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Precision and convergence speed 
of the ensemble Kalman filter‑based parameter 
estimation: setting parameter uncertainty 
for reliable and efficient estimation
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Abstract 

Determining physical process parameters in atmospheric models is critical to obtaining accurate weather and climate 
simulations; estimating optimal parameters is essential for reducing model error. Recently, automatic parameter esti-
mation using the ensemble Kalman filter (EnKF) has been tested instead of conventional manual parameter tuning. 
To maintain uncertainty for the parameters to be estimated and avoid filter divergence in EnKF-based methods, some 
inflation techniques should be applied to parameter ensemble spread (ES). When ES is kept constant through the 
estimation using an inflation technique, the precision and convergence speed of the estimation vary depending on 
the ES assigned to estimated parameters. However, there is debate over how to determine an appropriate constant 
ES for estimated parameters in terms of precision and convergence speed. This study examined the dependence of 
precision and convergence speed of an estimated parameter on the ES to establish a reliable and efficient method for 
EnKF-based parameter estimation. This was carried out by conducting idealized experiments targeting a parameter in 
a cloud microphysics scheme. In the experiments, there was a threshold value for ES where any smaller values did not 
result in any further improvements to the estimation precision, which enabled the determination of the optimal ES in 
terms of precision. On the other hand, the convergence speed accelerates monotonically as ES increases. To general-
ize the precision and convergence speed, we approximated the time series of parameter estimation with a first-order 
autoregression (AR(1)) model. We demonstrated that the precision and convergence speed may be quantified by two 
parameters from the AR(1) model: the autoregressive parameter and the amplitude of random perturbation. As the ES 
increases, the autoregressive parameter decreases, while the random perturbation amplitude increases. The estima-
tion precision was determined based on the balance between the two values. The AR(1) approximation provides 
quantitative guidelines to determine the optimal ES for the precision and convergence speed of the EnKF-based 
parameter estimation.
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1  Introduction
The accuracy of numerical weather forecasting and cli-
mate projections is affected by various factors. In terms 
of short-term weather forecasting, accurate initial con-
ditions are produced by utilizing a sufficient volume 
and spatial coverage of observations, alongside effective 
data assimilation (DA) methods. Additionally, applying 
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smaller grid spacing and accurate discretization schemes 
to fluid dynamics equations reduce the discretization 
error in atmospheric simulations. Although these efforts 
are critical in terms of improving forecasting accuracy, 
they are not sufficient. Atmospheric models parameter-
ize many physical processes, such as cloud microphysics, 
turbulence, surface flux, radiation, and moist convection. 
Such parameterizations contain numerous physical and 
numerical parameters having their own uncertainties, 
potentially causing severe forecasting errors. For exam-
ple, Gilmore et  al. (2004) showed that uncertainties for 
intercept parameters and particle densities in a cloud 
microphysics scheme largely affected the development 
of convective clouds. Sanderson et  al. (2008) showed 
that the entrainment coefficient in a convection scheme 
impacted climate sensitivity for general circulation model 
(GCM) simulations.

Ideally, physical model uncertainties should be solved 
by improving the model itself based on an understand-
ing of actual physical processes, and determining model 
parameters based on experiments and measurements. 
However, to reduce prediction error, we often “tune” 
parameters in the existing physical model instead of 
improving model equations. The conventional param-
eter tuning method involves parameter sensitivity experi-
ments and comparing each performance for different 
parameter sets (Mauritsen et  al. 2012; Hourdin et  al. 
2017). This is a meaningful procedure as researchers can 
directly check the impact of varying parameter values on 
the prediction and evaluate its effects on the climate. It is 
important as, in general, the time scale of climate is quite 
longer than the time scale of physical processes directly 
governed by the parameters. However, such manual 
parameter tuning is limited in terms of its evaluation 
efficiency. As optimal parameter values in weather pre-
diction vary depending on the region, season, and phe-
nomenon of interest, it is not practical to manually tune 
parameters for various conditions. As such, an advanced 
optimization method that automatically processes 
numerous observational data and quantitatively incor-
porates this information into a physical model is more 
advantageous than tuning fixed values.

