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Forecasting tectonic tremor activity using 
a renewal process model
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Abstract 

In many tectonically active regions of the world, a variety of slow deformation phenomena have been discovered 
and collectively termed slow earthquakes. Tectonic tremor is the high-frequency component of slow earthquakes 
and can be analyzed to monitor the overall slow deformation process, both spatially and temporally. Although tec-
tonic tremor activity is complex, it does possess some characteristic patterns, such as spatial segmentation, a quasi-
periodic recurrence, migration, and tidal modulation. These features are helpful for forecasting future activity if they 
are properly modeled in a quantitative manner. Here, we propose a stochastic renewal process to standardize and 
forecast tectonic tremor activity in the Nankai subduction zone, southwest Japan, using a 12.5-year tremor catalog 
that is divided into a 10-year estimation period and 2.5-year forecasting period. We group the tremor events into small 
rectangular 10-km regions and observe that the distribution of inter-event times is nearly bimodal, with the short 
and long inter-event times representing the characteristic times of nearby tremor interactions and long-term stress 
accumulation processes, respectively. Therefore, as the probabilistic distribution for the renewal process, we adopt a 
mixture distribution of log-normal and Brownian passage time distributions for the short and long inter-event times, 
respectively. The model parameters are successfully estimated for 72% of the entire tremor zone using a maximum 
likelihood method. This standard model can be used to extract anomalous tremor activity, such as that associated 
with long-term slow-slip events. We derive a scaling relationship between two characteristic times, the relative plate 
motion, episodicity of tremor activity, and tremor duration by characterizing the spatial differences in tremor activ-
ity. We confirm that the model can forecast the occurrence of the next tremor event at a given reference time for a 
certain prediction interval. This study can serve as a first step for implementing more complex models to improve the 
space–time forecasting of slow earthquakes.
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subduction zone, Scaling relationship
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1  Introduction
Tectonic tremors are weak intermittent ground-shaking 
events whose energy is predominantly in the 1–10-Hz 
frequency range. Since their discovery in the Nankai sub-
duction zone by Obara (2002), they have been found in 
various subduction zones and other tectonically active 
regions around the world (Beroza and Ide 2011; Obara 

and Kato 2016). They are closely related to geodetically 
detected slow-slip events (SSEs) and very-low-frequency 
earthquakes (VLFEs), which occur almost simultaneously 
at similar locations and are defined by seismic signals 
in the frequency range of 0.01–0.10 Hz. While all these 
phenomena may be considered a single slow earthquake 
process (Ide et  al. 2007), tectonic tremors and VLFEs 
are both known to emit continuous signals (Ide 2019; 
Masuda et al. 2020); it might be therefore appropriate to 
consider tectonic tremors as the high-frequency compo-
nent of broadband slow earthquakes in the seismological 
frequency band. We also consider the otherwise known 

Open Access

Progress in Earth and
      Planetary Science

*Correspondence:  ide@eps.s.u-tokyo.ac.jp

1 Department of Earth and Planetary Science, The University of Tokyo, 7‑3‑1 
Hongo, Bunkyo, Tokyo 113‑0033, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0063-548X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-022-00523-1&domain=pdf


Page 2 of 21Ide and Nomura ﻿Progress in Earth and Planetary Science            (2022) 9:67 

phenomenon of low-frequency earthquakes (LFEs) as 
either a particularly isolated form or building block of 
tectonic tremors (Shelly et  al. 2007a). Tremors are con-
sidered a proxy for SSEs due to the high degree of over-
lap between their source regions (Bartlow et  al. 2011; 
Hirose and Obara 2010). However, it should be noted 
that tremors are not representative of every type of slow 
deformation since tremors are not strictly collocated with 
long-term SSEs (Kostoglodov et al. 2010; Yoshioka et al. 
2015) and SSEs may occur without tremors (Kobayashi 
2017; Miyazaki et al. 2006).

The Nankai subduction zone has a history of repeated 
large earthquakes (e.g., Ando 1975), with the next large 
earthquake expected in the near future (e.g., Hashi-
moto 2022). It is reasonable to assume that the slow 
earthquakes in the Nankai region are closely related to 
the preparation process for a huge earthquake, as some 
observational (Ito et al. 2013; Shelly 2010) and modeling 
studies (Matsuzawa et al. 2010) have suggested that there 
are changes in slow earthquake activity before a major 
earthquake. However, to detect such changes imme-
diately before a huge earthquake, it is essential to char-
acterize the normal seismic activity in an objective and 
quantitative way. Furthermore, the objective and quanti-
tative recognition of normal seismic activity can be used 
to forecast future activity. Understanding the nature of 
tectonic tremors, evaluating past tremor activity, and 
forecasting future tremor activity are necessary steps to 
elucidate slow deformation processes at plate boundaries.

Previous studies have revealed various features of tec-
tonic tremors. Tectonic tremors are not uniformly dis-
tributed over plate boundaries, but rather segmented 
tremor activity at various scales (Brudzinski and Allen 
2007; Ide 2010; Obara 2010). These segmented seis-
mogenic structures are apparently controlled by the 
geometry of the plate boundary and the direction of 
plate subduction. Coherent and episodic tremor activ-
ity occurs in these segments, and often migrates slowly 
at ~ 0.1 m/s in the along-strike direction, which is along 
the trench axis of the subduction zone (Dragert et  al. 
2004; Ito et al. 2007). During this slow migration of trem-
ors, faster migration occurs in various modes (Ando 
et  al. 2012; Ghosh et  al. 2010; Houston et  al. 2011; Ide 
2010, 2012; Shelly et al. 2007b). Episodic tremor activity 
is often repeated at around some time constant that is 
characteristic for a given region and sometimes exhibits 
a depth dependence (Wech and Creager 2011). This time 
constant has been quantified for various tremor regions 
and has been reported to be correlated with the average 
tremor duration (Idehara et al. 2014).

A striking feature of tectonic tremors is their strong 
sensitivity to tidal stresses (Nakata et al. 2008; Rubinstein 
et al. 2008; Shelly et al. 2007b; Thomas et al. 2012). This 

tidal sensitivity is also related to the recurrence period 
(Thomas et  al. 2012) and duration (Ide 2010), such that 
tremors with short recurrence periods and short dura-
tions are generally more sensitive to tidal stresses. This 
is well explained by mechanical models, where the trem-
ors occur in isolated patchy regions that are loaded by a 
surrounding region of stable sliding (Ando et  al. 2010; 
Nakata et al. 2011). The tidal sensitivity is not uniform at 
a regional scale because the tremor duration and ampli-
tude vary greatly at shorter (kilometer) scales and are 
controlled by the spatial structure of the tremors. Wang 
et al. (2018) used a hidden Markov model to identify the 
characteristic spatial structure of the tremors in south-
west Japan as small clusters that are connected by larger 
“subsystems.” Aiken and Obara (2021) also grouped trem-
ors into clusters based on their spatiotemporal proximity 
and discussed scaling laws based on the characteristics of 
each cluster.

