemble flood simulation using Japan Mete-
orological Agency operational Runoff-Index Model, a 
rainfall–runoff model different from this paper using the 
same 1000 ensemble rainfall data set. However, the pur-
pose and focus are different from this paper.

The structure of the rest of this paper is as follows. Sec-
tion 2.1 presents a brief description of the 1000 ensem-
ble rainfalls used in the paper. Section  2.2 explains the 
Kumagawa river catchment, the target river basin in this 
paper. Section 2.3 shows the flood simulation conditions 
with a rainfall–runoff model and a shallow water equa-
tion model. Sections  3.1–3.2 show the results of 1000 
ensemble rainfall–runoff simulation for the Ichifusa dam 
catchment. Likewise, Sect.   3.3–3.4 shows the results 
for the Kawabegawa dam catchment. Section  3.5 shows 
the result of 1000 inundation simulations. Section  3.6 
presents the application of a Kalman filter on the rain-
fall–runoff simulations. Finally, Chapter 4 states the con-
cluding remarks and future aspects.

2 � Methods/experimental
2.1 � High‑resolution ensemble precipitation forecasts
In order to provide rainfall forecasts for the hydrological 
model, three ensemble prediction systems (EPS) are used. 
The first EPS is the operational mesoscale ensemble pre-
diction system (MEPS) running at JMA with 21 ensem-
ble members. The other two EPSs are conducted by Duc 
et al. (2021) using the JMA nonhydrostatic model (NHM) 
and the local ensemble transform Kalman filter (LETKF) 
to generate initial perturbations. The data assimilation 
system NHM-LETKF is described in Duc et al. (2015). All 
settings of these two EPSs are identical except the num-
ber of ensemble members, which are 100 and 1000. Thus, 
by using the three EPSs, we can examine the impact of 
the number of ensemble members on the uncertainty 
quantification of rainfall and flood predictions.

NHM-LETKF run with dual resolutions: a low-res-
olution grid with 15-km grid spacing for analysis per-
turbations and a high-resolution grid with 5-km grid 
spacing for analyses. The analysis domain is copied from 
the JMA’s operational domain, which is much larger 
than the forecast domain [see Fig. 2 of Duc et al. (2021)]. 
Except for radiances and rain analyses, they assimilate 
the same observations that are assimilated into the JMA’s 
operational data assimilation system ASUCA-VAR. The 
boundary conditions and boundary perturbations are 
obtained from the JMA’s global forecasts. The assimilat-
ing run with 1000 ensemble members is relatively chal-
lenging because huge computational costs are involved. 
In order to reduce the computational cost, they turn off 
vertical localization in NHM-LETKF. Duc et  al. (2021) 
point out that removing vertical localization indeed has a 
positive impact on the heavy rain forecast in Kyushu.

The forecast domain is a 2-km grid-spacing domain 
centered at Kyushu. This domain has 819 × 715 horizon-
tal grid points and 60 vertical levels. The boundary con-
ditions are interpolated from the JMA’s global forecasts. 
The boundary perturbations are extracted from the JMA’s 
1-week global ensemble forecasts. All ensemble members 
start at 18 JST July 3rd 2020 and run for 24-h forecasts. 
Note that the forecast domain of MEPS is the same as the 
analysis domain of NHM-LETKF with the grid spacing of 
5 km.

For illustration, Fig.  1 shows the deterministic 
and probabilistic precipitation forecasts from the 
1000-member EPS in comparison with the observations 
at the peak period 00–09 JST of the July 2020 Kyushu 
heavy rain (July 4th). Clearly, these forecasts succeed 
in predicting both the rainfall location and the rainfall 
amount. In order to quantify this subjective evaluation, 
Fig. 2 plots the Fractions Skill Score (FSS) (Roberts and 
Lean 2008) calculated for the 3-h deterministic precipi-
tation forecasts over Kyushu. This figure also displays 
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the FSSs of the downscaling forecasts from the JMA’s 
ASUCA-VAR analysis at 2-km grid spacing for com-
parison. It can be seen that the NHM-LETKF forecasts 
even beat the operational forecasts in this case. Thus, 
it can be expected that NHM-LETKF will yield good 

precipitation forecasts for the Kumagawa catchment. 
This is indeed the case as verified in Fig. 3 in which the 
evolutions of the accumulated rainfall, averaged over 
this area, are presented.