To date, many DA methods have been proposed, such 
as the four-dimensional variational method (4DVar; 
Sasaki 1969; Thompson 1969), ensemble Kalman filter 
(EnKF; Evensen 1994), and four-dimensional ensemble-
variational method (4DEnVar; Buehner et al. 2013). These 
methods have mainly been used to produce the most 
likely initial conditions, incorporated into numerical 
weather forecasting systems (e.g., Houtekamer et al. 2005; 
Lien et al. 2017; JMA 2019; NOAA 2019; ECMWF 2020). 
These methods have also been applied to parameter opti-
mization for physical models (Ruiz et al. 2013a). Zhu and 

Navon (1999) attempted to optimize model parameters 
in a global spectral model using 4DVar with the adjoint 
model; they reported that optimized parameters reduced 
the forecast error over a few days. Aksoy et  al. (2006b) 
tested the parameter estimation in a two-dimensional 
(2D) sea breeze model using the ensemble square root 
filter (EnSRF; Whitaker and Hamill 2002). They were 
successful in estimating the true parameter values of the 
nature run. Aksoy et al. (2006a) also estimated a vertical 
eddy mixing coefficient in a non-hydrostatic mesoscale 
model. Tong and Xue (2008) successfully estimated the 
parameters of a cloud microphysics scheme by applying 
EnSRF to convective-scale radar data assimilation. Ruiz 
et al. (2013b) tested the estimation of convective scheme 
parameters incorporated into a GCM using an ensemble 
transform Kalman filter (ETKF; Bishop et al. 2001). Kot-
suki et al. (2018) optimized the parameter of a convective 
scheme by applying the ETKF to global precipitation data 
assimilation. Recently, Kotsuki et  al. (2020) attempted 
to optimize a spatially varying parameter field by using 
a local ensemble transform Kalman filter (LETKF; Hunt 
et  al. 2007). Ruckstuhl and Janjić (2020) tested the esti-
mation of the roughness length in a convection-permit-
ting model using the LETKF; they showed estimating the 
roughness length led to the improvement of cloud and 
precipitation forecasts.

In the EnKF-based parameter estimation, perturbed 
parameter values are assigned to each ensemble member 
to artificially generate parameter uncertainty. Unlike state 
variables such as wind, temperature, and moisture, the 
parameter values generally remain constant during the 
forecast and are only updated during the analysis step. 
The parameter ensemble spread (ES), defined as a stand-
ard deviation of the parameter ensemble, is a key metric 
of parameter uncertainty. This ES also remains constant 
during the forecast; as such, the updated analysis ES for 
the parameter is always smaller than its previous one. 
This leads to filter divergence, in which the parameter 
ES gradually decreases, and the parameter value finally 
loses its sensitivity to observations. To avoid filter diver-
gence, previous studies have set a threshold value for the 
standard deviation of the parameter ensemble, where the 
standard deviation was adjusted back to the threshold 
when it fell below the threshold (e.g., Aksoy et al. 2006a, 
b; Tong and Xue 2008). Kotsuki et  al. (2018) applied an 
inflation technique to parameter ensemble at every anal-
ysis step to ensure that the parameter ES was constant.

Thus, the issue centers on determining the optimal 
threshold or fixed value of the parameter ES. Tong and 
Xue (2005) stated that an excessively large ES generates 
oscillations around the true value, reducing estimation 
precision. By contrast, an ES that is too small leads to 
slow convergence, while the use of further smaller ES can 
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cause filter divergence. Kotsuki et al. (2018) showed that 
the estimation reaches a specific value using different 
ES values for the estimated parameter; however, it takes 
longer to converge to that value with a smaller ES. These 
studies suggest that an ES that is not too large nor too 
small is appropriate for precise and rapidly converging 
parameter estimation. A possible compromise is to use 
larger ES for the first few cycles prioritizing fast conver-
gence and then to use smaller ES expecting high preci-
sion like Aksoy et al. (2006a, b) and Tong and Xue (2008). 
In this case, however, the issue about how we set the 
lower limit of ES value to achieve high precision remains.

