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Abstract 

The Sung Valley ultramafic–alkaline–carbonatite complex (UACC) of Meghalaya, NE, India, is a result of magmatic 
activity related to the Kerguelen mantle plume spanning from 101 to 115 Ma. In the present study, an integrated 
crystal size distribution (CSD), mineral chemistry, and melt inclusion analysis are carried out on the ijolites present 
within this UACC. The CSD analysis shows that these ijolites were formed in multiple stages through changes in the 
crystallization environment, such as cooling and nucleation rates. Raman spectroscopy of mineral inclusions of rutile, 
aphthitalite, apatite, carbonate–silicate melt inclusions, and disordered graphite within clinopyroxene and titanite, 
respectively, indicates a heterogeneous composition of the parental magma. These mineral and melt inclusion phases 
further suggest localized changes in oxygen fugacity (fO2) due to redox reactions in the lower crust. SEM–EDX analysis 
of the exposed melt inclusions reveals the presence of alkali-bearing diopside, phlogopite, and andradite, along with 
an unidentified carbonated silicate daughter phase. The studied melt inclusions are dominated by carbonate, whereas 
silicates are subordinate. The presence of this fully crystallized carbonate–silicate melt as calcite, diopside, phlogo-
pite, magnetite, apatite, and andradite suggests the presence of “nano-calciocarbonatites” in these ijolites. Our study 
provides insights into different mechanisms of the loss of alkalies from initially entrapped alkaline carbonate melt in 
clinopyroxenes. The predominant occurrence of calcite as the only carbonate phase in the studied melt inclusions is a 
result of silicate–carbonate melt immiscibility, calcite-normative system in these inclusions, dealkalization of the alka-
line carbonates in the presence of external fluid, and/or redistribution of the alkalies to the daughter alkali-bearing 
silicates.
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1  Introduction
Ijolites are common alkaline rocks composed predomi-
nantly of nepheline (30–70 modal %) and clinopyroxene 
(~ 40 modal %), mainly diopside and aegirine-augite. 

They typically occur as intrusions associated with the 
ultramafic and carbonatite rocks in various ultramafic-
alkaline-carbonatite complexes (UACC) (Gomes et  al. 
2011; Savard and Mitchell 2021). Their global occur-
rence in several igneous complexes and modes of forma-
tion are explained through various magmatic processes. 
Generally, ijolites are derived either from alkaline magma 
formed by partial melting of mantle source (Shastry 
and Kumar 1996), nephelinitic melts derived from the 
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enriched mantle (EM1 and EM2)/metasomatized lith-
ospheric mantle source (Beccaluva et  al. 2017; Chmyz 
et  al. 2017; Zhou et  al. 2018), or magmas derived from 
mixing of the mantle and crustal fluids (Nadeau et  al. 
2016). Numerous studies have been conducted to explain 
the petrogenetic link between alkaline silicate rocks (i.e., 
ijolites) and carbonatites that originate from the mantle 
(e.g., Bell et  al. 1998; Winter 2001; Halama et  al. 2005; 
Yaxley et  al. 2022). Some authors suggested that the 
association between these carbonatite and silicate rocks 
could be attributed to  fractional crystallization from 
a CO2-rich parent silicate melt (Watkinson and Wyl-
lie 1971; Lee and Wyllie 1994; Korobeinikov et al. 1998; 
Nielsen and Veksler 2002; Ulmer and Sweeney 2002; 
Yaxley et  al. 2021). Others favor immiscible separation 
from a carbonate-bearing silicate melt (Verwoerd 1978; 
Freestone and Hamilton 1980; Kjarsgaard and Hamilton 
1988; Veksler et  al. 1998; Halama et  al. 2005; Andreeva 
et al. 2007; Brooker and Kjarsgaard 2011; Guzmics et al. 
2012; Sekisova et  al. 2015; Stoppa et  al. 2019; Chayka 
et  al. 2021; Yaxley et  al. 2022). Based on different prox-
ies, the silicate–carbonate immiscibility process has been 
proposed for various global occurrences, e.g., the Gar-
diner complex, Greenland (Nielsen 1980; Veksler et  al. 
1998), the Maoniuping complex, China (Xu et al. 2004), 
Grønnedal-Ìka, Greenland (Taubald et  al. 2004; Halama 
et al. 2005) and Kerimasi, Tanzania (Guzmics et al. 2011).

A complete petrogenetic history of igneous rocks also 
involves the physical history of crystallization, which is 
recorded by the textures of igneous rocks and explained 
through crystal size distribution (CSD) analysis. Quan-
titative textural measurements such as CSD allow direct 
assessment of the crystallization history of the minerals 
constituting the igneous rocks. Processes related to crys-
tallizing magmas, such as magma rheology, fractionation, 
mixing, and cooling, can be very well explained by the 
CSD analysis (Jaeger 1968; Marsh 1988; Cashman and 
Marsh 1988; Armienti et  al. 1994; Higgins 2000; Klein 
et  al. 2018). CSD gives deep insights into the crystalli-
zation processes through the observed textural changes 
governed by the magma chamber’s mechanical processes 
(Higgins 2011). The slope of the CSD curve helps to 
understand  different processes during the crystallization 
of magma batches (Marsh 1988). A quantitative measure 
of the gain or loss of the crystals over a particular size 
range can also be explained through these CSD curves, 
which may be useful in evaluating the importance of 
physical processes such as crystal accumulation and frac-
tionation in a petrologic system (Cashman and Marsh 
1988; Marsh 1988).

The physical and chemical evolution of the crystallizing 
minerals during magmatic processes can also be under-
stood with the help of mineral chemical studies combined 

with quantitative measurements such as CSD. Therefore, 
the chemical composition of minerals and trapped melt 
inclusions are also equally important in order to con-
struct a thorough petrogenetic record of igneous rocks. 
Melt inclusions in the crystals are the pockets of parental 
melt trapped during the crystal growth (Faure and Tis-
sandier 2014). These inclusions not only represent the 
characteristics of the magma from which their host crys-
tals grew (Anderson 1979; Roedder 1979; Sobolev 1996; 
Frezzotti 2001; Danyushevsky et al. 2002; Guzmics et al. 
2008, 2011; Mitchell 2009) but also record evolving melt 
compositions and physicochemical conditions prevail-
ing during crystallization (Roedder 1972). Carbonate–
silicate melt inclusions serve as a powerful tool to assess 
the paragenetic relationship among silicate and carbon-
ate rocks of alkaline–carbonatite complexes (Andreeva 
et  al. 2007). These carbonate melts also work as effec-
tive agents for the transportation of rare earth and alka-
line earth elements (Guzmics et al. 2009; Mitchell 2009). 
The alkali-rich composition of carbonate–silicate melt 
inclusions in alkaline-carbonatite rocks places them very 
close to the representation of the actual parental magma 
composition that these rocks crystallize from (Nielsen 
et  al.1997; Sokolov et  al. 1999; Yaxley et  al. 2022). The 
investigation of these melt inclusions of alkaline rocks 
(ijolites) becomes even more crucial while assessing the 
petrogenetic relationship among alkaline-carbonatite 
rocks, such as liquid immiscibility during crystallization 
of their parental magmas (Guzmics et  al. 2012; Chayka 
et al. 2021; Berkesi et al. 2020).