Fig. 1  a, b, c Observations of consecutive 3-h precipitations between 00 and 09 JST July 4th 2020. d, e, f The corresponding 2-km forecasts by 
NHM-LETKF started at 18 JST July 4th 2020. g, h, i The corresponding 2-km probabilistic forecasts with respect to a rainfall threshold of 50 mm/3 h. 
(Reproduced Duc et al. 2021)

Fig. 2  FSSs of the consecutive 3-h precipitations forecasted by ASUCAR-VAR and NHM-LETKF against the R/A observations between 00 and 09 JST 
July 4th 2020 over the Kumagawa catchment. (Reproduced Duc et al. 2021)
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2.2 � Kumagawa river catchment
Receiving the three rainfall ensemble forecasts, this paper 
presents its application to flood simulations of the Kum-
agawa river catchment. Figure  4 shows the Kumagawa 
river catchment (catchment area: 1765 km2). The river 
experienced the largest-ever flooding on July 4, 2020. The 
total accumulated rainfall at the Hitoyoshi rainfall obser-
vatory (Fig. 4) attained 420 mm between 00JST July 3 and 
24JST July 4. Note that the average rainfall of July in the 
Hitoyoshi rainfall observatory was 471.4 mm. The hourly 
rainfall over 30 mm continued for 8 h having a line shape 
rainfall band from the predawn of July 4. At Taragi and 
Hitoyoshi rainfall observatories (Fig.  4), the 6-, 12- and 
24-h rainfalls exceeded the historical records of July in 
1965 and 1982 (Fukuoka district meteorological obser-
vatory 2020; The Kinki district of maintenance station, 
Ministry of Land, Infrastructure, Transport and Tour-
isms 2020).

In Fig.  4, the catchment area of the already existing 
Ichifusa dam is shown. The catchment area is 158 km2. 
The discharge into the Ichifusa dam was simulated using 
a lumped rainfall–runoff model (hereafter RRM) or the 
storage function model (hereafter SFM). The Kawabe-
gawa dam (catchment area 470 km2) is in the planning 
stage, though the catchment area is shown also in Fig. 4 
since the ensemble discharges at the site were also esti-
mated using the RRM. Figure  4 also shows the nested 
computational area with a resolution of 5  m. The flood 
simulation using a shallow water equation (hereaf-
ter SWE) was carried out in the nested computational 
area. The outflows from Ichifusa and Kawabegawa dams 

were provided to the flood simulation by SWE; then, the 
propagation of the river flows including overtopping was 
simulated. At the same time, R/A was provided over the 
entire nested computational area. Thus, the inland flood-
ing by the rainfall as well as the river flows by the two dis-
charge inputs from the dams is simultaneously simulated.

The red color polygon in Fig.  4 shows the inundated 
area (i.e., flood mark) by the Geospatial Information 
Authority of Japan (hereafter GSI). The simulated flood-
ing for the rainfall event of July 4, 2020, was compared 
with the flood marks and water levels at several observa-
tories. Then, rainfall–runoff discharge simulations with 
the SFM for the Ichifusa and Kumagawa dam catchments 
are carried out using the three rainfall ensemble forecasts 
as inputs. Finally, ensemble flood simulations with SWE 
were carried out using the discharges from the two dam 
catchments driven by the 1000 member (LETKF) ensem-
ble forecasts.

2.3 � Flood simulation conditions
Figure 5 shows the observed inflow and outflow of the Ichi-
fusa dam. In the actual situation of 2020, the emergency 
spillway gate release operation was considered in the dam, 
but it was avoided in the end. The total storage volume of 
the dam is 40.2 million m3, and the effective volume is 35.1 
million m3. On the other hand, Fig. 5 also shows the simu-
lated inflow at Kawabegawa dam conducted by Sumi and 
Nohara (2020) using a kinematic wave-type distributed 
rainfall–runoff model. This value is used as the pseudo-
observation in the following as it was simulated using a 
physically based runoff model. The model parameter by 