Ruiz et al. (2013b) proposed a method to estimate the 
optimal ES for each analysis step. In their method, the 
inflation factor for the ES of the parameter was deter-
mined based on the analysis error covariance matrix 
in the ensemble space, including information on state 
variables and parameters. Ruiz et al. (2013b) stated that 
regardless of the initial ES, the method can optimize the 
parameter ES for each analysis step depending on model 
sensitivity to parameters. While this method provides 
optimized parameter ES, there is some spin-up time until 
the ES reaches the optimal value. This is unlikely to be 
problematic when estimating parameters in GCMs dur-
ing the integration time of several tens of days, as carried 
out by Ruiz et  al. (2013b). However, this could be fatal 
if, for example, we want to estimate parameters in cloud 
microphysics schemes by assimilating radar reflectivity 
data for less than an hour. Therefore, a suitable ES value 
is required for the ensemble from the initial time to esti-
mate parameters effectively. Ordinarily, model sensitivity 
to each parameter is unknown a priori, making it unclear 
what constitutes a suitable ES value. To establish a reli-
able and effective estimation method, there is a need to 
advance the current understanding of how the parameter 
ES affects the precision and convergence speed of the 
estimation.

This study aims to clarify how the precision and conver-
gence speed varies depending on the prescribed constant 
ES. This will help develop a procedure to determine the 
optimal ES that provides precise and rapidly converging 
estimation. An observing system simulation experiment 
(OSSE) which estimates a cloud microphysics parameter 
with the assimilation of radar reflectivity data was con-
ducted. Different constant ES values were set for an esti-
mated parameter, and we investigated the dependence of 
precision and convergence speed on the ES value. Finally, 
we approximated the estimation time series using a sim-
ple mathematical model to quantify the precision and 
convergence speed of the parameter estimation. We also 
checked the accuracy of parameter estimation because, 
in general, there is no guarantee that the true value can 
be estimated accurately in the OSSE. Note that accuracy 

and precision are different metrics: The accuracy means 
how close the estimated value is to the true value; the 
precision means how close the estimated values for dif-
ferent trials are to one another. Thus, it is possible that 
the estimation shows high precision but poor accuracy 
due to some systematic errors in the estimated values.

We focused on cloud microphysics parameters as 
they significantly affect the prediction of moist convec-
tive phenomena. Deep moist convection often results 
in severe weather, such as heavy rain and strong wind 
gusts. The optimization of cloud microphysics param-
eters may help preserve life and property by reducing the 
forecasting error of severe storms and providing accurate 
weather information. The direct assimilation of convec-
tive cloud observations (e.g., radar reflectivity) continues 
to be challenging because of the possible discrepancy for 
convection appearance between a numerical model and 
nature. A quantitative understanding of the precision 
and convergence speed of parameter estimation for cloud 
microphysics is essential to expanding the current knowl-
edge on convective-scale data assimilation based on the 
EnKF.

This paper has been organized into four additional sec-
tions. Section 2 describes the methodology of our experi-
ment, Sect.  3 presents the results, Sect.  4 discusses the 
results, and Sect. 5 presents the conclusions of this study.

2 � Methodology
2.1 � Overview
This study carried out OSSE within the framework of a 
perfect-model twin experiment. The nature run was an 
idealized squall-line simulation using a bulk cloud micro-
physics scheme with fixed parameter values. One of the 
microphysics parameters in the nature run was consid-
ered the true value and a target of parameter estimation. 
Figure 1 shows the schematic of the experiment; the DA 
cycle using the LETKF had commenced from T = 3 h of 
the nature run. The initial fields of the ensemble simula-
tion were generated by adding random perturbations to 

Nature run
T = 0 h T = 3 h

Ensemble 
simulation with DA
(32 members)