In the northeastern part of India, ijolites are exposed in 
the Sung Valley UACC, along with ultramafic rocks and 
carbonatites. Previous geochemical and stable and radio-
genic isotopic studies suggest that these different suites 
of rocks from Sung Valley UACC are not co-genetic (Ray 
and Pande 2001; Srivastava and Sinha 2004; Srivastava 
et  al. 2005). In the present work, we integrated crystal 
size distribution, mineral chemistry, and melt inclusions 
studies to explain a complete sequence of formation of 
Sung Valley ijolites from their petrogenetic conditions to 
crystallization history along with the nature of parental 
magma and history of melts involved. Our results suggest 
that these ijolites crystallized in multiple stages and had 
some petrogenetic relation with associated carbonatites. 
The composition of the trapped melt inclusions in these 
rocks must have changed significantly during syn- to 
late-magmatic processes.

2 � Geological background
The oval-shaped ultramafic-alkaline-carbonatite complex 
(UACC) of Sung Valley is hosted by the Shillong Plateau 
of Meghalaya in northeastern India (Fig. 1a, b). The Sung 
Valley UACC is related to the Kerguelen plume (Veena 
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et  al. 1998; Ray et  al. 1999, 2000; Srivastava and Sinha 
2004; Srivastava et al. 2005; Srivastava 2020). This UACC 
intrudes the Archean gneiss, schist, and the Proterozoic 
Shillong Group rocks in the Shillong Plateau (Ray and 
Pande 2001). The Sung Valley UACC and several other 
alkaline intrusive bodies are hosted by the N–S trend-
ing Um Ngot lineament, which is genetically related to 
the Ninety-East Ridge in the Indian Ocean (Gupta and 
Sen 1988). The Sung Valley UACC crystallized within the 
age range of 101–115  Ma (Ray and Pande 2001; Srivas-
tava and Sinha 2004; Srivastava et  al. 2005, 2019). This 
UACC is composed of ultramafic, alkaline, and carbon-
atite rocks. Ijolites occur as a ring dyke in the Sung Val-
ley UACC, whereas the melilitolite, nepheline syenite, 
and carbonatites that  occur as oval-shaped bodies and 
small dykes within the pyroxenite and peridotite/serpen-
tinized peridotites (Fig. 1b). Sung Valley pyroxenites are 
dominantly clinopyroxene rich and show the presence 
of chalcopyrite of low-temperature origin as the main 
sulfide mineral (Choudhary et al. 2022). Carbonatites are 
exposed mostly in the southern part of the Sung Valley 
UACC (Srivastava and Sinha 2004). Sung Valley ijolites, 
the third most abundant rock type after pyroxenites and 
peridotites, are mostly coarse-grained with wide textural 
variation from porphyritic to poikilitic. The emplacement 
date of these Sung Valley ijolites is 115.1 Ma (Srivastava 
et  al. 2005), whereas in  situ U–Pb SIMS of perovskite 
from these ijolites yielded an age of 104.0 ± 1.3 Ma (Sriv-
astava et al. 2019). These ijolites occur as a ring dike and 
the petrological and geochemical studies carried out in 
the past suggest that these rocks, along with the associ-
ated ultramafic (peridotite and pyroxenite) and carbon-
atite rocks, are formed from the batches of primitive 
magma with a distinct magmatic affinity such as olivine 
melilitites, basanites, and carbonatites, and these batches 
of magma evolved independently (Melluso et  al. 2010). 
These primitive magmas were derived at a pressure 
greater than 2.5 GPa from a metasomatically enriched 
carbonated peridotite (Srivastava and Sinha 2004). The 
whole-rock geochemical characteristics shown by these 
ijolites are significantly different from nepheline syenite, 
suggesting that the nepheline syenites are not formed 
through the fractionation of ijolites (Srivastava and Sinha 
2004).

3 � Methods
3.1 � Crystal size distribution
Crystal size distribution (CSD) measurements were per-
formed on clinopyroxene (aegirine-augite and diopside) 
grains in Sung Valley ijolites. Four representative samples 
were chosen for the analysis and multiple thin sections 
of each sample were prepared to obtain a grain count 

of 300–400 statistically. A high-resolution petrographic 
microscope was used to take the photomicrographs of 
each rock-thin section. Crystal margins were outlined 
using the vector drafting tool of CorelDraw. Software 
Image-J was used to analyze the mineral outlines and 
related parameters of the clinopyroxene crystals, such as 
area, perimeter, and length. Finally, the CSD of the clino-
pyroxene crystals was calculated with the program CSD-
Corrections 1.6 (Higgins 2000).

3.2 � Electron probe micro‑analyses (EPMA)
Polished rock thin sections of 0.03 mm thickness were pre-
pared for petrographic and electron microprobe analyses. 
For mineral chemistry, four representative samples were 
analyzed using a CAMECA SXFive Electron Probe Micro 
Analyzer instrument at SERB-IRHPA National Facility, 
Department of Geology, Banaras Hindu University, India. 
For quantitative mineral chemistry analyses, wavelength-
dispersive spectrometry and a LaB6 source were used. 
During the analysis, the instrument was operated at an 
acceleration voltage of 15 kV and focused beam current of 
10 nA having a diameter of 1 µm. The following crystals, 
such as TAP (thallium acid phthalate), LPET (large pentae-
rythritol), and LLIF (large lithium fluoride) were used for 
the measurements. The natural mineral standards such as 
diopside, forsterite, almandine, albite, and orthoclase sup-
plied by CAMECA-AMETEK were used for calibration 
and quantification. A precision better than 1% for major 
element oxides from the repeated analyses of standards 
was achieved during the analysis. The representative min-
eral chemical data are given in Tables 2 and 3.