Few studies have attempted to forecast tremor activity, 
even though the above-mentioned features of tectonic 
tremors may be utilized for forecasting future tectonic 
tremor activity. Wang et  al. (2018) forecasted tremor 
activity in a relatively short time window of only two days 
via a Markov process, where the probability of future 
events does not depend on the long-term tremor his-
tory. Conversely, the forecasting of ordinary earthquakes 
based on past seismicity is a popular approach, as indi-
cated by many of the probabilistic models tested in the 
Collaboratory for the Study of Earthquake Predictability 
project (Jordan 2006). In particular, the Epidemic Type 
Aftershock Sequence (ETAS) model (Ogata 1988), which 
is a point process model that assumes a background seis-
micity rate and a triggering process, is the most effective 
approach for the probabilistic forecasting of future seis-
micity and detection of anomalous activity, such as earth-
quake swarms. However, the ETAS model cannot explain 
the quasi-periodic occurrence of earthquakes since it 
does not incorporate long-term stress accumulation pro-
cesses. A popular model for the long-term forecasting of 
large repeating earthquakes is the Brownian passage time 
(BPT) model, which approximates the stress accumula-
tion via a Brownian process and regards any repeating 
seismicity as a renewal process (Matthews et al. 2002).

Here, we develop a probabilistic model for tremor activ-
ity as a framework for characterizing the spatiotemporal 
variations in tremor activity and forecasting future tremor 
events in the Nankai subduction zone, where tremors are 
continuously monitored by high-quality seismic observa-
tion networks. We consider quasi-periodic tremor activ-
ity as a renewal process that is characterized by a BPT-like 
probability distribution. However, there are several prob-
lems with modeling tremor activity using a renewal pro-
cess. Unlike characteristic repeating earthquakes, tremors 
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are clearly not independent events, but rather occur as epi-
sodic slip sequences on multiple nearby sources. It is also 
almost impossible to estimate the number of sources in a 
given fixed region because the minimum unit of the tremor 
source is difficult to define, unlike in ordinary earthquake 
analyses. Furthermore, renewal processes are not additive, 
such that we cannot simply mix them for multiple sources. 
Therefore, we employ a BPT-like distribution to express the 
long-term quasi-periodic occurrence of a fuzzy group of 
tremor sources and adopt another distribution to express 
any short-term processes within the group. The observed 
episodic tremor activity is approximated by this mixture 
distribution, which is defined by several parameters, for 
each rectangular segment of the tremor zone. We note 
that this model is oversimplified to explain complex tremor 
activity. For example, tremors that are triggered by large 
teleseismic earthquakes (e.g., Miyazawa and Brodsky 2008) 
cannot be explained in this framework. Nevertheless, we 
demonstrate that such a simple model is useful for extract-
ing unusual temporal variations, evaluating the spatial 
characteristics of the tremors, and making a quantitative 
statistical forecast.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the tectonic tremor activity 
in the Nankai subduction zone and introduces the tremor 
catalog, from which we use the inter-event times of succes-
sive tremor events as data. We propose a mixture model 
with five parameters to explain the approximately bimodal 
distribution of the inter-event times. In Sect. 3, we intro-
duce a maximum likelihood estimation method for the 
parameters, discuss the estimated values and errors, and 
evaluate the goodness of fit of the model. In Sect. 4, we dis-
cuss the parameter values that are obtained for each region 
and their meanings. We specifically employ a regression 
analysis among the parameters, which provides a scal-
ing relation for the long-term tremor recurrence interval 
that is determined by the rate of plate subduction, tremor 
duration, tremor episode duration, and number of tremors 
in each episode. This means that the tremors essentially 
reflect a simple process of accumulation and release in the 
form of interplate slip movement. In Sect. 5, we calculate 
the probability of a future tremor occurrence, predict the 
time interval when the next tremor event will occur after 
a given reference time, and observe that the model gener-
ally performs as expected. We discuss the possibility of 

incorporating the tidal stress response and spatiotemporal 
extension in Sect. 6 and provide the conclusions in Sect. 7.

2 � Data: tectonic tremors in the Nankai subduction 
zone

2.1 � Tectonic tremors in Nankai
Tectonic tremors occur in a band-like region in the Nan-
kai subduction zone, southwest Japan, extending about 
1000  km from the Tokai region to the Kii and Shikoku 
regions (Fig. 1). The tremors are discontinuous in Ise Bay, 
between the Tokai and Kii regions, and in Kii Channel, 
between the Kii and Shikoku regions. The tremors occur 
in ~ 20–30-km-wide zones at ~ 30–40 km depth.

Tremors occurred episodically, with a recurrence inter-
val of a few months, at many locations in the Nankai sub-
duction zone, although some locations experienced almost 
continuous tremor activity (Fig.  1). Tremor activity often 
exhibits significant migrations, as shown in Fig.  1. These 
consist of slow (~ 0.1  m/s) migrations in the strike direc-
tion (Ito et al. 2007) and fast (~ 10 m/s) migrations in the 
slip direction (Shelly et  al. 2007a, b; Ide 2012), as well as 
diffusive migrations (Ide 2010) in a small group of tremors. 
These migrations mean that each location is dependent on 
other locations, as this activity cannot be fully explained 
by temporal changes at each location individually. How-
ever, this study only considers the temporal changes in a 
small area as a first step in probabilistic tremor modeling. 
Therefore, it should be noted that many of the short time 
intervals that are discussed below do not represent the 
recurrence interval of events at a given location, but rather 
the time delay of the tremor triggering sequence during 
migration processes.

The tremors in the Nankai subduction zone are modu-
lated by tidal stress variations and exhibit a periodicity that 
corresponds to the tides (Nakata et  al. 2008; Shelly et  al. 
2007b). However, this tidal sensitivity varies spatially and 
tends to be small in many areas, especially those with long 
tremor durations (Ide 2010; Ide and Tanaka 2014; Yabe 
et al. 2015).

2.2 � Tectonic tremor catalog used in this study
Many catalogs of tectonic tremor and LFE have been con-
structed using various methods, and archived in the Slow 
Earthquake Database (Kano et al. 2018). Here, we use the 
tremor catalog of Mizuno and Ide (2019). The analyzed 

Fig. 1  Tectonic tremor catalog for the Nankai subduction zone (Mizuno and Ide 2019), which was used in this study. a The epicenter locations are 
shown as circles and color-coded by depth. The tremors that occurred in the Tokai, Kii, and Shikoku regions are separated by Ise Bay and the Kii 
Channel, respectively. b Space–time plot of the Tokai–Kii region, color-coded by location along a N38°W trend. c Space–time plot for the Shikoku 
region, color-coded by location along a N28°W trend

(See figure on next page.)