T = 4h

Only state estimation Both state and parameter estimation

DA every 5 min

Fig. 1  Schematic of the experiment. First, the nature run was 
performed (horizontal blue arrow). State estimation using the LETKF 
with 32 ensemble members commenced at T = 3 h (black arrows). 
Pseudo-radar reflectivity fields calculated from the nature run were 
assimilated into the ensemble simulation every 5 min. Parameter 
estimation commenced at T = 4 h (red arrows)
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the state fields of the nature run at T = 3 h. Pseudo-radar 
reflectivity fields calculated from the nature run were 
used as observations for the DA cycle. During the first 
1  h DA cycle, only the state estimation was conducted 
without parameter estimation, where the ensemble used 
the same parameter value as the true value of the nature 
run. During this period, the ES of state fields gradu-
ally increased and then became steady. Following this, 
perturbation was added to the target parameter in the 
ensemble and parameter estimation commenced from 
T = 4 h of the nature run.

2.2 � Nature run
A 2D squall-line simulation was carried out to produce 
the nature run using a non-hydrostatic atmospheric 
model of the Scalable Computing for Advanced Library 
and Environment-Regional Model (SCALE-RM; Nishi-
zawa et al. 2015; Sato et al. 2015) version 5.3.3. The hori-
zontal and vertical grid spacing was 5  km and 250  m, 
respectively. The size of the calculation domain was 
2160 and 17.5  km in the horizontal and vertical direc-
tions, respectively. The integration time interval for the 
advection scheme was 2.5  s. Periodic conditions were 
applied horizontally with 100 km buffer regions from lat-
eral boundaries for potential temperature, wind speed, 
and water vapor mixing ratio. In the buffer regions, 
gravity waves and cold air outflow by the squall line 
were damped. A six-class single-moment microphys-
ics scheme (Tomita 2008) was utilized to simulate moist 
convective processes, the target of parameter estimation. 
Sub-grid scale turbulence parameterization was not used 

to avoid estimation complexity, and only numerical dif-
fusion was added for model stability. Analytical thermo-
dynamic and wind profiles proposed by Weisman and 
Klemp (1982) were used to provide a favorable environ-
ment for the development of the squall line. Figure  2 
presents the environmental profiles of the potential tem-
perature, water vapor mixing ratio, and horizontal wind 
speed. The maximum mixing ratio near the surface was 
set to 14 g  kg−1, while the maximum wind speed at the 
top of the atmosphere was set to 10 m s−1. Figure 3 shows 
the development of the cold pool and snapshots of the 
pseudo-radar reflectivity. This simulation successfully 
produced a squall line that endured for more than one 
day.

2.3 � Initial ensemble
The initial ensemble was generated by adding random 
perturbations to potential temperature, horizontal and 
vertical wind speeds, and the mixing ratios of water 
vapor and hydrometeors of the nature run at T = 3  h. 
Each perturbation was generated by summing 2D Gauss-
ian kernels whose centers were at each model grid, and 
horizontal and vertical width (1σ) was 5 km and 250 m, 
respectively. The amplitude of the Gaussian kernel was 
randomly sampled from a normal distribution with a zero 
mean and a specific standard deviation. The standard 
deviation of the kernel amplitude differed for each vari-
able: 0.2 K for potential temperature, 0.2 m s−1 for wind 
speed, and 0.06  g  kg−1 for mixing ratio. Note that per-
turbations were added only to a specific domain; 400 km 

Fig. 2  Environmental profile for squall-line simulation: a potential temperature; b water vapor mixing ratio; and c horizontal wind speed
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horizontally around the squall line and 10 km vertically 
from the surface.