Fig. 3  Evolutions of the accumulated precipitation averaged over the Kumagawa catchment as forecasted by NHM-LETKF. The light gray zone 
represents the intervals between the first and third quartiles of the probability density functions of the accumulated rainfall. The dark gray 
zone indicates the 95% confidence intervals, i.e., the intervals between the 2.5 and 97.5 percentiles, of the probability density functions of the 
accumulated rainfall (Reproduced Duc et al. 2021)
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Fig. 4  Overview of the Kumagawa river catchment

Fig. 5  Observed inflow/outflow of the Ichifusa dam and simulated inflow of assumed Kawabegawa dam by a distributed rainfall–runoff model 
(Sumi and Nohara 2020)
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Sumi and Nohara (2020) was adjusted so that the simulated 
discharge was fitted to the observation at Yanase (Fig. 4) in 
the downstream of Kawabegawa dam.

The observed outflow to Ichifusa dam after dam con-
trol and simulated inflow at the assumed Kawabegawa 
dam was provided to the flood simulation with the SWE 
at points 1 and 2 as shown in Fig. 4. As explained, the R/A 
was also provided in the entire computational domain. The 
flow can go out from the square boundary of the compu-
tational domain based on the weir formula. The governing 
equations of SFM and SWE models applied are as follows. 
The explanation of the Kalman filter used afterward is also 
described.

2.3.1 � SFM
The equations of the storage function model and Kalman 
filter applied are written by referring to JSCE (2002). For 
the details see JSCE (2002).

A storage function model by Hoshi and Yamaoka (1982) 
(also in JSCE 2002) which is a function made up of two 
terms was used.

where q is the direct runoff in [mm/h], t the time in [h], 
k1, k2, p1, p2 the model parameters. SFM is a lumped 
model and driven by the basin-average rainfall of the 
Ichifusa dam and Kawabegawa dam catchments. The 
parameters identified are given in Table 2.

Then, the continuity equation of the storage height is:

where c is the runoff ratio and r is the catchment-average 
rainfall intensity in [mm/h].

Inserting Eq. (1) into (2) yields

Equation (3) can be transformed into a system of ordi-
nary differential equations (ODEs).

(1)s(t) = k1q
p1(t)+ k2

d

dt
qp2(t)

(2)
ds(t)

dt
= cr(t)− q(t)

(3)
k2

d2qp2(t)

dt2
= −k1p1q

p1−1(t)
dq(t)

dt
+ cr(t)− q(t)

(4)
dx1(t)

dt
= x2(t)

where x1 = qp2 , x2 = dqp2

dt .
By linearizing this ODE system, an update or sys-

tem equation is obtained for an extended Kalman fil-
ter besides an observation equation derived from the 
observed discharge and also linearized:

where the variables are denoted as follows: k : time. x : 
system state variable (p-dimensional vector). � : state 
transition matrix (p × p matrix). α : system constant vec-
tor (p-dimensional vector). u : system noise, independ-
ent normal Gaussian white noise with zero mean and U 
variance (p-dimensional vector). y : observation vector 
(m-dimensional vector ( m ≤ p)). Ŵ : observation matrix 
(m × p matrix). β : observation constant vector (m-dimen-
sional vector). w : observation noise, independent normal 
Gaussian white noise with zero mean and W variance 
(p-dimensional vector).

The exact form of the two matrices �(k) , Ŵ(k) and the 
two vectors α(k), β(k) is given in JSCE (2002). Referring 
to Eqs. 4 and 5, state variables of Eq. (6) to be estimated 
by the extend Kalman filter are defined as follows:

The initial estimation of the seven state variables 
above must be given. Likewise, estimated error covari-
ance matrix, the covariance matrix of the system noise 
and observation noise must be also initially given for 
the application. Then, the state variables are updated at 
each time step following the algorithms of the extended 
Kalman filter including the calculation of the Kalman 
gain. See JSCE (2002) for further details.