Page 4 of 21Ide and Nomura ﻿Progress in Earth and Planetary Science            (2022) 9:67 

(a)

(b)

(c)

131°E 132°E 133°E 134°E 135°E 136°E 137°E 138°E 139°E

33°N

34°N

35°N

36°N

10 20 30 40 50
Depth (km)

2004 2006 2008 2010 2012 2014 2016

2004 2006 2008 2010 2012 2014 2016

Tokai

Kii

Phillippine
Sea Plate

Shikoku

Ise
Bay

Bungo
Ch.

Kii
Ch.

200 km

Nankai T
rough

Fig. 1  (See legend on previous page.)



Page 5 of 21Ide and Nomura ﻿Progress in Earth and Planetary Science            (2022) 9:67 	

seismic dataset was preprocessed following Ide (2010) and 
Idehara et al. (2014), and the catalog was constructed using 
an envelope stacking method similar to that employed by 
Wech and Creager (2008). Tremors were detected from 
continuous velocity seismograms of Hi-net, which are 
managed by the National Research Institute for Earth Sci-
ence and Disaster Resilience, for the entire Nankai region 
during the period from April 2004 to September 2016 by 
employing a sliding 300-s time window with 150-s over-
lap. The catalog includes multiple events that occurred at 
different locations within the same time window and were 
separated by more than ~ 100  km. The duration informa-
tion for each tremor event was obtained from the full width 
at half maximum of the amplitude of the stacked envelopes, 
and the energy magnitude was calculated from the seismic 
wave energy for the duration of the event.

2.3 � Distribution of the inter‑event time
We placed grid points at a 0.05° increment across the 
33.0–35.6°N, 131.8–138°E region in western Japan, 
and grouped the tectonic tremors possessing epicent-
ers within ± 0.05° in both latitude and longitude around 
each grid point. Therefore, each group represents 
a ~ 10-km rectangular area. The first 10-year period of 
the catalog (April 2004 to March 2014) was used for the 
model estimation, and the final 2.5-year period of the 
catalog was used for the forecasting experiment, which 
employed the model estimation results. We analyzed 
the groups that contained more than 300 tremor events 
during the first 10-year period.

Figure 2 shows example histograms of the inter-event 
times, which are calculated as the interval between any 
two consecutive events in each group. The histograms 
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Fig. 2  Histograms of the inter-event times for four groups: a 34.20°N, 134.05°E; b 34.65°N, 136.55°E; c 33.15°N, 132.25°E; and d 33.40°N, 132.80°E. The 
inter-event time counts are shown in blue, and the fitted mixture distribution is plotted as an orange curve. The red circle and diamond at the top 
of each panel indicate the estimated µL and µS , respectively, with the error bars showing the standard errors on a logarithmic scale
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for most of the groups possess two peaks, which corre-
spond to a long-term loading process and a short-term 
stress release process with potential migration during 
episodic activity.

We assume that a tectonic tremor occurs when the 
stress accumulated by long-term loading reaches a cer-
tain value. This assumption is similar to that for charac-
teristic repeating earthquakes. However, loading is not 
constant and in nature is often subjected to various dis-
turbances. The BPT model, which is based on an inverse 
Gaussian distribution, approximates this disturbance as a 
Brownian motion (Matthews et  al. 2002). The probabil-
ity density function of the inter-event time t in the BPT 
model is expressed as follows:

where µL is the long-term recurrence period and α rep-
resents variations in the period due to the disturbances; 
these parameters are controlled by the speed and stability 
of long-term loading processes. This distribution is simi-
lar to the more popular log-normal distribution, but it dif-
fers when t is large. The BPT model is more convenient for 
modeling long-term earthquake recurrences using the haz-
ard rate, which we explain later, because the hazard rate of a 
log-normal distribution will eventually approach zero.

Conversely, the distribution of the short-term inter-
event times, which correspond to the stress release 
process, seems to have a characteristic peak at ~ 1000–
10,000 s. This means that tremors are concentrated in a 
short duration, which is a potential indicator of episodic 
slow-slip activity (e.g., Frank et al. 2016). There are sev-
eral possible functional forms to explain this peak. How-

ever, it cannot be explained by a very simple stationary 
Poisson process, as shown in Additional file  1: Fig.  S1. 
Although it may also be approximated by a BPT distri-
bution, we assume a more commonly used log-normal 
distribution. In fact, the aforementioned characteristics 
of the log-normal distribution, where the correspond-
ing hazard rate approaches zero for large t , are conveni-
ent because the short-term process does not affect the 
long-term process significantly. Therefore, the probabil-
ity distribution function for the short peak is written as 
follows:

(1)fBPT(t|µL,α) =
µL

2πα2t3
exp −

(t − µL)
2

2µLα
2t

,

where ln µS and σ 2 are the mean and variance of ln t , 
respectively; these parameters reflect the efficiency and 
heterogeneity of the stress interactions among nearby 
tremor sources.

The inter-event distribution of our renewal process 
model is the weighted sum of the above two distributions 
(Eqs.  1, 2). We define φ as the proportion of fLN(t) to 
obtain the following relationship:

This is the mixture distribution with five parameters, 
µL,α,µS, σ , and φ , which are estimated by the real data.

3 � Model: estimation and validation of the renewal 
model

3.1 � Maximum likelihood estimation of the model 
parameters

For a sequence of n+ 1 tremor events that 
occurred at time t0, . . . , tn , n inter-event times 
�ti = ti − ti−1(i = 1, . . . , n) are assumed to obey the 
mixture distribution. Therefore, the likelihood of the five 
parameters, µL,α,µS, σ , and φ , is given as either:

or the log-likelihood:

The maximum likelihood estimate based on this like-
lihood was obtained via the expectation–maximization 
(EM) algorithm (Dempster et  al. 1977), and the estima-
tion error was evaluated using the bootstrap method 
(e.g., Efron and Tibshirani 1993). One thousand boot-
strap samples were resampled from n inter-event times 
�ti , allowing for overlap, and the covariance of these 
parameters was calculated.

This estimation method was applied to all groups. Fig-
ure 2 shows examples of the results for selected groups, 
and Additional file  1: Fig.  S2 shows the results for all 

(2)

fLN(t|µS, σ) =
1

√
2πσ t

exp

{

−
(ln t − lnµS)

2

2σ 2

}

,

(3)
ftotal(t|µL,α,µS, σ ,φ) = φfLN(t|µS, σ)+ (1− φ)fBPT(t|µL,α).

(4)

L(µL,α,µS, σ ,φ) =
n
∏

i=1

[

φ
√
2πσ�ti

exp

{

−
(ln�ti − lnµs)

2

2σ 2

}

+(1− φ)

√

µL

2πα2�t3i
exp

{

−
(�ti − µL)

2

2µLα
2�ti

}]

,

(5)

ln L(µL,α,µS, σ ,φ) =
n

∑

i=1

ln

[

φ
√
2πσ�ti

exp

{

−
(ln�ti − lnµs)

2

2σ 2

}

+(1− φ)

√

µL

2πα2�t3i
exp

{

−
(�ti − µL)

2

2µLα
2�ti

}]

.
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groups. A list of the estimated parameters is given in 
Additional file  2: Table  S1. Reasonable estimates of µL 
and µS were obtained for most of the groups, as shown in 
Fig. 2a, b. The standard error of log10 µL is ~ 0.1, and the 
correlation between parameters is small in many cases 
(Additional file  1: Fig.  S3a, b). However, there are some 
exceptions. The value of µL was estimated to be close to 
µS in the westernmost part of the Shikoku region, where 
many tremors occur (Fig. 2c). The bootstrapping results 
(Additional file 1: Fig. S3c) indicate that the solution var-
ies among several local minima and that the variation in 
µL is larger than that in µS.