3.3 � Raman spectroscopy
The compositions of melt and minute crystals in the 
untreated inclusions from four representative sam-
ples were obtained by laser-excited Raman spectrom-
etry using Horiba Jobin Yvan Lab Ram HR Laser Raman 
Micro Probe in Raman and Fluid inclusion lab at Wadia 
Institute of Himalayan Geology (WIHG), Dehradun. All 
the Raman spectra were generated using 100X objec-
tives and with the 514  nm laser of Argon ion (Ar+) 
source with a dispersion of a fixed holographic grating 
1800 lines/mm. The laser spot size at the time of analy-
sis was ~ 2  µm. To obtain a better signal-to-noise ratio, 
repeated spectra were recorded in the 100–4000  cm−1 
region. Standard silicon was used for the calibration of 
the instrument. Raman shift at 520.59  cm−1 during the 
calibration with standard silicon was achieved. Other 
parameters during the analyses were taken as follows:  
acquisition time ~ 5–15  s, accumulations ~ 2, and laser 
power ~ 10 mW.
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Fig. 1  Geological maps. a Shillong plateau. b Sung Valley, Meghalaya, NE India; highlighted with a square in (a). a, b Modified after Srivastava and 
Sinha (2004)
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3.4 � SEM–EDX
Back-scattered electron (BSE) imaging and energy-dis-
persive X-ray (EDX) qualitative analyses on exposed melt 
inclusions were acquired using Carl Zeiss SMT EVO 40 
Series-Scanning Electron Microscope (SEM) with EDX, 
equipped with LaB6 cathode, at Wadia Institute of Hima-
layan Geology, Dehradun. BSE images were acquired 
using 20  kV accelerating voltage and beam current of 
3–6 nA at different magnifications. The concentration 
of oxides (wt %) of the elements was analyzed by EDS 
attachment using the QUANTAS software.

4 � Results
4.1 � Petrography
A total of ten samples were analyzed in this study. All the 
fresh ijolite samples were collected from different loca-
tions in the Sung Valley UACC (Fig. 1b). Collected ijol-
ite samples are dominantly composed of nepheline and 
clinopyroxene, mainly aegirine-augite (Aeg-Aug) and 
diopside (Fig.  2a). These ijolites are medium to coarse-
grained and predominantly show hypidiomorphic tex-
tures (Fig. 2a, b, d). The poikilitic texture is also present in 
sample IJ-9/4, where clinopyroxene crystals are enclosed 
in large optically continuous nepheline crystals (Fig. 2c). 
The accessory mineral phases include apatite and titanite 
(Fig. 2b, c, d). Minor opaque minerals include magnetite, 
pyrite, pyrrhotite, and chalcopyrite (Fig.  2d). The repre-
sentative mineral chemistry data for the various phases in 
these ijolites are given in Tables 2 and 3, and the results 
are detailed in the following subsection.

4.2 � Crystal size distribution
Four representative samples (IJ-9/2, IJ-11/2, IJ-9/4, and 
IJ-11/1) were chosen for CSD analysis. The CSD results 
related to the clinopyroxene (aegirine-augite and diop-
side) crystals, such as area, perimeter, and length, 
were imported into the CSDCorrections 1.6 software 
(Higgins 2000) to make the stereological corrections 
(Fig.  3). All the calculations were performed assum-
ing a massive fabric with 0.8 roundness on the block-
ellipsoid scale. Clinopyroxene crystals contacting the 
edge of the sample area were not taken into considera-
tion during analysis, as these crystals cannot be repre-
sentative of complete crystals. The resultant 3D crystal 
size distributions are given in Table 1. A total of ~ 1475 
clinopyroxene grains were analyzed from the repre-
sentative samples, and crystal size ranged from microns 
to millimeter scale (Table 1). The crystal size of clino-
pyroxene grains ranges from 0.08 to 5.65, 0.12 to 7.5, 
0.03 to 1.16, and 0.13 to 9.3 mm in the samples IJ-9/2, 
IJ-11/2, IJ-9/4, and IJ-11/1, respectively (Table  1). The 
CSD plots between the natural logarithm of crystal 
population density Ln(n) vs. crystal length (mm) in 

samples no. IJ-9/2, and IJ-11/1 show a concave upward 
trend starting with a slight convex upward kink (Fig. 4a, 
d). Sample no. IJ-11/2 exhibits concave upward CSD 
(Fig. 4b). The CSD of clinopyroxene in a sample IJ-9/2 
shows an inflection point at ~ 2  mm, whereas sample 
IJ-11/2 shows inflection points at 2 and 7 mm (Fig. 4a, 
b). Sample no. IJ-9/4, which exhibits poikilitic texture, 
shows the most distinct CSD profiles with marked dif-
ferences in the slope nearly a straight line (Fig. 4c). The 
studied ijolites do not show any signatures of defor-
mation such as annealing, dislocation, or diffusion of 
clinopyroxenes (Fig. 2).

4.3 � Mineral composition
The EPMA was carried out on clinopyroxene and 
titanite of representative ijolite samples. The chemi-
cal analysis of clinopyroxene is given in Table  2. 
Analyzed clinopyroxene grains include both diop-
side and aegirine-augite (Fig.  3a). The average end-
member composition of these clinopyroxene grains is 
(Di53-84Hd10-32Ae4-16) (Table  2). Clinopyroxene com-
position ranges as: MgO from 8.26 to 12.58 wt.%, CaO 
from 20.68 to 24.28 wt.%, FeOt (as total iron) from 
6.78 to 14.37 wt.%, Na2O from 0.47 to 1.88 wt.%, and 
SiO2 from 48.46 to 51.32 wt.%. The Mg# of clinopy-
roxene varies from 62.5 to 89.77 (Table 2). In terms of 
International Mineralogical Association (IMA) recom-
mended Q-J parameters (Morimoto et al. 1988), which 
are based on six oxygens, the analyzed clinopyroxene 
spots (Table 2) largely belong to jadeite-free quadrilat-
eral pyroxene (Fig.  3b). The Q-J plot shows that these 
clinopyroxenes are crystallized at low-pressure condi-
tions possibly at crustal depth. Mg# in clinopyroxene 
shows a positive correlation with Ti content (Fig.  3c). 
The clinopyroxene in studied ijolites show enrich-
ment in diopside and to some extent, hedenbergite but 
are low in aegirine content, which shows that these 
are unevolved compared to the clinopyroxene in ijol-
ites from Kerimasi and Fen complex (Fig. 3a) (Church 
1996; Mitchell 1980; Káldos et al. 2015). These charac-
teristics, such as almost jadeite-free composition and 
low aegirine content of clinopyroxene from studied 
ijolites, suggest that these are early crystalizing phases 
(Fig.  3a, c) (Káldos et  al. 2015). The composition of 
titanite such as CaO varies from 26.88 to 27.89, TiO2 
from 36.15 to 38.14, FeOt from 1.04 to 1.60, and SiO2 
from 29.51 to 30.15 wt.% (Table 3). A minor amount of 
trace elements oxides was also observed, such as La2O3 
ranging from 0.02 to 0.17 and Nb2O5 from 0.44 to 1.07 
wt.% (Table 3). Fe/Al ratios (> 0.5) in the studied titan-
ite (Table 3) point toward their derivation from silica-
undersaturated magma forming plutonic rocks such as 
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Sung Valley ijolites in the present case (Kowallis et  al. 
2022).