2.3.2 � SWE

(5)

dx2(t)

dt
=−

k1

k2

p1

p2
x1(t)

p1/p2−1
x2(t)

−
1

k2
x1(t)

1/p2 +
c

k2
r(t)

(6)
System Equation

x(k + 1) = �(k)x(k)+ α(k)+ u(k)

(7)
Observation Equation

y(k) = Ŵ(k)x(k)+ β(k)+ w(k)

(8)
x1 =qp2 , x2 =

dqp2

dt
, x3 = k1, x4 = 1/k2,,

x5 =p1, x6 = 1/p2, x7 = c

(9)
∂h

∂t
+

∂M

∂x
+

∂N

∂y
= R

Table 2  Parameter values for SFC

Parameters k1 k2 p1 p2

Ichifusa 16.0 47.6 0.650 0.46

Kawabegawa 14.1 66.7 0.515 0.50
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where h is the surface flow water depth; M, N the dis-
charge fluxes in the x- and y-directions, respectively 
(M = uh, N = vh); R  the rainfall intensity;  u, v the sur-
face flow velocities in the x- and y-directions, respec-
tively; H the water level (h + z); n the Manning’s 
roughness coefficient; g the acceleration due to grav-
ity. This SWE model was parallelized by MPI and Open 
MP (Kobayashi et  al. 2016b). The computational area 
of the region is 26.545  km × 16.995  km with 5  m reso-
lution; thus, the number of computational grids is 
5309 × 3399 = 18,045,291. The initial time of the simula-
tion was 18JST July 3, 2020, and the simulation was car-
ried out for 24 h. The Manning’s roughness coefficient n 
in Eqs. (10–11) is 0.05.

Figure 6 shows the simulated water depth in the com-
putational domain. The figure also shows the inundation 
area record by GSI at downstream. The right-hand figure 
is an enlarged view around Hitoyoshi city. Overall, it is 
clear that the simulated inundated area is in good agree-
ment with the area where the record by GSI exists. The 
simulated water levels at Yanase, Hitoyoshi and Tar-
agi water level observatories were compared with the 
observed water levels as shown in Fig. 7. Since there is no 
water in the beginning of the simulation, the difference in 
the beginning of the simulation is large but the levels at 

(10)

∂M

∂t
+

∂uM

∂x
+

∂vM

∂y
= −gh

∂H

∂x
− gn2u

√
u2 + v2

h1/ 3

(11)

∂N

∂t
+

∂uN

∂x
+

∂vN

∂y
= −gh

∂H

∂y
− gn2v

√
u2 + v2

h1/ 3

the peaks were basically in good agreement for the pre-
diction of the inundation level. The observation at Hitoy-
oshi was missing from the middle due to the flooding.

3 � Results and discussion
3.1 � Ensemble rainfall–runoff simulations at Ichifusa dam
As mentioned, SFM by Hoshi and Yamaoka (1982) was 
used for the simulation of dam inflow at Ichifusa and 
Kawabegawa dams. The reason to use this simple con-
ceptual rainfall–runoff model is that the computational 
speed is fast. A 1000-member ensemble flood simulation 
with 1000 rainfalls and SFM needs approx.15  s. using a 
workstation with Xeon CPU E5-2670 (2.6 GHz).

In the followings, the comparisons with the 21-mem-
ber ensemble by MEPS of JMA (hereafter 21 (MEPS)), 
the 100-member ensemble by 4D LETKF (hereafter 100 
(LETKF)) and the 1000-member ensemble by 4D LETKF 
(hereafter 1000 (LETKF)) are carried out. Likewise, ten 
100-member ensembles selected from 1000 (LETKF) 
are also compared. These ten 100-member ensembles 
are simply selected as members 1–100, 101–200, 201–
300,…,900–1000 (hereafter expressed such as m1-100, 
m900-1000).

Figure  8a–c shows the catchment-average rainfalls of 
the Ichifusa dam basin with 21(MEPS), 100 (LETKF) and 
1000 (LETKF), respectively. Both of 100 (LETKF) and 
1000 (LETKF) started at 18:00 on July 3 for 24 h, while 
21 (MEPS) started at 21:00 on July 3 for 39 h. The figures 
show that the ensemble means of the 21 and 100 mem-
bers clearly underestimate R/A which is in the paper 
regarded as the observed rainfall. Likewise, the gray 
clouds of ensembles by 21 and 100 ensemble members 

Fig. 6  Simulated water depth (2020/7/4, 0900)
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can not necessarily cover the peak of R/A, while those 
by 1000 members cover the entire R/A except the very 
beginning of the rainfall. Figure  8d–f shows the cumu-
lative rainfall. The mean of the 1000-member ensemble 
shows good agreement with that by R/A. Likewise, the 
mean of the 100 ensemble rainfalls shows a relatively 
good agreement with R/A although it is a little underes-
timation. The mean of the 21-member ensemble clearly 
underestimates R/A.