The example in Fig. 2d points to the potential of more 
than three peaks in the histogram of inter-event times 
within a given tremor group, with this group possessing 
four peaks (several minutes, one hour, one day, and ten 
days). The variation in µS is larger than that in µL for this 
group (Additional file 1: Fig. S3d), and the other parame-
ters are also poorly determined. One possible explanation 
for the observation of multiple peaks is that a given group 
may contain multiple tremor regions with different char-
acteristic time constants due to coarse spatial grouping, 
such that multiple tremor regions with different charac-
teristic time constants are included in the same group. 
Another possibility is that a given group may possess 
several inherent periodicities. We note that clarifying 
the validity and significance of multiple inter-event times 
within a given tremor group may be important for under-
standing tremor mechanisms; however, we have simply 
excluded such groups from our discussion because there 
are not many of these groups in our analysis.

When the distribution of inter-event time is quite dif-
ferent from that for the mixture distribution assumed in 
this study, the standard error of the parameters is very 
large. Therefore, the results for such groups, which pos-
sess a standard error of > 0.2 in either lnµL or lnµS , were 
not used in the analysis in Sects. 4 and 5.

3.2 � Hazard rate in the renewal process
Here, the tremor sequence is modeled as a renewal pro-
cess, where the probability density of the inter-event time 
is represented by ftotal(t) . Therefore, the hazard rate of 
tremor occurrence at lapse time t since the last tremor 
event is given by (e.g., Matthews et al. 2002):

where

(6)h(t) =
ftotal(t)

1− F(t)
,

(7)F(t) =
t

∫

0

ftotal(t
′)dt ′.

The hazard rate that corresponds to the histogram in 
Fig. 3a is shown in Fig. 3b, c. Immediately after a tremor 
occurs, a subsequent tremor is likely to occur. However, 
the rate decreases after this period, such that a subse-
quent tremor is unlikely to occur; the hazard rate then 
increases again due to the loading modeled by BPT. Fig-
ure 3d, e shows the variations in the hazard rate in this 
group over long periods. Figure  3d includes 74 events, 
although about 15 are visually recognized. The hazard 
rate decreases as shown in Fig. 3b after each event. When 
several tremors occur in a short time, all of them occur 
with high hazard rate as shown in Fig. 3e.

3.3 � Validation using the transformed time
This probabilistic model can standardize spatially diverse 
tremor activity. The validity of the standardization is con-
firmed by transforming the actual time series of events 
into a transformed time series (Ogata 1988). The trans-
formed inter-event time τ (t) is calculated using the event 
occurrence time interval t and hazard rate h(t) as follows:

Let T (ti) = τ (t1)+ · · · + τ (ti) be the transformed 
time of the ith tremor event. Proper modeling of the 
tremor sequence allows the transformed time series 
T (t1), . . . ,T (tn) to be regarded as a sample from a sta-
tionary Poisson process with an occurrence rate of one, 
such that the number of tremor events and the transform 
times are approximately linear. More precisely, the valid-
ity of the model is determined using the Kolmogorov–
Smirnov (KS) test, which states that if the transformed 
time series satisfies:

then the null hypothesis that the transformed time series 
is sampled from a Poisson process is not rejected at the 
5% significance level, and the series is expected to follow 
a stationary Poisson process.

Figure 4 compares the number of events and the trans-
formed times at two locations. The results for the exam-
ple in Figs. 2a and 3a, where the modeling was generally 
successful, are shown in Fig. 4a. A total of 364 (83%) of 
the 437 groups in this study can be regarded as Poisson 
processes based on this criterion, with this renewal pro-
cess modeling approach generally being successful. The 
number of available groups is reduced to 316 (72%) after 
applying the above-mentioned criterion for the standard 
error of lnµL and lnµS . On the other hand, a large devia-
tion from the straight line is observed at i = 300–600 in 

(8)τ (t) =
t

∫

0

h(t ′)dt ′.

(9)max
i=1,...,n

|T (ti)− i| < 1.36
√
n,
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Fig.  4b, which does not satisfy the condition in Eq.  (9). 
Therefore, this result cannot be regarded as a Poisson 
process via the KS test. The modeling was likely unsuc-
cessful for these groups because either the tremor behav-
ior changed during the study period, or the groups 
included unusual periods. The latter is discussed in the 
following subsection. The distribution of such unsuccess-
ful groups is shown in Additional file 1: Fig. S4. Many of 
these groups are located near the Tokai and Bungo Chan-
nel regions, where long-term SSEs have been reported.

3.4 � Quantitative detection of an anomalous period
Ogata (1992) applied the ETAS model to both Japanese 
and global seismicity and identified a seismically quies-
cent period before major earthquakes using the devia-
tion of the transformed time series from the Poisson 
process. Similar deviations have been associated with 
earthquake swarms and SSEs (Llenos et al. 2009; Okutani 
and Ide 2011), and volumetric changes around volcanoes 
(Kumazawa et  al. 2016). Positive deviations (i.e., more 
events than expected) are interpreted to indicate the 
onset of earthquake swarms and SSEs, whereas negative 
deviations suggest the influence of stress shadows (e.g., 

Ogata 2005). It is also possible to detect anomalous peri-
ods in the tremor sequences using our renewal process 
model. We objectively determine an anomalous period 
from the time series shown in Fig. 4b, which we identified 
as anomalous in the previous subsection.

The group shown in Fig. 4b is located near the south-
western edge of the study area, where a large SSE and 
considerable associated tremor activity were observed 
in 2009–2010 (Fig.  1b) (e.g., Yoshioka et  al. 2015). We 
therefore need to fit a different model because the tremor 
activity during this period is clearly different from that 
during the other periods. We consider two cases: Case 
(1), where the tremor behavior changed at time tSTART , 
and Case (2), where the behavior only changed during 
the period tSTART < t < tEND . The latter period in Case 
(1) and the anomalous period in Case (2) are described 
by another set of model parameters (µ′

L,α
′,µ′

S, σ
′,φ′) , 

such that 10 parameters are estimated via the maximum 
likelihood method. While the number of parameters 
to be estimated via the maximum likelihood method 
is the same in these two cases, Case (2) has an addi-
tional change point, at the end of the anomalous period, 
compared with Case (1). Determining the maximum 
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likelihood solution by varying tSTART and tEND requires 
these two timings to be treated as change points and 
given an appropriate penalty (Ogata 1992).