4.4 � Melt inclusions and mineral inclusions petrography
A diverse population of ~ 90 melt inclusions, hosted by 
clinopyroxene (diopside and aegirine-augite) and titan-
ite, was observed in the same four samples, which were 
used for CSD analysis of Sung Valley ijolites. These 
melt inclusions were recognized from transmitted light 
microscopy during melt inclusion petrography (Fig.  5). 
Most of the melt inclusions are elongated oval in shape 
ranging between 2 and 15 µm in size (Fig. 5c, e, f ). Some 
are irregular and rounded to subrounded ranging from 3 
to 6 µm in size (Fig. 5g, h). One sample IJ-9/2, also hosts 
some monophase mineral inclusions along with the melt 
inclusions in clinopyroxene (Fig.  5d). Melt and mineral 
inclusions hosted by titanite, were also observed in one 
sample IJ-9/4 (Fig.  5a, b). Mineral inclusions in titanite 
are granular in appearance and of rhombus shape ranging 
from 2 to 8 µm in size (Fig. 5a). These inclusions occur in 
a secondary trail, which terminates right at the boundary 
of titanite crystal (Roedder 1979). Melt inclusions hosted 
by titanite in the same sample IJ-9/4 are irregular to sub-
rounded with 2–5 µm in size (Fig. 5b). Melt inclusions in 

clinopyroxene and titanite typically show some distorted/
deformed shrinkage bubbles probably compressed to 
the wall in the inclusions. This also is a typical behavior 
of carbonatite-type melt inclusions (Golovin et al. 2020). 
However, most of the clinopyroxene-hosted melt inclu-
sions contain cavities instead of shrinkage bubbles. The 
absence of any decrepitation haloes in the melt inclusions 
suggests that the original compositions of trapped phases 
are intact and not altered due to any change in ambient 
pressure conditions after entrapment (Fig. 5). Melt inclu-
sions observed in clinopyroxenes are present in the cores 
of these grains, which suggests that they are essentially 
primary. However, many of them could also be secondary 
in nature as they distinctly form linear and planar align-
ments within the crystals (Fig.  5). Despite being hosted 
by the cores of the crystals, these inclusions might have 
been entrapped at the intermediate stage of the miner-
als’ growth. BSE images of melt inclusions do not show 
any bubbles (Fig.  6). However, the empty cavities could 
possibly be representing the places of the former fluid 
phase, which probably existed earlier in these melt inclu-
sions and escaped during exposure. High-resolution BSE 
images of the melt inclusions show the presence of sub-
hedral to euhedral daughter crystals that are 2 to 10 µm 
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Fig. 2  Petrographical photomicrographs of representative samples from Sung Valley ijolites in cross-polarized light. a Subhedral diopside, 
aegirine-augite, and nepheline forming the hypidiomorphic texture. b Subhedral to anhedral aegirine-augite showing simple twining along with 
the apatite and nepheline. c Aegirine-augite enclosed by nepheline with subhedral to anhedral titanite crystals forming the poikilitic texture. d 
Subhedral aegirine-augite, titanite, nepheline, and magnetite showing hypidiomorphic texture. Aeg-Aug Aegirine-augite; Di Diopside; Ne Nepheline; 
Ap Apatite; Ttn Titanite; Mag Magnetite
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in size in these melt inclusions (Fig.  6). A significant 
space of the melt inclusions is occupied by these daughter 
crystals (Fig. 6). A very limited variation in volume pro-
portion displayed by the crystals in these melt inclusions 

testifies that these are daughter minerals and not acci-
dentally trapped minerals (Fig. 6) (Anderson et al. 2003).

4.5 � Raman spectroscopy of the mineral and melt 
inclusions

Raman Spectroscopy was used to investigate the phase 
composition of the trapped melt inclusions in clino-
pyroxene and titanite. Mineral inclusions hosted by 
titanite in sample IJ-9/4 were identified as calcite, 
where the Raman spectrum shows characteristic sym-
metric stretching vibration v1 with a very strong band 
at 1086.8  cm−1 (Frezzotti et  al. 2012) (Fig.  5a). Melt 
inclusions in titanite in sample IJ-9/4 show that they 
have calcite accompanied by graphite in the shrink-
age bubble, where calcite shows its characteristic sym-
metric stretching vibration v1 with a very strong band 

Table 1  Crystal size distribution (CSD) of Cpx of ijolites in the 
Sung Valley UACC​

Mineral Sample Area 
(mm2)

Total 
grains

Length size (mm) for 
area measured

(Minimum) (Maximum)

Cpx IJ-9/2 1007.13 437 0.0843 5.653

Cpx IJ-11/2 1003.25 300 0.12 7.5

Cpx IJ-9/4 1930.46 368 0.0346 1.1675

Cpx IJ-11/1 1683.88 370 0.1309 9.3993
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at 1085.4 cm−1 and very weak (vw) band at 854.5 cm−1 
(Frezzotti et  al. 2012) and disordered graphite shows 
its characteristic D and G Raman bands at 1351 and 
1578.5  cm−1, respectively (Das et  al. 2017) (Fig.  5b). 
Special care was taken during the recording of Raman 
spectra of graphite to make sure that the D and G bands 
do not appear due to burning of the sample wafer by 
laser. So all the spectra of graphite were recorded using 
lesser laser power. Furthermore, to avoid any contami-
nation due to carbon coated on the samples during 
EPMA, separate wafers of the samples were used dur-
ing Raman spectroscopy. Asterisks in Raman spectra 
are assigned to the host peaks of titanite (Fig.  5a, b). 
The carbonate component in the melt inclusions hosted 
by clinopyroxene in this sample (IJ-9/4) was also identi-
fied as calcite, which again shows a very sharp peak at 
1086.5 cm−1 showing symmetric stretching vibration v1 
with a very strong band, strong (s) band at 157  cm−1, 
and medium weak (mw) band at 713  cm−1 (Fig.  5c) 
(Frezzotti et  al. 2012). The presence of apatite in the 
studied melt inclusions was also confirmed where the 
Raman spectrum shows a very strong band at 964 cm−1 
(Fig. 5c). Mineral inclusions hosted by clinopyroxene in 

sample IJ-9/2 were identified as rutile showing its very 
strong (vs) bands at 443 cm−1 and 609.5 cm−1 (Frezzotti 
et al. 2012) (Fig. 5d). The carbonate component in melt 
inclusions in this sample (IJ-9/2) and two other samples 
IJ-11/1 and IJ-11/2 also showed symmetric stretching 
vibration v1 at, 1085.7, 1086 and 1085.4  cm−1, respec-
tively, which were identified as calcite (Frezzotti et  al. 
2012) (Fig. 5e-g). Melt inclusions hosted by clinopyrox-
ene in sample IJ-11/2 were identified as containing aph-
thitalite (K-Na sulfate), showing its very strong band at 
985.6  cm−1, medium band at 448  cm−1 along with the 
CO2 showing two bands of Fermi doublet at 1278.4 
and 1384  cm−1 (Frezzotti et  al. 2012) (Fig.  5h). Host 
clinopyroxene in all the samples shows strong Raman 
bands at ~ 1010 and 667  cm−1 (Thompson et al. 2005). 
It is worth noting that during the Raman spectroscopy 
of these melt inclusions, the spectra of glass were not 
detected. However, in the present case, it is reasonable 
because the carbonatitic melts cannot be quenched to a 
glass (owing to very low viscosity) and inevitably crys-
tallize (Moine et al. 2004; Giuliani et al. 2012; Kamen-
etsky et  al. 2014; Chayka et  al. 2021). All the Raman 