2.4 � State and parameter estimation
The SCALE-LETKF system (Lien et  al. 2017) which 
incorporates the DA system using the LETKF into the 
SCALE-RM was used. We performed the simultaneous 
estimation of state variables and a parameter with differ-
ent localization scales; the ensemble size was 32. Pseudo-
radar reflectivity fields obtained from the nature run were 
assimilated into the SCALE-RM ensemble simulation 
every 5 min. Model grids with a reflectivity of ≥ 10 dBZ in 
the nature run were considered precipitation data, while 
those < 10 dBZ were considered non-precipitation data 
and replaced with 5 dBZ uniformly prior to assimilation. 
Radar reflectivity observation error was assumed to be 1 
dBZ. Note that precipitation data in the nature run were 
only assimilated if at least half the ensemble members 
(16 members) at corresponding grids also experienced 
precipitation. In contrast, non-precipitation data were 
assimilated if there is even one member experiencing 
precipitation to remove precipitation that does not exist 
in the nature run from the ensemble simulation. Reflec-
tivity data at grids that did not meet these conditions 
were not assimilated. The localization length scales for 
state estimation were 4 and 2  km in the horizontal and 
vertical directions, respectively. The model dynamics, 
physics, and domain in the SCALE-LETKF system were 
the same as the nature run. During the first 1 h of sim-
ulation (i.e., 12 DA cycles), the ensemble used common 
parameter values with the nature run. During this period, 

only state variables were estimated, such as wind speed, 
temperature, pressure, water vapor, cloud water, rain, 
cloud ice, snow, and graupel. The inflation technique, 
known as the relaxation to prior spread (RTPS) method 
(Whitaker and Hamill 2012), was used with a fixed relax-
ation parameter of 0.95 for the state estimation. Within 
this 1 h integration, the ES for the radar reflectivity field 
gradually increased and reached an almost steady state 
(Fig. 4). We did not perform a long spin-up period before 
starting DA but the grows of spread for every 5 min seem 
to be large enough to increase the spread gradually before 
starting the parameter estimation. The parameter estima-
tion for the microphysics scheme commenced at T = 4 h 
of the nature run (Fig. 1). Unlike the state estimation, a 
non-localized ETKF was applied to estimate a spatially 
uniform parameter; this was a LETKF with an infinite 
localization scale. For the parameter ensemble, a relaxa-
tion parameter of one was utilized for the RTPS inflation 
to maintain the ES as a constant parameter throughout 
the experiment. This was the same approach as adopted 
by Kotsuki et al. (2018).

2.5 � Parameter to be estimated
The estimation target was a parameter in a six-class sin-
gle-moment microphysics scheme (Tomita 2008). This 
scheme predicts mass exchange among six categories of 
water substances: water vapor, cloud water, rain, cloud 
ice, snow, and graupel. The mass exchange processes con-
sist of saturation adjustment, auto-conversion, accretion, 
evaporation, sublimation, deposition, melting, freezing, 
and the Bergeron process. These processes contain many 

Fig. 3  Cold pool and radar reflectivity of the simulated squall line in the nature run: a Hovmöller diagram of potential temperature at the lowest 
model level; b–d snapshots of radar reflectivity, where (b) T = 6 h; (c) T = 18 h; and (d) T = 24 h. The three red line segments in (a) correspond to the 
times and locations of (b–d)
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tunable parameters, such as intercept and slope param-
eters for the Marshall–Palmer distribution of precipitat-
ing hydrometeors (Marshall and Palmer 1948), terminal 
velocity coefficients for these hydrometeors, collection 
efficiencies of accretion processes, and parameters con-
trolling auto-conversion rates. As this study investigates 
the precision and convergence speed of parameter esti-
mation in idealized settings, we selected parameters that 
were highly sensitive to observation (radar reflectivity). 
As such, the terminal velocity coefficient of a raindrop, 
cR, was selected as the unknown parameter:

where vtR is the terminal velocity of the raindrop; D is the 
raindrop diameter; ρ is air density; and ρ0 is the refer-
ence air density of 1.28  kg  m−3. In this experiment, the 
true value of cR is 130 in the nature run. We selected cR 
as the estimated parameter as it controls the falling speed 
of rain. If cR becomes larger, the falling speed of rain 
becomes faster (Eq.  (1)), and thus, the area of intense 
radar reflectivity moves downward more quickly. To pre-
vent cR from becoming a value that is too large or too 
small to be physically practical, a variable transformation 

(1)vtR = cR D
ρ0

ρ

1/2

,

was introduced (as per Eq.  (2)), and the variable, x, was 
estimated and converted back to cR after the estimation:

Kotsuki et al. (2018) also used this transformation. Note 
that cR was always between cRmin and cRmax for any x, 
where cRmin was set to zero as a negative cR causes the 
ascent of raindrops (Eq.  (1)). On the other hand, cRmax 
was set to 260 such that the transformation of Eq. (2) was 
symmetric with respect to the true value of cR = 130. Fig-
ure 5 shows the cR(x) curve of Eq. (2); in the x space, x = 0 
is the true value corresponding to cR = 130 in the nature 
run.