The likelihood was calculated by varying tSTART in Case 
(1), and both tSTART and tEND in Case (2), as shown in 
Fig. 5a, b, respectively. It is natural for the likelihood to 
increase with the number of parameters. However, the 
log-likelihood increased by 55.0 in Case (1) and 87.0 in 
Case (2) with the addition of only five parameters, which 
is statistically significant based on Akaike’s information 
criterion (AIC). Since the penalties for the change points 
are calculated to be 9.6 for Case (1) and 32.7 for Case 
(2) (Ogata 1992; Okutani and Ide 2011), the effective 
improvements are 45.4 and 54.8, respectively. Therefore, 
the change-point models are more appropriate than the 
uniform model, and Case (2) is more appropriate than 
Case (1) by a small margin.

The maximum likelihood was obtained when the 1348 
events in this group were divided into subgroups based 
on the timings of the 526th event (tSTART​ = 08:23:13 on 
January 29, 2010; all times are given in Japan Standard 
Time) and 1037th event (tEND = 18:56:29 on January 15, 
2011). The range over which the log-likelihood is reduced 
by two roughly corresponds to the 95% confidence inter-
val, which extends from the 424th event (21:39:36 on 

March 3, 2009) to the 535th event (22:43:59 on January 
30, 2010) for tSTART​, and from the 957th event (00:47:07 
on August 15, 2010) to the 1052th event (15:14:03 on Jan-
uary 16, 2011) for tEND. The beginning of the anomalous 
period is likely more uncertain because this SSE started 
with a slow moment release (Yoshioka et  al. 2015). The 
parameters obtained for the maximum likelihood esti-
mates can be used to construct the distribution of inter-
event times for each period, as shown in Fig.  5c. The 
values of µ′

L and α′ could not be determined precisely due 
to the short period of available data, whereas the small 
µ′
S value suggests there were many short-term interac-

tions during this period. The transformed time that was 
calculated using this distribution yields an approximately 
straight line (Fig. 5d).

This result may seem trivial because the anomaly dis-
cussed here was known to be associated with an SSE and 
was even visually detected in the spatiotemporal tremor 
distribution. Nevertheless, the objectively determined 
tSTART​ and tEND values provide insights into the initiation 
and termination of the SSE process that was associated 
with this tremor activity. Such a parameterization can 
also be used for real-time monitoring to detect anoma-
lous tremor activity.
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4 � Model estimation results
4.1 � Estimated parameters and their spatial distributions
Figure 6 shows the spatial distributions of the five param-
eters that have been estimated for each tremor group 
(Additional file  2: Table  S1). The maximum likelihood 
estimates are shown for all of the groups that passed the 
KS test and possessed standard errors within a factor of 
1.22 (= e0.2) for the estimated long-term and short-term 
periods µL and µS.

The long-term tremor recurrence period µL is par-
ticularly large in the eastern Tokai region and around 
Ise Bay and gradually decreases toward the western Kii 
and Shikoku regions, with a short period of about one 
month (106.4  s) in some places. This trend is generally 
similar to that of the time constant estimated by Ide-
hara et al. (2014) and is probably related to large-scale 
tectonic movement. The subduction rate of the Philip-
pine Sea Plate in the Nankai subduction zone is higher 
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in the west, and the convergence rate of the plate in the 
Tokai region is about half of that in the Shikoku region 
due to the subduction of the Izu Microplate (Heki and 
Miyazaki 2001; Hori et  al. 2004; Miyazaki and Heki 
2001). If the amount of interplate slip required to 
resume tremor activity is uniform everywhere, then a 
higher convergence rate would yield a smaller µL in the 
western part of Japan. However, secondary factors may 
be important, especially in the Shikoku region, where 
µL is highly variable at small spatial scales. Annoura 
et al. (2016) pointed out that the plate convergence rate 
may control the tremor energy rate. Therefore, both the 
convergence rate and regional tremor characteristics 
may control the tremor recurrence period.

The parameter α quantifies the accuracy of the perio-
dicity of the long-term tremor recurrence, and small 
values were obtained in the eastern Shikoku region and 
around Ise Bay. These two regions are characterized by 
quasi-flat subduction; i.e., the dip angle of the plate inter-
face is nearly zero, and the average VLF mechanisms have 
a nearly horizontal nodal plane (Ide and Yabe 2014). The 
large α values in the Tokai and Bungo Channel regions 
may be attributed to the occurrence of long-term SSEs. 
The parameter σ, which represents the accuracy of the 
µS periodicity, is small in the Kii region. No significant 
regional variations in µS are observed at a large scale. µS 
tends to be smaller in the center of the tremor zone and 
larger at the periphery; however, this is probably an arti-
fact since the groups near the center of the tremor zone 
cover a larger portion of episodic tremor activity, whereas 
those at the periphery do not sample much of this activ-
ity due to the constant spatial resolution of 0.05°.

The parameter φ represents the fraction of the two 
mixing distributions, with larger values indicating that 
most tremors occur as episodic activity and possess short 
inter-event times. Since φ is generally close to one every-
where, we may use another parameter that characterizes 
the tremor episodicity:

which makes it easier to recognize the difference between 
the two mixing distributions. N is the number of events 
that occur during either the long-term tremor recur-
rence cycle or effectively in an episodic activity. The 
tremor and LFE episodicity has been quantified in vari-
ous ways. Some studies have employed an autocorrela-
tion approach to discuss the episodicity (Farge et al. 2021; 
Frank et  al. 2016; Idehara et  al. 2014), as such methods 
capture the degree of clustering and not necessarily the 
ratio of long-term loading to short-term clustering. 
Other studies considered “the minimum fraction of days 
in which 75% of total events occur” (Shelly and Johnson 

(10)N =
1

1− φ
,

2011) and “the fraction of the total catalog duration taken 
up by the largest 2% of the inter-LFE times” (van der Elst 
et al. 2016) to quantify the short-term clustering within a 
longer period. For a system with two characteristic time 
constants, either N or φ may give a more general defini-
tion of the tremor episodicity than the using criterions 
with artificial thresholds.

4.2 � Scaling relations among the parameters
Figure 7 shows the correlations among the five parameters, 
with each parameter pair color-coded by tremor duration 
(Tlen). There is a weak negative correlation between µL 
and α (Fig.  7a), which indicates that a longer recurrence 
interval is more periodic and that the groups requiring 
long-term loading are less affected by the tremor activities 
of the surrounding groups. Conversely, µS and σ exhibit a 
strong positive correlation (Fig.  7h). One reason for this 
positive correlation is that the catalog used in this study 
was constructed using a 150-s window interval, which is 
a fixed limit of the temporal tremor resolution. Therefore, 
the variations are small for small µS values that are close 
to the lower limit of 150 s, and vice versa. The mixing ratio 
φ is correlated with all the other parameters (Fig. 7d, g, i, 
j). A φ value close to one indicates a large N value, a small 
number of cycles in the analysis period, a large long-term 
recurrence interval µL , and a small short-term period µS . 
Then, α and σ also vary with µL and µS , respectively. Fig-
ure  7b shows that µS and µL tend to be small and large, 
respectively, for the long-duration (large Tlen) tremor 
group, although the direct correlation between µL and µS 
is weak. A similar trend is observed for the energy mag-
nitude of tremors. Idehara et al. (2014) also reported that 
µL is correlated with the tremor duration. However, µL is 
not determined using just the duration, as some tremors 
are short-duration events with large µL.