Figure  9a–c shows the simulated 21 (MEPS), 100 
(LETKF) and 1000 (LETKF) ensemble discharges by 
SFM. Same as rainfall, the gray cloud of 1000 member 
discharges covers the observation, while that by 21 mem-
bers could not encompass the observation though 1 out 
of 21 members having maximum peak discharges shows 
a good agreement with the observation. Several members 
in the 100-member ensemble prediction also show a rela-
tively good agreement with the observation, though the 
peaks of many members appear earlier than the obser-
vation and the peak discharges are underestimated. The 
ensemble mean of 1000 members relatively resembles the 
observation, while those of 21 and 100 members clearly 
underestimate the observation. Figure 9d–f shows cumu-
lative discharges. The mean of 1000 members shows a 
good agreement with the observation, though it is slightly 
underestimated. On the other hand, the final value of the 
mean of 100 members also shows a good agreement with 
the observation. The mean of 21 members underesti-
mates the observation largely. Good prediction of cumu-
lative inflow volume is also useful for reservoir managers 

to know if the flood control capacity of the reservoir is 
much enough.

3.2 � Selective 100‑member ensembles 
from the 1000‑member weather and rainfall–runoff 
simulation at Ichifusa dam

Figure  10a shows again 1000 (LETKF) ensemble dis-
charge simulations, while figure b–f shows the 100-mem-
ber ensembles selected from 1000 members. The 
members are denoted by m1-100, m101-200,…, m401-
500. From the visual judgment only, each of the 100 
selected members shows similar results. To quantify the 
agreement with the observation, Nash–Sutcliffe effi-
ciency (hereinafter NSE: Nash and Sutcliffe 1970) is 
calculated.

where N is the total number of time steps (1 h interval), 
Qi
0 is the observed dam inflow (discharge) at time i, Qi

s is 
the simulated dam inflow (discharge) at time i, Qm is the 
average of the observed dam inflows.

NSEs are shown in Fig. 11. Figure 11a, c shows all the 
NSEs of 21 (MEPS), 100 (LETKF), 1000 (LETKF) and 
10 selected 100-member ensembles from 1000 (LETKF) 
with regard to rainfall and discharge, respectively. 

(12)NSE = 1−
N
i=1 Qi

0 − Qi
s

2

N
i=1 Qi

0 − Qm
2

(13)Qm =
1

N

N
∑

i=1

Qi
0

Fig. 7  Observed and simulated water depth at water level observatories
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Figure  11b, d shows the box plot of the NSEs also for 
rainfall and discharge, respectively. From these fig-
ures, 1000 (LETKF) clearly outperforms 100 (LETKF) 
and 21 (LETKF) for both rainfall and discharge. How-
ever, it is recognized that some NSEs of 21 (MEPS) 
and 100 (LETKF) are close to one, thus those members 
are in good agreement with the observations. On the 
other hand, each of the selected 100-member ensem-
bles shows a similar tendency with 1000 (LETKF). In 
other words, each of the 100-member ensembles is 
randomly selected so that the set has similar statistics 
to the 1000-member ensemble. Note that even though 
the number of members is the same in the both 100 

(LETKF) and 100 (selective) cases, the two sets are 
not equal in the sense that the selective 100-mem-
ber ensembles inherit all statistics from the larger 
1000-member ensemble, and therefore should be 
understood as representatives of this large ensemble. A 
large number of ensemble members enable us to bet-
ter capture uncertainties in atmospheric processes, and 
to better utilize information provided by observations, 
thus leading to significant improvement in rainfall 
forecast. These 10 × 100 member sets also outperform 
21 (MEPS) and 100 (LETKF) for both rainfall and 
discharge.