2.6 � Experimental settings
At the initial time of parameter estimation (T = 4  h in 
Fig. 1), different parameter values were assigned to each 
member in the ensemble. Parameter values for each 
member were randomly sampled from a normal distri-
bution with a mean of μinit and a standard deviation of 
σ in the x space. Note that the parameter ensemble only 
satisfied a normal distribution in the x space, and not the 
cR space as the transformation between cR and x was not 

(2)
cR(x) =

1

2
(cRmax + cRmin)+

1

2
(cRmax − cRmin) tanh x.

Fig. 4  Time series of the analysis ensemble spread for radar reflectivity. The ensemble spread was defined as the mean sample standard deviation 
of the radar reflectivity averaged over model grids where the observations to be assimilated existed. Open squares and open circles indicate the 
spreads for the first guess and the analysis, respectively. The origin of the time axis corresponds to T = 3 h for the nature run
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linear (Eq.  (2) and Fig.  5). The parameter perturbation 
was updated, and the μ of the ensemble was modified 
at every DA step. An updated μ was considered an esti-
mated parameter value for each step. The standard devi-
ation, σ, is a measure of the parameter ES. As stated in 
Sect. 2.4, the RTPS method with a coefficient of one was 
applied to the parameter ensemble; as such, σ was kept 
constant throughout the estimation.

The time-independent σ value is a key parameter of the 
experiment. We investigated the dependence of preci-
sion and convergence speed of the estimated parameter 
value (μ) on the parameter ES (σ). Four different ES val-
ues were tested: σ = 0.05, 0.1, 0.2, and 0.4 in the x space, 
corresponding to approximately 6.5, 13, 26, and 49 in the 
cR space, respectively, at μ = 0 (cR = 130). Note that the 
spread in the cR space becomes smaller when the cR value 
approaches cRmin or cRmax even though σ in the x space 
is kept constant (see Fig.  5). However, to discuss the 
dependence of precision and convergence speed on the 
parameter ES as simply as possible, we fixed the param-
eter ES in the x space throughout the estimation. Under 
the set σ values, three different initial ensemble means 
were tested: μinit = 0, 0.55, and − 0.55 in the x space, cor-
responding to cR = 130, 65, and 195. As the OSSE was a 
perfect-model twin experiment, it was expected that all 
experiments may be able to finally attain the true value 
of the nature run (x = 0), as per previous studies such as 
Tong and Xue (2008). Thus, experiments where μinit = 0 
were expected to provide a statistically stationary time 
series of μ fluctuating around the true value and illus-
trate the estimation precision. We also expected that 
experiments where μinit = 0.55 and −  0.55 would result 
in convergence from the wrong values to the true value, 
illustrating the convergence speed of the estimation. All 
experimental settings are listed in Table 1.

The left-most column shows the experimental ID; μinit 
represents the parameter ensemble mean at the initial 
time; and σ represents the time-independent standard 
deviation of the parameter ensemble (parameter ensem-
ble spread). The right-most column details the initial 
time of each experiment corresponding to the simulation 
time of the nature run.