The parameter µL is related to various quantities, such 
as the plate subduction velocity (Fig.  6) and φ (or N) 
(Fig.  7d). The magnitude and/or duration of individual 
tremors may also be relevant for describing the tremor 
activity. Furthermore, µS is an important parameter 
for describing any differences in tremor activity, which 
makes such comparisons valuable in providing addi-
tional details on the observed tremor activity. We there-
fore assessed whether these parameters could be used to 
explain the variations in µL . Specifically, we assumed that 
µL is expressed as a product of the power of µS , N, the 
seismic energy (Me) and duration (Tlen) of tremor, and 
the plate subduction velocity (Vpl) and prepared a linear 
relation for all the groups:

(11)

log10 µL = A log10 µS + B log10N + CMe

+ D log10 Tlen + E log10 Vpl + F + e.
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We estimated the coefficients A, B, C, D, E, and F using 
the maximum likelihood method with the assumption 
that the error e is normally distributed.

We adopted Vpl from the plate models that included 
a rapid decrease in the subduction velocity in the Tokai 
region (Heki and Miyazaki 2001; Hori et  al. 2004). We 
calculated AIC for all the combinations of coefficients 

since e naturally decreases as the number of parameters 
increases; the results are shown in Table 1. Since the AIC 
with all the coefficients and that without C are almost the 
same, it is better to ignore the contribution of Me . All the 
other coefficients appear to be necessary to explain the 
variations in µL.
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The coefficients obtained for the combination of A, 
B, D, and E, together with their standard errors, are as 
follows:

Figure 7k shows a comparison of the data and calculated 
values of µL.

We also tested a model that does not include a sud-
den decrease in Vpl in the Tokai region (Miyazaki and 
Heki 2001) since there are uncertainties in the plate 
motions and found the combination of A, B, D, and E 
again yielded the optimal µL , which consisted of the 
following coefficients:

The two regression equations in Eqs. (12) and (13) sug-
gest that µL depends on V−1

pl  to the power of 0.57 and 
9.89, respectively. Kinematically, µLVpl represents the 
amount of accumulated slip deficit for the average recur-
rence period. Therefore, one would expect µL to be pro-
portional to V−1

pl  if episodic tremor activity starts when 
the slip deficit reaches some constant amount. This 
hypothesis is not ruled out from the large range of uncer-
tainties in the current plate motion.

The parameter µL is positively correlated with Tlen , as 
noted by Idehara et al. (2014), and with both µS and N. 
If a fixed small area always slips during a tremor episode 
and the slip rate is nearly constant, then the amount of 
slip deficit accumulated during the inter-episode period 
µLVpl would be positively correlated with the total 
time of tremor activity during episodic activity NTlen . 

(12)

log10 µL ∼ (0.39± 0.04) log10 µS + (0.62± 0.03) log10N

+ (0.61± 0.12) log10 Tlen − (0.57± 0.06) log10 Vpl

+ (4.43± 0.24).

(13)

log10 µL ∼ (0.41± 0.03) log10 µS + (0.59± 0.03) log10N

+ (0.88± 0.11) log10 Tlen − (9.89± 0.76) log10 Vpl

+ (11.64 ± 0.63).

Furthermore, the fact that µL is also related to µS sug-
gests that the background slip, which is thought to be 
ongoing in the vicinity of tremors during episodic activity 
(Ando et al. 2010; Nakata et al. 2011), also contributes to 
the total slip during these tremor episodes. This empiri-
cal relation alone cannot determine a specific model for 
the dynamic slip process of tectonic tremors, but it can 
place certain constraints on the models.

5 � Forecasting model
We conducted a forecasting experiment using the final 
2.5 years of the tremor catalog. The mixture distribution 
with the estimated parameters for the 10-year catalog 
was used to estimate the timing of the next tremor event 
for each group. The forecasting methodology follows that 
in BPT model-based forecasts of characteristic earth-
quakes (e.g., Matthews et al. 2002).

If the last event occurred at time tpre before a reference 
time, then the probability density of an event occurring at 
time t after this reference time is as follows:

The expected time of the next tremor event is calculated 
as follows:

Let P(t) be the corresponding cumulative distribution 
function. The ath percentile of the next tremor timing 
is then obtained by the time ta% such that P(ta%) = a% . 
Using the percentile, we can forecast the timing of the 
next tremor event by range using prediction intervals 
such as t2.5%–t97.5% (95% interval) and t16%–t84% (68% 
interval).

The tremor forecasting is conducted as follows. The ref-
erence time is first set to 00:00:00 on April 1, 2014, which 
is the end of the model parameter estimation period. At 
this time, the optimal conditions should be present for 
the forecasting, since all the tremor activity information 
prior to this time is employed in the model. Figure 8a, b 
shows the cumulative distributions, prediction intervals, 
expected values, and actual observed times for the two 
groups in Fig. 2a, b, respectively. In Fig. 8a, the 95% pre-
diction interval spans approximately two months, begin-
ning almost immediately after the reference time, and the 
68% interval spans approximately one month. The next 
tremor actually occurred 40 days later, which falls within 
the 95% interval but not the 68% interval. In Fig. 8b, the 
95% interval extends from 20 days to almost half a year 

(14)p(t) =
ftotal(t + tpre)

1− F(tpre)
.

(15)tnext =
∞
∫

0

tp(t)dt.

Table 1  ΔAIC relative to the minimum value for different sets of 
coefficients

The intercept F is not shown because it was used in every set of coefficients

Coeffs ΔAIC Coeffs ΔAIC Coeffs ΔAIC

A, B 113.6 D, E 221.2 B, D, E 88.2

A, C 220.4 A, B, C 64.7 C, D, E 217.6

A, D 269.8 A, B, D 81.2 A, B, C, D 45.1

A, E 224.9 A, B, E 22.5 A, B, C, E 20.3

B, C 140.8 A, C, D 213.1 A, B, D, E 0.0

B, D 136.7 A, C, E 205.6 A, C, D, E 198.9

B, E 94.7 A, D, E 214.3 B, C, D, E 86.0

C, D 236.1 B, C, D 132.1 A, B, C, D, E 0.3

C, E 221.7 B, C, E 94.8
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after the reference time, and the 68% interval spans 
80 days, with an expected tremor at 110 days. The next 
tremor occurred 95 days later.