Fig. 8  Observed and simulated basin-average rainfalls for Ichifusa dam catchment. a–c Hourly rainfall intensity of (a) 21 members (MEPS), (b) 100 
members (LETKF) and (c) 1000 members (LETKF) d–f Cumulative rainfall for (d) 21 members (MEPS), (e) 100 members (LETKF) and (f) 1000 members 
(LETKF)



Page 11 of 22Kobayashi et al. Progress in Earth and Planetary Science            (2023) 10:5 	

3.3 � Ensemble rainfall–runoff simulations at the assumed 
Kawabegawa dam

Figure 12a–c shows the ensemble basin-average rainfalls 
for the Kawabegawa dam catchment. Again, each mem-
ber of the 21-member (MEPS) ensemble and its mean 
clearly underestimate R/A. Those 100 (LETKF) members 
are better than the 21 members in terms of the amount, 
though the cloud of 100 members could not partially 
cover R/A. The cloud of 1000 (LETKF) members entirely 
covers R/A well, though the mean still underestimates 
R/A. Figure  12d–f shows the cumulative rainfalls. The 
cumulative rainfall of 1000 (LETKF) members resembles 
that of R/A very well. That of 100 (LETKF) members also 

shows a relatively good agreement with R/A while that of 
21 (MEPS) members clearly underestimates R/A.

Figure  13a–c shows the simulated discharges by SFC 
for 21 (MEPS), 100 (LETKF) and 1000 (LETKF) mem-
bers. The 21 member discharges clearly underestimate 
the discharge observation. On the other hand, the clouds 
of 100 and 1000 members cover the observation well. It 
should be noted that the 100-member ensemble also 
shows good results with regard to the Kawabegawa dam 
catchment. Some members of the 100-member ensemble 
show a good agreement with the observation. Likewise, 
the 1000-member ensemble well covers the observation. 
Considerable members of the 1000-member ensemble 

Fig. 9  Observed and simulated discharge to Ichifusa dam catchment. a–c Hourly discharge of (a) 21 members (MEPS), (b) 100 members (LETKF) 
and (c) 1000 members (LETKF). d–f Cumulative discharge for (d) 21 members (MEPS), (e) 100 members (LETKF) and (f) 1000 members (LETKF)
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show a good agreement with the observation. The means 
of both 100 (LETKF) and 1000 (LETKF) members show 
good agreement with the observation.

3.4 � Selective 100‑member ensembles 
from the 1000‑member ensemble weather 
and rainfall–runoff simulations at Kawabegawa dam

Figure  14a shows again 1000 (LETKF) ensemble dis-
charge simulations for Kawabegawa dam, while 
Fig.  14b–f shows the 100-member ensembles selected 
from the 1000-member ensemble. Same as Ichifusa, 
the members are denoted by m1-100, m101-200,…, 

m401-500. Each of the selected 100-member ensembles 
shows similar results as the case of Ichifusa.

NSEs for Kawabegawa dam are shown in Fig.  15. Fig-
ure 15a, c shows all the NSEs of 21 (MEPS), 100 (LETKF), 
1000 (LETKF) and 10 selected 100-member ensembles 
from 1000 (LETKF) for rainfall and discharge, respec-
tively. Figure  15b, d shows the box plots also for the 
rainfall and discharge, respectively. From these figures, 
1000 (LETKF) clearly outperforms 100 (LETKF) and 
21 (LETKF) for rainfall. On the other hand, with regard 
to discharge, 100 (LETKF) shows an equivalent level of 
accuracy with 1000 (LETKF). Likewise, it is recognized 
that some NSEs of 21 (MEPS) and a considerable number 

Fig. 10  Observed and simulated discharge to Ichifusa dam catchment by 1000 (LETKF). a Hourly discharge of 1000 members, b of m1-100, c 
m101-200, d m201-300, e m301-400, f m401-500
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Fig. 11  a NSEs of rainfall, b NSE box plots of rainfall, c NSEs of discharge and d NSE box plots of discharge for Ichifusa dam
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of 100 (LETKF) are close to one, or in good agreement 
with the observations. On the other hand, each of the 
selected 100-member ensembles shows a similar level 
of accuracy with 1000 (LETKF) and resembles them in 
statistics.