3 � Results
3.1 � Overview
Figure 6 shows the time series of the parameter ensemble 
mean for all experiments listed in Table 1; Fig. 6a–d pre-
sents the experiments for μinit = 0 (Exps. 1–4), where 50 
trials with different initial parameter ensemble perturba-
tions were carried out for each setting. This figure shows 
that the parameter ensemble mean successfully remains 
around the true value of the nature run (x = 0) with some 
fluctuation; these time series appeared to be statistically 
stationary. Figures  6a–d clearly illustrate that the fluc-
tuation frequency varies depending on σ: the time series 
with a small ES fluctuated slowly, while a large ES fluctu-
ated rapidly. The amplitude of the fluctuation was indica-
tive of the precision; the time series with the largest ES 
(σ = 0.4) fluctuated with the largest amplitude, indicating 
low precision. The difference in the fluctuation ampli-
tude between σ = 0.05 and 0.2 was unclear, while some 
extreme values appeared for the experiment of σ = 0.2.

Figure 7 shows the power spectral density of the time 
series for Exps. 1–4. For the high-frequency range, the 
spectral amplitude increased with σ. This corresponded 

Fig. 5  A variable transformation between cR and x. The curve of cR is 
plotted against x as per Eq. (2)

Table 1  List of experimental settings

Experimental ID μinit σ Initial time

Exp. 1 0 (Cr = 130) 0.05 (ΔCr ~ 6.5) T = 4 h

Exp. 2 0 0.1 (ΔCr ~ 13) T = 4 h

Exp. 3 0 0.2 (ΔCr ~ 26) T = 4 h

Exp. 4 0 0.4 (ΔCr ~ 49) T = 4 h

Exp. 5 0.55 (Cr = 195) 0.05 Every 1 h from 
T = 7 h

Exp. 6 0.55 0.1 Every 1 h from 
T = 7 h

Exp. 7 0.55 0.2 Every 1 h from 
T = 7 h

Exp. 8 0.55 0.4 Every 1 h from 
T = 7 h

Exp. 9  − 0.55 (Cr = 65) 0.05 Every 1 h from 
T = 7 h

Exp. 10  − 0.55 0.1 Every 1 h from 
T = 7 h

Exp. 11  − 0.55 0.2 Every 1 h from 
T = 7 h

Exp. 12  − 0.55 0.4 Every 1 h from 
T = 7 h
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to the frequently fluctuating time series for the large σ, 
as shown in Fig.  6. In all cases, the spectral amplitude 
decreased with increasing frequency, showing the "red 
noise" spectrum characteristics. The red noise spectrum 
is a feature that indicates the first-order autoregres-
sion process. In the later section, we approximate the 
experimental time series as the first-order autoregression 
model (AR(1) model) in order to understand the behavior 
of the time series clearly.

Figure  6e–h shows the results from experiments with 
μinit = 0.55 (Exps. 5–8: red lines) and − 0.55 (Exps. 9–12: 
blue lines). For this set of experiments, there were 13 tri-
als conducted for each setting. The initial times of the 
experiments were every 1 h from 3 h following the com-
mencement of Exps. 1–4; the initial time of these experi-
ments was shifted from Exps. 1–4 because the time series 
of the parameter ensemble mean for each trial of Exps. 
1–4 (black lines in Fig. 6a–d) during the early simulation 

(a) σ = 0.05 (Exp. 1) (b) σ = 0.1 (Exp. 2)

(c) σ = 0.2 (Exp. 3) (d) σ = 0.4 (Exp. 4)

(e) σ = 0.05 (Exps. 5 and 9) (f) σ = 0.1 (Exps. 6 and 10)

(g) σ = 0.2 (Exps. 7 and 11) (h) σ = 0.4 (Exps. 8 and 12)