The same calculation is performed for the 320 groups 
that yielded estimated parameters with small errors. The 
resultant predictions better reflect the nature of the BPT 
model since no tremors occurred at least five days prior 
to this reference time in any of the groups. The 95% pre-
diction intervals for each group range from a minimum 
of 40 days to a maximum of 792 days after the reference 
time; the 68% interval spans approximately half that 
range, but neither is accurate by more than a few days. 
Figure 8c shows a comparison of the predicted and actual 
occurrence times, with 303 (94.7%) and 262 (81.9%) of 
the 320 groups falling within the 95% and 68% prediction 
intervals, respectively. The actual occurrence tends to be 
slightly later than the predicted value at this reference 
time.

To examine the forecasting performance at different ref-
erence times, we repeated the same trial with 1000 ran-
domly selected reference times over a one-year period, 
beginning at 00:00:00 on April 1, 2014. The proportion of 
forecasts that fall within the 95% and 68% prediction inter-
vals fluctuates with the time of the year when the forecasts 
are made (Fig. 8d). The forecasting performance is gener-
ally lower when many tremors occur during a given time 
period. This is probably because the assumed log-normal 
distribution is too simplistic to accurately represent a short-
term recurrence of tremor, which is controlled by various 
near-field processes, such as tremor migration. However, 
95.3% and 70.7% of the events fall within the 95% and 
68% intervals of our long-term tremor forecasting results, 
respectively, which indicates the robust performance of this 
forecasting model.

The performance gain of the mixture distribution 
relative to a null model, which is a Poisson process in 
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Fig. 8  Example results of the forecasting experiment. The cumulative probabilities (black curves) of the occurrence of the next tremor after the 
reference time (00:00:00 on April 1, 2014) for the two groups in Fig. 2a, b are shown: a 34.20°N, 134.05°E and b 34.65°N, 136.55°E. The light-gray and 
dark-gray bands represent 68% and 95% prediction intervals for the timing of the next tremor events, respectively. The red vertical line shows the 
expected time of the next tremor event. The circles with vertical bars show the observed timings of the tremor events. The red circle indicates the 
next tremor event, which is the target of the forecast. c Comparison of the forecasted time (mean) of the next tremor events and the actual tremor 
times. d Percentage of the next tremor events that occurred within the 68% (orange) and 95% (blue) prediction interval, calculated for all groups. 
The dashed horizontal lines show the 68% (orange) and 95% (blue) levels. The gray bars show the daily number of tremor events in the forecasted 
groups
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this case, is measured based on the likelihood ratio. We 
calculated the likelihood of the mixture distribution 
with the estimated parameters from this study and the 
inter-event times of the forecasting period for each of 
the 320 groups. The likelihood of a Poisson process is 
given as:

where � is the event occurrence rate that has been calcu-
lated for the estimation period. The mixture distribution 
always gives a better likelihood, as expected, and the dif-
ference in the log-likelihood per inter-event time ranges 
from 1.5 to 4.8, with a mean of 3.5.

(16)L(�) =
n
∏

i=1

� exp {−��ti},

6 � Discussion
6.1 � Tidal stress effect and the modulated renewal process
Tectonic tremor activity exhibits a strong dependence 
on the tidal stress across some areas of the Nankai sub-
duction zone (Ide 2010; Nakata et  al. 2008; Shelly et  al. 
2007b). We investigate whether incorporating this 
dependence will improve the prediction performance 
using a group that is centered at 34.10°N, 133.90°E, 
which exhibits a relatively strong dependence on the tidal 
stress. The tidal stress was calculated at 30 km depth at 
this location using the code of Yabe et al. (2015) and the 
PREM velocity model (Dziewonski and Anderson 1981). 
A focal mechanism with strike 225°, dip 0°, and rake 90° 
is assumed based on the mechanisms of the VLFEs in the 
region (Ide and Yabe 2014).
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Fig. 9  Evaluation of the tidal stress effect on the tremor group centered at 34.10°N, 133.90°E. a Tidal stress level (black line) and timings of tremor 
events (red dots). b Histograms of the tidal stress level at this location for a 10-year period (blue) and timings of the tremor events (orange). c 
Probability density functions of the next tremor events that are estimated using renewal process models with (blue) and without (orange) tidal 
stress modulation. The circles with vertical bars show the timings of the tremor events. The red circle indicates the next tremor event to be 
forecasted. d Cumulative probability (black curve) of the occurrence of the next tremor after the reference time (00:00:00 on April 1, 2014). The 
light-gray and dark-gray bands represent the 68% and 95% prediction intervals for the timing of the next tremor events. The red vertical line shows 
the expected time of the next tremor event. The circles with vertical bars show the observed timing of the tremor events. The red circle indicates 
the next tremor event, which is the target of the forecast
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Tremors occur more frequently when the Coulomb 
stress is high, as shown in Fig. 9a, and the stress distri-
bution function at the timing of tremor occurrence is 
clearly shifted in the direction of higher stress compared 
with the distribution function of stress during the entire 
period (blue), as shown in Fig.  9b. The ratio between 
the two, which is the tremor rate at given stress levels, 
is dependent on an exponential function that has been 
described in previous studies (Beeler et al. 2013; Thomas 
et al. 2012; Yabe et al. 2015). This tidal influence is real-
ized in the renewal process model by multiplying the 
hazard rate h(t) , which does not account for tides, by the 
exponential influence of the tidal stress τ (t) at time t as 
follows:

where Atide is a parameter that defines the sensitivity to 
the tidal stress and tpre is the occurrence time of the pre-
vious event. This model is known as a modulated renewal 
process (MRP), and the distribution function for each 
time can be obtained from the hazard rate in the case of 
multiplicative modulation (Cox 1972).

For a group consisting of n+ 1 events occurring at time 
t0, . . . , tn , the log-likelihood is expressed using the hazard 
rate htide(t) as follows:

The estimated parameters without considering the tidal 
effect are:

with the inclusion of the tidal effect yielding:

Although the individual parameter values are not sig-
nificantly different between the non-tidal and tidal cases, 
the log-likelihood for the tidal case increased by about 
42.

We expect this renewal process model, which includes 
the tidal effect, to have a high explanatory power. How-
ever, the merit is not clear in the long-term forecast. 
A forecast of the timing of the next event at the begin-
ning of the forecasting period is shown in Fig.  9c. The 
rate of occurrence oscillates greatly with the tidal stress 
changes, which indicates that the tides are a significant 
contributor to the probability forecast over a very short 

(17)htide(t;µL,α,µS , σ ,φ,Atide) = h
(

t − tpre;µL,α,µS , σ ,φ
)

exp {Atideτ (t)},

(18)

ln L(µL,α,µS, σ ,φ,Atide) =
n

∑

i=1

ln(htide(ti))−
tn
∫

t0

htide(t
′)dt ′.