Table 2  Quantitative mineral chemistry data

The table shows the composition of Cpx (Diopside and Aegirine-Augite) based on EPMA point analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spot analysis

SiO2 51.32 50.98 50.67 51.07 50.82 51.16 50.3 49.85 48.46 48.29 49.84 50.33 48.61 49.71 47.29

TiO2 0.79 1.11 1.01 0.91 0.85 0.8 0.61 1.2 1.59 1.73 0.65 0.62 1.09 0.83 1.92

Al2O3 1.87 2.24 2.15 1.96 2.24 1.42 1.8 3.08 4.03 4.56 1.77 1.72 2.63 2.24 4.88

FeO 9.17 9.27 9.65 9.87 9.37 9.45 13.9 7.96 7.74 6.78 14.26 12.48 14.37 12.64 6.92

MnO 0.17 0.22 0.16 0.22 0.33 0.39 0.68 0.15 0.13 0.19 0.48 0.58 0.68 0.42 0.15

MgO 12.52 11.77 11.74 11.78 11.34 12.54 8.78 12.58 11.99 12.42 8.64 9.7 8.26 9.11 11.85

CaO 22.82 23.07 22.89 22.67 22.58 23.05 21.09 23.76 23.99 24.28 20.68 21.71 20.86 21.31 24.13

Na2O 1.07 1.28 1.19 1.2 1.26 0.47 1.84 0.85 0.83 0.7 1.82 1.64 1.88 1.81 0.74

K2O 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.02 0.03 0.03 0.04 0.02 0.00 0.00 0.02

Total 99.73 99.95 99.46 99.68 98.79 99.30 99.02 99.45 98.79 98.98 98.18 98.80 98.38 98.07 98.00

On the basis of 6O

Si 1.916 1.903 1.903 1.915 1.922 1.931 1.928 1.863 1.825 1.810 1.929 1.923 1.880 1.915 1.795

Ti 0.022 0.031 0.029 0.026 0.024 0.023 0.018 0.034 0.045 0.049 0.019 0.018 0.032 0.024 0.055

Al 0.082 0.099 0.095 0.087 0.100 0.063 0.081 0.136 0.179 0.201 0.081 0.077 0.120 0.102 0.218

Fe3 0.118 0.126 0.128 0.120 0.100 0.066 0.165 0.134 0.143 0.133 0.163 0.163 0.198 0.155 0.137

Fe2 0.168 0.163 0.175 0.190 0.196 0.233 0.280 0.115 0.101 0.079 0.299 0.236 0.267 0.252 0.082

Mn 0.005 0.007 0.005 0.007 0.011 0.012 0.022 0.005 0.004 0.006 0.016 0.019 0.022 0.014 0.005

Mg 0.697 0.655 0.657 0.658 0.639 0.705 0.502 0.701 0.673 0.694 0.498 0.553 0.476 0.523 0.671

Ca 0.913 0.923 0.921 0.911 0.915 0.932 0.866 0.951 0.968 0.975 0.857 0.889 0.864 0.880 0.981

Na 0.077 0.093 0.087 0.087 0.092 0.034 0.137 0.062 0.061 0.051 0.137 0.122 0.141 0.135 0.054

K 0 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.000 0.000 0.001

Sum 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Mg# 80.57 80.04 78.99 77.61 76.49 75.19 66.16 85.94 86.99 89.77 62.50 70.08 64.08 67.47 89.07
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spectra of inclusions were acquired repeatedly, and rep-
resentative spectra are presented in Fig. 5.

4.6 � SEM–EDX of the melt inclusions
SEM–EDX analysis was carried out to determine the 
chemical composition of daughter phases associated with 
carbonate components in the exposed melt inclusions 
hosted by clinopyroxene (diopside and aegirine-augite). 
Points for EDX analysis were selected with the help of 
BSE images (Fig.  6). Representative oxides data for the 
daughter phases in studied melt inclusions are given in 
the Additional file 1: Table S1, and the results are detailed 
below. The daughter crystals in these carbonate–silicate 
melt inclusions were identified as phlogopite, andradite 
garnet, diopside, and magnetite, similar to the phases 
observed in melt inclusions in ijolites by Andreeva et al. 
(2007) and Sekisova et  al. (2015) (Fig.  6). The chemi-
cal composition (oxides wt %) of the most widespread 
daughter crystals in the studied melt inclusions varies 
as follows: Andradite shows SiO2, 38.49 to 40.69; TiO2, 
1.50 to 4.92; Al2O3, 1.02 to 4.93; Fe2O3, 17.70 to 23.39; 
MgO, 0.21 to 1.98; CaO, 26.08 to 30.89; Na2O, 0.19 to 
1.91; K2O, 0.21 to 2.85; with a minor amount of F ~ 0.04 
and Cl from 0.28 to 1.80. Phlogopite shows SiO2, 38.12 
to 38.34; TiO2, ~ 2.00; Al2O3, 10.48 to 18.64; Fe2O3, 5.92 
to 8.49; MgO, 20.44 to 22.21; CaO, 1.77 to 3.63; Na2O, 
2.20 to 3.34; K2O, 7.77 to 8.26; with a minor amount of 

Cr2O3 ~ 0.57; F ~ 0.01; Cl from 0.12 to 0.33; P2O5 ~ 0.31 
and SO3 from 0.32 to 3.8. It is noteworthy that phlogo-
pite usually does not contain a substantial amount of cal-
cium, and this estimation of CaO could likely be a result 
of a signal originating from the neighboring phases, such 
as host clinopyroxene or calcite in the melt inclusions 
(Fig. 6). Diopside shows SiO2, 47.87 to 50.02; TiO2, ~ 1.70; 
Al2O3, 0.79 to 1.97; Fe2O3, 3.01 to 3.91; MgO, 11.20 to 
14.87; CaO, 20.37 to 22.38; Na2O, 5.78 to 7.38; K2O, 2.43 
to 3.66; with a minor amount of Cr2O3 ~ 1.46; F, 0.03 to 
0.07; Cl from 0.35 to 0.89; P2O5, 0.75 to 0.80 and SO3 
from 0.46 to 0.45. Similarly, diopside also may not con-
tain ~ 5 to 7% Na2O like omphacite, which is certainly 
not possible to occur in these ijolites. Neither can it have 
2 to 3% K2O, which is only likely in ultra-high-pressure 
clinopyroxene. We infer that these signals may also be 
coming from the phlogopite in these melt inclusions due 
to contamination from the neighboring phase (Fig.  6). 
Magnetite shows TiO2, 4.51; Al2O3, 0.20; Fe2O3, 87.11; 
MnO, 2.29; MgO, 1.29 and Cr2O3, 4.54 (Additional file 1: 
Table  S1). Additionally, one carbonated silicate phase 
was also analyzed with the unusual chemical composi-
tion varying as: SiO2, 16.91; Al2O3, 6.38; Fe2O3, 21.82; 
MgO, 9.05; CaO, 29.14; Na2O, 4.55; and K2O, 6.12; with 
a minor amount of F, 0.02; Cl, 1.95; P2O5, 0.98; and SO3, 
3.06 (Additional file: Table  S1). Raman spectroscopy 
and SEM-EDX studies indicate that the studied melt 