3.5 � Ensemble flood simulation with a shallow water model
Then, ensemble inundation simulations are carried out 
using 1000 (LETKF) ensemble discharges at Ichifusa/
Kawabegwa dams and the corresponding ensemble rain-
falls in the previous chapters as inputs. The results are 
shown in Fig. 16. The figure shows the probabilities of the 
maximum inudation depth of the selected ensemble mem-
bers beyond the maximum inundation depth simulated by 

R/A without the discharge cut of dams as shown on the 
right-hand side. Herein, 1–100, 1–200, 1–500 and 1–1000 
members are selected. As in the figures, the probabil-
ity becomes even more than 50% in the mountain area 
whose maximum inundation depth is directly simulated 
by the ensemble rainfalls. However, in the main channels 
of the Kumagawa and Kawabegawa rivers, the probabil-
ity is below 50%. One of the interesting features is that, 
as the case of discharges at the two dams in the previous 
chapters, the distribution of the probability does not dif-
fer much according to the number of selected ensembles. 
This may indicate that the place of inundation is governed 
mostly by the topography or ground elevation in addi-
tion to the rainfall distribution, thus the place where the 

Fig. 12  Observed and simulated basin-average rainfalls for Kawabegawa dam catchment. a–c Hourly rainfall intensity of (a) 21 members (MEPS), 
(b) 100 members (LETKF) and (c) 1000 members (LETKF) d–f Cumulative rainfall for (d) 21 members (MEPS), (e) 100 members (LETKF) and (f) 1000 
members (LETKF)
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maximum inundation occurs does not differ much as the 
flood water flows into the lower elevation area. In other 
words, a reasonable number of ensemble members could 
be smaller when the inundation depth is predicted, unlike 
the three-dimensional weather ensembles.

3.6 � Kalman filter application on the rainfall–runoff 
simulation

Finally, a Kalman filter (Kawamura 1993; JSCE 2002, 
Ueda 1984; Athans 1968) was applied to the first 11, 12, 
13, 14, 15  and  16 h of the SFC ensemble simulations. 
Herein 21 (MEPS), 100 (LETKF) or 1000 (LETKF) state 
variable sets of SFC were adjusted so that simulated 

hydrographs become similar to the observed discharge 
while the Kalman filter was applied. By doing this, the 21, 
100 or 1000 simulated hydrographs become similar to the 
observation for the first 11–17  h, then the hydrographs 
afterward show the spread of the discharges according to 
the variations of ensemble rainfalls. This attempt was car-
ried out since there are uncertainties in the runoff model 
state variables even against quasi-perfect rainfall (i.e., 
R/A). Thus, those uncertainties are minimized against 
the 1000 (LETKF) rainfalls. Note that the predicted rain-
falls and not the observed rainfall are used in the Kalman 
filter. The challenge herein is to make a successful predic-
tion beyond the accuracy of the rainfall predictions.

Fig. 13  Observed and simulated discharge to Kawabegawa dam catchment. a–c Hourly discharge of (a) 21 members (MEPS), (b) 100 members 
(LETKF) and (c) 1000 members (LETKF). d–f Cumulative discharge for (d) 21 members MEPS, (e) 100 members and (f) 1000 members
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Figure 17 shows the application of the Kalman filter on 
the discharge simulations of 21 (MEPS), 100 (LETKF) 
and 1000 (LETKF) ensembles for the Ichifusa dam. One 
of the interesting features of this Kalman filter applica-
tion is that the ensemble mean becomes quite close to 
the observation especially as it approaches the peak dis-
charge. The difference between the ensemble mean and 
observation is smaller in the case of the 1000 (LETKF)-
member ensemble than the 21 (MEPS) or 100 (LETKF)-
member ensembles with regard to Ichifusa dam. This 
indicates that 1000 ensemble simulations are superior to 

100 or 21 ensemble simulations in this aspect because of 
fewer sampling errors. However, 1 of 21 ensemble mem-
bers shows always a good agreement with the observa-
tion in this case which is preferable for the application of 
MEPS currently operated by JMA.