(19)
[log10 µL,α, log10 µS, σ ,φ] = [6.31, 0.388, 3.78, 2.52, 0.854],

(20)[log10 µL,α, log10 µS, σ ,φ,Atide] = [6.32, 0.412, 3.92, 2.51, 0.820, 2.18].

time frame. However, this tidal contribution is reduced if 
the time of the next event is evaluated using a cumulative 
distribution (Fig. 8a, b) and only has a very small effect 
on the prediction interval (Fig. 9d). The tidal effect would 
be more important for the forecast at time scales that are 
much shorter than the tidal periods. However, for short-
term forecasting, we must consider other factors, such as 
tremor migration and interactions.

6.2 � The effect of detectability
So far, we used all of the tremor events in the catalog of 
Mizuno and Ide (2019). The tremor detection limit can-
not be homogeneous in time, but rather is controlled by 
various factors, such as the propagating seismic waves 

of large earthquakes, tides, weather, and human activity, 
since tremors radiate signals that are only slightly above 
the noise level. These changes in the detection limit 
potentially affect the stochastic modeling results. We are 
unaware of any previous attempts to estimate the detec-
tion limit and completeness of a given tremor catalog, 
and we note that a thorough evaluation of these effects is 
beyond the scope of the present study. Nevertheless, we 
attempt to characterize the sensitivity of our results when 
only part of a catalog is available by performing the same 
analysis using one half of the tremor catalog.

The catalog of Mizuno and Ide (2019) provides tremor 
magnitude information based on the seismic energy. 
We selected the events with magnitudes larger than the 
median magnitude for each region that had > 1000 cata-
loged events. We then estimated the five parameters and 
their standard errors using the same approach outlined in 
Sect. 3.1. A comparison of the estimated µL and µS values 
when using the entire catalog and one half of the events is 
shown in Fig. 10.

These two parameters, which represent the recurrence 
interval, naturally increase because the number of events 
is halved for a fixed period. The inter-event time would 
be exactly doubled when we apply a Poisson process. 
However, the effect is small in the case of our mixture 
distribution. The medians of the ratio between the two 
estimates are 1.28 and 1.57 for µL and µS , respectively. 
This is because these values are determined by character-
istic peaks in the inter-event time distribution rather than 
the overall occurrence rate. µL is particularly insensitive 
to the tremor catalog because the long-term recurrence 
does not change significantly by removing some events 
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in one episodic activity. When µS is large, the change in 
µS is as large as that of a Poisson process, which suggests 
that the short-time recurrence is no longer periodic for 
these groups. We conclude from our test of an assumed 
very large change in tremor detectability (50%) that the 
present method reduces the effect of incomplete detect-
ability to an extent because it evaluates the recurrence 
times, which are robust for small changes in detectability.

6.3 � Extension to spatiotemporal models
This study used a time series of tremor activity that was 
spatially divided into groups at 0.05° intervals. However, 
this may not be appropriate because tremors interact 
with each other in both time and space. It is well known 
that tremors have a spatially segmented structure (Ide 
2010; Obara 2010). While a small segment with tremors 
concentrated in a small area is safely assumed to be one 
group, large segments can extend over tens of kilom-
eters, and tremor migration can occur over periods of a 
few days to weeks across multiple segments (e.g., Ito et al. 
2007). Forecasting the activity of individual groups can-
not be done independently, thereby requiring the degree 
of influence between groups to be quantified and incor-
porated into forecasting models for improved results.

Wang et  al. (2018) proposed an approach to utilize the 
degree of this spatial influence by employing the hidden 
Markov model for the spatial clustering of tremors. They 
divided the tremors in each of the Kii and Shikoku regions 

into nearly 20 clusters, with the typical cluster size being 
larger than the size of the groups in this study and the 
clusters being divided into larger subsystems. Although 
there are few renewal process models that incorporate spa-
tial effects, it is also possible to incorporate stress changes 
due to nearby events into the model as MRP, as was done 
to evaluate the tidal stress effects in the previous subsec-
tion. Alternatively, the external effects can be incorporated 
by transforming the time axis (Nomura and Tanaka 2021). 
These methods may provide more accurate forecasting 
capabilities if they incorporate the spatial effects of cluster-
ing and migration that were evaluated by Wang et al. (2018).

7 � Conclusions
Scientific and social attention is often focused on 
whether slow deformation occurs near plate boundaries 
prior to a major earthquake, especially in the Nankai 
subduction zone, Japan. For monitoring this slow defor-
mation at plate boundaries, tectonic tremors are a con-
venient phenomenon. Quantitative tremor monitoring is 
an important scientific and technical challenge, and it is 
also critical for improving our ability to make near-future 
predictions of tremor activity. However, few attempts 
have been made to forecast future tremor activity, due in 
part to the inability to accurately define individual events. 
Here, we set up a relatively simple forecasting problem in 
which the timing of the first tremor event after a given 
reference time is evaluated using the event time series 
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and a renewal process for each spatial group. The proba-
bility distribution of the renewal process was constructed 
as a mixture distribution of a BPT distribution, which 
represents long-term loading, and a log-normal distribu-
tion, which represents short-term interactions.

We estimated the parameters for this distribution fol-
lowing a well-established method for ordinary seismic-
ity (e.g., Ogata 1988). We estimated five parameters that 
represented the mixture distribution via the maximum 
likelihood method using the EM algorithm and evalu-
ated the goodness of fit of the model using the KS test. 
We were able to construct a model that explained the 
observed tremor intervals for 72% of all the analyzed 
groups. Some of the unsuccessful groups included tem-
porary increases in the tremor occurrence rate due to a 
long-term SSE. However, we can objectively estimate the 
timing of occurrence of abnormal activity in these unsuc-
cessful groups by dividing the groups into intervals using 
change points (Ogata 1992; Okutani and Ide 2011), which 
has also been used to determine earthquake swarms.

It is known that tremors with longer durations have 
longer recurrence periods (Idehara et al. 2014), but the con-
verse is not true, as longer recurrence periods do not nec-
essarily imply longer tremor durations. We employed two 
new parameters: the short-term recurrence period, which 
is expressed as a log-normal distribution, and the number 
of tremors during a single tremor episode, and found that 
the duration, short-term recurrence period, and number 
of tremors all affect the long-term recurrence interval. Fur-
thermore, the rate of plate subduction is another important 
parameter, although previously estimated rates have large 
uncertainties. These dependencies are natural if we consider 
that episodic tremor activity releases the slip deficit accu-
mulated by long-term loading during inter-episode periods.

We conducted a forecasting experiment using our 
renewal process model and the model parameters that 
were estimated from the previous 10-year period of 
tremor activity. We confirmed that the forecasting per-
formance is almost as expected using the final 2.5-year 
period in the tremor catalog. Therefore, this model will 
be able to provide either daily or monthly tremor fore-
casts for the entire Nankai subduction zone. However, 
neither the 95% nor 68% prediction intervals can be very 
small, since the renewal process behavior is similar to a 
simple BPT model for long-term forecasting. Introducing 
spatial tremor interactions will be important for accurate 
forecasting, especially at short time scales.
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