Table 3  Quantitative mineral chemistry data

The table shows the composition of titanite based on EPMA point analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spot analysis

SiO2 29.73 29.60 29.80 30.15 29.96 30.06 30.11 29.89 29.51 30.02 29.94 29.58 29.92 30.08 29.77

TiO2 38.14 37.72 36.92 36.71 37.11 36.87 37.29 36.70 37.11 37.13 36.46 37.26 36.15 37.19 37.20

Al2O3 0.50 0.53 0.78 0.72 0.51 0.55 0.54 0.71 0.50 0.57 1.07 0.67 0.66 0.59 0.70

FeO 1.22 1.36 1.44 1.51 1.25 1.04 1.18 1.33 1.20 1.11 1.45 1.13 1.60 1.20 1.38

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CaO 26.88 27.55 27.83 27.46 27.76 27.89 27.25 27.63 27.52 27.14 26.93 27.23 27.31 27.85 27.50

La2O3 0.02 0.07 0.00 0.06 0.17 0.16 0.11 0.23 0.14 0.04 0.06 0.09 0.14 0.00 0.05

Nb2O5 0.76 0.73 0.56 0.62 0.56 0.74 0.98 1.07 0.94 0.63 0.64 0.67 0.44 0.54 0.66

Total 97.25 97.56 97.32 97.22 97.31 97.32 97.47 97.56 97.00 96.60 96.50 96.63 96.22 97.45 97.25

On the basis of 5O

Si 1 1 1 1 1.01 1.02 1.02 1.01 1 1.02 1.02 1 1.02 1.01 1.01

Ti 0.97 0.96 0.94 0.93 0.94 0.94 0.95 0.93 0.95 0.95 0.93 0.95 0.93 0.94 0.94

Al 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02

Fe2 0.03 0.03 0.04 0.04 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.03

Mn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ca 0.97 1 1.01 0.99 1 1.01 0.98 1 1 0.98 0.98 0.99 1 1 0.99

Sum 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
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inclusions are dominated by carbonates, whereas silicates 
are subordinate (Fig. 5, 6). This further confirms that the 
parental melt for the inclusions was carbonatitic with 
silicate component (Golovin et al. 2018, 2020). Also, the 
fact that these inclusions are consistently made up of a 
variety of crystals of different phases is the key evidence 
that they are not just mineral inclusions, which are most 
commonly monophase, but rather represent aliquots of 
trapped liquid that crystallized within these melt inclu-
sions (Fig.  5, 6). The quantitative EDX data of the ana-
lyzed phases are not significantly contaminated by the 

host as there are almost no alkalies in the host as shown 
by mineral chemistry data (Table 2), whereas we have a 
significant amount of alkalies in the daughter phases 
(Additional file 1: Table S1). Therefore, the studied inclu-
sions are carbonate–silicate (carbonatite-like) melt inclu-
sions (Figs.  5, 6). Based upon the Raman spectroscopy 
and SEM–EDX data and by virtue of the occurrence of 
typical liquidus phases of calcio-carbonatitic liquids, i.e., 
calcite, apatite, diopside, phlogopite, garnet, and magnet-
ite as a fully crystallized melt, these melt inclusions can 
also be termed as “nano-calciocarbonatites” (Figs. 5, 6).
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5 � Discussion
5.1 � Crystallization history of Sung Valley ijolites
A complete absence of annealing, dislocation, and diffu-
sion in these clinopyroxenes rules out any possibility of 
post-magmatic recrystallization (Fig.  2). Therefore, the 
textural parameters observed during CSD analysis are 
unaffected by any sub-solidus processes and they rep-
resent the primary magmatic character (Fig.  4). All the 
CSDs of the analyzed samples show curved concaved 
upward distribution (Fig.  4). Hence, a single population 
model of crystals cannot be applied. There can be various 
inferences based upon curved CSDs that can result from 
the crystallization in igneous systems. We will discuss all 
possible interpretations in the context of our CSD dataset 
(Fig. 4; Table 1) for the Sung Valley ijolites.

The first explanation for the curved CSD can be the 
crystal fractionation process (Marsh 1998). However, 
this possibility can be negated because curved CSDs 
that result due to the crystal fractionation process show 
nearly the same intercepts in CSD plots (Higgins 1996). 
On the contrary, in the present case, all the CSD plots 
show different intercepts (Fig.  4). The second explana-
tion can be the change in growth rate as a function of 
crystal size, where growth rate increases with the size 
of crystals (Marsh 1988; Eberl et  al. 2002). This argu-
ment can also be negated because a curved but concave 
downward CSD pattern can result through this process, 
as explained by Inanli and Huff (2009), unlike concave 
upward CSD in the present study (Fig.  4). Additionally, 
the cases of such variable crystal growth rates with size 
have not been described yet in the geological environ-
ments (Higgins 1996). The third possible explanation 
for producing curved CSDs can be the magma-mixing 
hypothesis (Higgins 1996), where melts of different com-
positions interact physically and chemically, which leads 
to the disequilibrium condition giving rise to partial 
resorption e.g., corona texture in clinopyroxene. A com-
plete absence of any such texture (Fig. 2) in the present 
study further negates this possibility. The fourth possible 
explanation that can produce the concave upward CSDs 
is fines destruction (Marsh 1988). In this process, larger 
crystals are more likely to remain at depth, whereas the 
small crystals rise at shallower levels in the magma cham-
ber and are resorbed (Higgins 2002). During the fines 
destruction process, nutrients of the resorbed smaller 
crystals are fed to the larger crystals (Higgins 1996, 2011). 
The abundance of large crystals of clinopyroxene com-
pared to smaller ones also suggests that crystal growth 
rate dominated over the nucleation along with the simul-
taneous dissolution of smaller clinopyroxene crystals 
(Fig. 4). Such coarsening in the CSD data, which is also 
substantiated with petrography (Fig. 2), may have a bear-
ing on the high-temperature magmatic storage. Fifth and 