On the other hand, Fig. 18 shows the 21 (MEPS), 100 
(LETKF) and 1000 (LETKF)-member ensembles for the 
Kawabegawa dam. In this case, the mean and ensembles 
of 21 members basically underestimate the observation. 
However, those of 100 and 1000 members show both 
good agreements. Although there are less large discharge 

Fig. 14  Observed and simulated discharge to Kawabegawa dam catchment by 1000 (LETKF) a Hourly discharge of 1000 member, b of m1-100, c 
m101-200, d m201-300, e m301-400, f m401-500
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Fig. 15  a NSEs of rainfall, b NSE box plots of rainfall, c NSEs of discharge and d NSE box plots of discharge for Ichifusa dam
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members in the 100-member ensemble compared with 
the 1000-member ensemble, the accuracy of the mean of 
100 members compared with the observed discharge is 
not inferior to the 1000 members.

4 � Conclusions
This paper dealt with the 1000 ensemble rainfall–run-
off and inundation simulations driven by 1000 ensem-
ble weather simulations. To better sample uncertainties 
in ensemble weather simulations, it is now prevailing 
to increase the number of ensembles even up to 1000–
10,000 in the academic field of meteorology. Receiving 
these ensemble weather simulations, this paper carried 
out ensemble rainfall–runoff and inundation simulations. 
The results of discharge simulations at the Ichifusa and 
Kawabegawa dams using ensembles show that the over-
all trend of the rainfall–runoff simulation is similar to 
the weather simulation. In other words, the 1000 ensem-
ble discharge simulations show basically better coverage 
of observed discharge  as the case of ensemble rainfalls. 
Likewise, the ensemble mean of 1000 discharge simula-
tions becomes closer to the observation, which is consid-
ered due to better representation in rainfall simulations.

However, there were cases in the discharge simula-
tion that the 100 (LETKF)-member ensemble was also 

not bad. This is considered because the discharge by the 
rainfall–runoff simulation is determined not only by the 
rainfall but also by the topography and subsurface char-
acters. The rainwater converged to the catchment outlet 
in case of rainfall–runoff simulation; thus, some differ-
ences of the rainfall pattern in the catchment could be 
canceled out. This means that the accuracy of discharge 
simulation is not necessarily the same to the accuracy 
of weather simulation if the soil parameter is appropri-
ately set up. This change of accuracy is more confirmed 
when the state variables of the rainfall–runoff model 
are adjusted by the Kalman filter in real time using 
observations. If the real-time discharge observation 
exists 1–3  h ahead of the peak, the discharge predic-
tion around peak time can be better. Nevertheless, 1000 
ensemble simulations are preferable when the predic-
tion long time before such as half to one day is neces-
sary since the adjustment of rainfall–runoff model state 
variables has almost no meaning at the early stage when 
the rainfall prediction indicates small values. In this 
sense, the research on mega ensemble rainfall simula-
tions with enough lead time is worth pursuing aiming 
at citizens an early evacuation before the flood inci-
dent occurs. Likewise, when 1000 ensemble inundation 
simulations were conducted, the results also indicated 
that the area where the maximum inundation occurs 
was determined again not only by the rainfall but also 
by the topography. Thus, the probability distribution of 

Fig. 16  The probabilities (%) of selected ensemble members beyond the inundation depth simulated by R/A
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the inundation beyond the observation (i.e., simulated 
by R/A without dams) did not differ much between 
selected 1–100, 1–200, 1–500 and 1–1000 member 

ensembles. In other words, the number of ensemble 
members could be reduced in case of 2.5-dimensional 
inundation predictions unlike the three-dimensional 

Fig. 17  Application of the Kalman filter on the discharge simulations of 21, 100 and 1000 ensembles for Ichifusa dam (a–g): The Kalman filter was 
applied until: a 11, b 12, c 13, d 14, e 15 and f 16 h
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Fig. 18  Application of the Kalman filter on the discharge simulations of 21, 100 and 1000 ensembles for Kawabegawa dam (a–g): The Kalman filter 
was applied until: a 11, b 12, c 13, d 14, e 15 and f 16 h
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weather/rainfall simulations, although finding out the 
proper number of ensemble members remained as the 
future work.
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