the last possible explanation to give rise to the curved 
CSDs with kinks is the abrupt changes in the crystalliza-
tion environment e.g., cooling rate (Marsh 1988; Arm-
ienti et  al. 1994), which can also control the nucleation 
rate (Kamacı and Altunkaynak 2019). This inference is 
further supported by the similar composition of both the 
smaller and larger clinopyroxene crystals of Sung Valley 
ijolites (Table 2), which can be related to the modification 
of the crystallization environment without any significant 
changes in the composition of these crystals in the pre-
sent case (Higgins 2011). The last two possible explana-
tions seem to best fit in the context of observed curved 
concave upward CSDs in Sung Valley ijolites (Fig.  4). 
Furthermore, changes in the crystallization environment 
(cooling rate, nucleation, and growth rate) can incor-
porate mixed crystals of different generations, which in 
turn can give rise to concave upward CSD (Morgan et al. 
2007). The clinopyroxene CSD in the Sung Valley ijol-
ites can be separated into two categories, where samples 
IJ-9/2, IJ-11/2, and IJ-11/1 (Fig. 4a, b, d) show curves with 
inflection points, whereas sample IJ-9/4 (Fig. 4c) displays 
nearly a straight line. These observations suggest that 
clinopyroxene in IJ-9/4 grew in a single stage, and in the 
rest of the samples IJ-9/2, IJ-11/2 and IJ-11/1, these crys-
tals grew in multiple stages (Wang et al. 2019) (Fig. 4).

5.2 � Petrogenetic conditions of Sung Valley ijolites: existing 
models

The Sung Valley UACC rocks are derived from the par-
tial melt of carbonated peridotite at a pressure greater 
than 2.5 GPa (Srivastava and Sinha 2004; Srivastava 
et  al. 2005). Geochemical studies of the different rock 
units from the Sung Valley UACC further suggest that 
these rocks were formed by discrete batches of primi-
tive magmas with  different magmatic affinities, and 
these magmas probably derived from the same source 
yet evolved independently (Srivastava et  al. 2005; Mel-
luso et  al. 2010). On the basis of whole-rock geochemi-
cal and isotopic studies, Veena et al. (1998) and Ray et al. 
(2000) concluded that Sung Valley rocks are formed from 
partial melting of the subcontinental lithospheric man-
tle, which was previously subjected to metasomatism by 
Kerguelen mantle plume-derived fluids. Pieces of evi-
dence of carbonate metasomatism of the lithospheric 
mantle beneath Sung Valley UACC were recently delin-
eated by Choudhary et al. (2021). Therefore, assuming a 
carbonated peridotite source to the parental melt of ijo-
lite during partial melting would be appropriate, as also 
suggested by Srivastava et  al. (2005). The mineralogical 
composition of Sung Valley ijolites corroborates the ear-
lier geochemical studies (e.g., Srivastava and Sinha 2004; 
Melluso et  al. 2010) and suggests that these rocks were 
formed from a magma of nephelinitic affinity, which was 
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derived from partial melting of a carbonated peridotite. 
Srivastava et  al. (2005) obtained a high concentration 
of LREE in chondrite-normalized rare-earth patterns in 
these ijolites, such concentration of LREEs points toward 
a low degree of partial melting during the derivation of 
parental melt to the Sung Valley ijolites. Isotopic stud-
ies on Sung Valley ijolites carried out by Ray et al. (1999) 
suggest that parental magma to these ijolites was derived 
from either a low U/Pb source or interacted with a low 
U/Pb mantle reservoir. Our mineral chemical data show 
a jadeite-free composition of the analyzed clinopyroxene 
in the present study (Fig. 3b; Table 2), which supports the 
inference that this melt was crystallized at crustal depth 
after its origin at greater than 2.5 GPa pressure (Srivas-
tava and Sinha 2004).

5.3 � Composition of melt inclusions: nature of parental 
ijolite melt and presence of “nano‑calciocarbonatites”

The carbonate–silicate melt inclusions observed in the 
present study, as well as the models proposed by earlier 
studies, suggest that these ijolites were formed from a 
carbonated olivine-nephelinite magma (Melluso et  al. 
2010), which was probably derived from partial melting 
of carbonated peridotite (Srivastava and Sinha 2004). The 
silica-undersaturated nature of the parental magma of 
these ijolites is further supported by Fe/Al ratios (> 0.5) 
in the titanite (Table  3) (Kowallis et  al. 2022). These 
nano-calciocarbonatites represent a typical assemblage 
of liquidus phases that crystallized from calcio-carbon-
atitic liquid (Figs.  5, 6). The predominant occurrence of 
carbonate component, i.e., calcite in melt inclusions in 
the core of these crystals suggests that these carbonates 
represent the pristine magma and are not derived from 
carbonate metasomatism of ijolite itself as suggested 
elsewhere (Seifert and Thomas 1995; Jones et  al. 2000; 
Downes et al. 2002; Woolley and Bailey 2012). An abun-
dance of carbonate–silicate melt inclusions in the Sung 
Valley ijolites (Figs. 5, 6) also testifies that the source rock 
is a carbonated peridotite, as suggested by Srivastava and 
Sinha (2004). The presence of disordered graphite with 
calcite in titanite of a sample IJ-9/4 (Fig.  5b) and min-
eral inclusions of rutile in clinopyroxene of sample IJ-9/2 
(Fig. 5d), together indicate the fluctuation of fO2, invoked 
by redox reactions in the lower crust during the entrap-
ment of these inclusions (Fig.  5). We opine that during 
the entrapment of these inclusions, tetravalent Ti4+ cati-
ons from the parental magma consumed enough oxygen 
provided by carbonate–silicate melt (enriched in CO2) to 
form rutile (Fig. 5d), which in turn reduced the residual 
CO2 to graphite (Fig.  5b). The presence of CO2 can be 
justified here because the carbonate components of these 
melts are enriched in CO2 and H2O (Jones et  al. 2013; 
Choudhary et  al. 2021). A positive correlation between 

Mg# and Ti in clinopyroxene (Fig. 3c) also indicates that 
Ti is concentrated in the form of rutile inclusions during 
the early fractionation of the clinopyroxene at high tem-
perature. The Ti content kept decreasing with Mg# along 
the clinopyroxene fractionation line (Fig.  3c). However, 
the parental magma of these ijolites got saturated in Ti 
later, which resulted in the formation of titanite (Fig. 2c, 
d). The occurrence of aphthitalite (K-Na sulfate) (Fig. 5h) 
in inclusions marks the presence of oxidized S-rich fluid 
in the crystallizing magma (Bataleva et  al. 2018). How-
ever, the occurrence of these sulfates is common in car-
bonate–silicate melts (Chayka et al. 2021).

Melt inclusions can record evidence of liquid immis-
cibility in magmas from a variety of different tectonic 
settings (Thompson et  al. 2007; Panina and Motorina 
2008; Mitchell 2009; Kamenetsky and Kamenetsky 2010; 
Sekisova et  al. 2015). It is noteworthy that the carbon-
ate component in all the carbonate–silicate melt inclu-
sions in clinopyroxene and titanite in the studied ijolites 
are purely calcite (Figs.  5, 6), and carbonatites associ-
ated with these ijolites in the Sung Valley UACC are also 
purely calciocarbonatites belonging to the sovitic carbon-
atite group (Choudhary et  al. 2021). Therefore, the first 
possible explanation of the occurrence of studied melt 
inclusions can be the separation of carbonate melt from 
silicate melt or silicate–carbonate melt immiscibility at 
the waning stages of the formation of the Sung Valley 
UACC. A number of previous studies on the Sung Val-
ley UACC have also suggested the immiscibility model 
among silicate and carbonate rocks (Viladkar et al. 1994; 
Veena et  al. 1998; Sen 1999; Ray et  al. 2000). However, 
lower Ba/La ratios in carbonatites in comparison to 
associated silicate rocks, as well as a paucity of immisci-
ble droplets of carbonate liquid in the associated silicate 
rocks negated this possibility (Hamilton et al. 1989; Sriv-
astava and Sinha, 2004; Melluso et al., 2010). Moreover, 
these authors did not completely rule out the immisci-
bility model and suggested the possibility of the liquid 
immiscibility of Sung Valley carbonatites from a more 
primitive liquid. However, a complete absence of any 
alkali carbonates, such as nyerereite, shortite, and natrite, 
in the studied melt inclusions questions the possibility of 
the immiscibility process (Fig. 5). However, calcite being 
a typical liquidus phase in a carbonatite melt cannot be 
the only phase resulting from crystallization of such a 
melt. Although the possibility of silicate–carbonate melt 
immiscibility cannot be completely ruled out, this calcite 
discrepancy and loss of alkalies from carbonates need to 
be addressed through some alternate models.

The second possible explanation for the occurrence of 
these carbonate and silicate phases can be their acciden-
tal entrapment, just as solid crystals in these melt inclu-
sions. However, this process is also unlikely as the ijolites 
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under investigation are magmatic rocks that are devoid of 
any post-magmatic recrystallization. Furthermore, a very 
limited variation in volume proportion in the crystals in 
these melt inclusions advocates against such a possibility 
(Fig.  6) (Anderson et  al. 2003). Additionally, the occur-
rence of a variety of these crystals of different phases sug-
gests that they are the aliquots of trapped crystallizing 
liquid within these melt inclusions (Figs. 5, 6).

The predominant occurrence of calcite as the only car-
bonate phase also points toward a calcite-normative sys-
tem in the studied melt inclusions. This could be the third 
possible explanation and such calcite-normative sys-
tem of the studied carbonate melts could result through 
either extreme fractionation of carbonate–silicate melt or 
continuous infiltration of alkali-poor carbonate melt dur-
ing the crystallization of clinopyroxenes and initially pre-
sent alkali-rich carbonate melt. This infiltration process 
could take place through magmatic metasomatism dur-
ing syn to late magmatic processes (Mathez 1995).

Generally, the alkali carbonates may undergo a prompt 
replacement by calcite even at  low-temperature (Zaitsev 
and Keller 2006). During such processes, the leaching of 
alkalies (e.g., Na, K) takes place from soluble alkali car-
bonatite liquids through dealkalization with the forma-
tion of stable calcite instead (Le Bas 1981; Chen et  al. 
2013; Chayka et al. 2021). Therefore, the fourth possible 
explanation could be the dealkalization of the initially 
trapped alkaline carbonates to calcite. However, this pos-
sibility of such dealkalization appears to be controversial 
in the present case as this process requires an open sys-
tem for the trapped melt inclusions and also the presence 
of some external fluid during late-stage crystallization 
or sub-solidus conditions of these ijolites. Only a single 
titanite crystal in one sample (IJ-9/4), hosts secondary 
mineral inclusions of calcite that  points toward  occur-
rence of  external fluid (Fig.  5a). However,   paucity of 
such secondary inclusions and absence of any sub-solidus 
processes indicated by CSD analysis (Fig. 4) argue against 
this possibility. It is noteworthy that sometimes the melt 
inclusions, appearing as primary, do not behave as an 
absolutely closed system, but there could still be micro-/
nano-fissures through which late- or post-magmatic flu-
ids enter the inclusion and modify their composition. 
These micro-fissures may be healed again due to solid-
state diffusion processes in crystals, leaving no evidence 
of the alteration event, as similarly reported by Chayka 
et al. (2020 & 2021). Based on this argument, the process 
of dealkalization cannot be ruled out completely.

The fifth and last possible scenario for the observed 
calcite discrepancy in the studied melt inclusions could 
be the redistribution of alkalies to the coexisting silicate 
phases within the inclusions, leaving only calcite as a 
carbonate phase (Fig.  6). The alkali contents of the host 

clinopyroxene is very low (Table 2). Therefore, the alkalies 
from the initial alkaline carbonate melt could be redistrib-
uted to the daughter silicate phases inside these carbon-
ate–silicate melt inclusions (Fig. 6). This inference is also 
supported by the presence of a notable amount of alkalies 
in the daughter diopside, phlogopite, and the unidentified 
carbonate–silicate phases (Additional file  1: Table  S1). 
Therefore, it may be plausible that the daughter crystals 
took up the alkalies from the initial carbonate melt, and 
calcite was left as the final carbonate phase (Figs.  5, 6). 
Finally, out of all the possible scenarios, first and the last 
three seem to be responsible for a predominant occur-
rence of calcite in these carbonate–silicate melt inclu-
sions or nano-calciocarbonatites. These melt inclusions 
in the studied ijolites clearly indicate the activity of com-
plex alkali-bearing carbonate–silicate–phosphate–sulfate 
melts during the crystallization of these ijolites (Figs. 5, 6).

6 � Conclusions
Based on the results obtained in this study, the following 
conclusions can be drawn:

•	 Sung Valley ijolites dominantly show concave upward 
CSD patterns caused by the fines destruction process 
and abrupt changes in the crystallization environ-
ment; also, these rocks were crystallized in multiple 
stages.

•	 The presence of calcite and alkali silicates in car-
bonate–silicate melt inclusions in the clinopyroxene 
points toward  silicate–carbonate immiscibility dur-
ing the formation of Sung Valley ijolites and carbon-
atites.

•	 The predominant occurrence of calcite as the only 
carbonate phase in the studied melt inclusions sug-
gests that these inclusions could also be a result of 
(i) calcite-normative system in these melts resulting 
from either extreme fractionation of carbonate–sil-
icate melt or continuous infiltration of alkali-poor 
carbonate melt, (ii) dealkalization of the initially 
trapped alkaline carbonates in the presence of 
external fluid that entered through micro-/nano-
fissures which subsequently healed, (iii) redistri-
bution of alkalies to the coexisting silicate phases 
(diopside, garnet, phlogopite and carbonated sili-
cate) within the inclusions, leaving calcite as the 
only carbonate phase.
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