Fig. 6  Time series of parameter ensemble mean for all experiments: a–d experiments with an initial ensemble mean μinit of 0 (Exps. 1–4). The 
parameter ensemble spread (σ) for each experiment was: a 0.05; b 0.1; c 0.2; and d 0.4. Black lines represent the time series for a total of 50 trials 
for each setting. Red lines represent averaged time series of all trials. The origin of the time axis corresponds to T = 4 h for the nature run; e–h 
experiments where μinit = 0.55 (Exps. 5–8: red lines), and − 0.55 (Exps. 9–12: blue lines); e experiments where σ = 0.05 (Exps. 5 and 9); f σ = 0.1 
(Exps. 6 and 10); g σ = 0.2 (Exps. 7 and 11); and h σ = 0.4 (Exps. 8 and 12). Initial times of the experiments were every 1 h from 3 h following the 
commencement of Exps.1–4. The estimation duration was 6 h for each experiment. The beginning and end points of estimation are denoted by 
circles and squares, respectively. Black lines represent the averaged time series of Exps.1–4, which are the same as the red lines in (a–d)
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time did not sufficiently spread out from the initial value 
provided. As such, it was not appropriate to carry out 
a statistical comparison of the time series during this 
period. We also modified the initial times for each trial of 
Exps. 5–12, as the convergence speed may vary depend-
ing on the simulation time. The estimation duration was 
6  h for each experiment. The parameters successfully 
converged toward the true value in the μinit = 0.55 and 
−  0.55 series; the convergence speed accelerated as σ 

became larger, which supports the findings from Kotsuki 
et al. (2018).

3.2 � Accuracy
Although all experiments appeared to attain the true 
value of the nature run successfully, it was not clear 
whether the true value was accurately estimated for the 
entire simulation time. Figure 8 shows the averaged time 
series for all 200 trials of Exps. 1–4. Red open circles on 
the black line indicate that the mean of the estimates dif-
fers from the true value (x = 0) with a significance level 
of 1% based on the Student’s t test. From 14 to 20 h fol-
lowing the commencement of parameter estimation, the 
estimated parameters tended to be higher than x = 0. 
During this period, time steps where the mean estimates 
significantly differed from the true value continued inter-
mittently. This indicates that the estimation accuracy 
varies depending on the observations for each simula-
tion time, despite carrying out the estimation under the 
twin experiment framework. In this study, we considered 
the 3 h moving average of the mean time series (blue line 
in Fig.  8) as the bias component common to all experi-
ments. Sections  3.3 and 3.4 discuss the precision and 
convergence speed of the estimation, accounting for this 
estimation bias.

3.3 � Precision
The estimation precision is defined as how close the esti-
mated values for different trials are to one another. In this 
study, the metric of estimation precision was the sample 
standard deviation of estimation time series with the bias 
component removed. The sample standard deviation of 
the estimated parameter was calculated as:

Fig. 7  Power spectral density of the time series of parameter 
ensemble mean for Exps. 1–4. The red line is for the parameter 
ensemble spread (σ) of 0.05, the purple line is for σ = 0.1, the cyan 
line is for σ = 0.2, and the yellow line is for σ = 0.4. Each spectrum was 
calculated by applying the discrete Fourier transformation to the time 
series of each trial and averaging these values

Fig. 8  Averaged time series for all the trials of Exps. 1–4. The black line is the averaged time series. Color shade represents the standard deviation 
of all trials. Red open circles indicate that the mean of the estimates differs from the true value (x = 0) with a significance level of 1% based on the 
Student’s t test. The blue line shows the 3 h moving average of the black line
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where μ(t) is the time series of the parameter ensemble 
mean for each time step, t; xbias(t) is the bias component 
(blue line in Fig. 8); and T is the number of time steps of 
the estimation. Here, a smaller σμ indicates higher preci-
sion; Fig. 9 presents the mean σμ, averaged for all 50 trials 
for each parameter ES (σ). The σμ became smallest when 
σ was 0.1 or less; this implied that σ = 0.1 was the thresh-
old for the parameter ES. There were no further improve-
ments to the estimation precision even if σ was further 
reduced from a value of 0.1. As the convergence speed 
accelerates as σ decreases (see Sect.  3.4), a σ of 0.1 was 
optimal to provide the best precision and better conver-
gence speed in this experimental framework. Section 3.5 
presents the quantification of the dependency between 
precision and the parameter ES using the AR(1) model.

3.4 � Convergence speed
Figure  10 illustrates the composite time series of the 
parameter ensemble mean for Exps.5–12. Note that 
the bias component shown in Fig. 8 was removed from 
each time series prior to compositing. The convergence 
speed accelerated as σ became larger. The open circles 
in Fig. 10 indicate that the set of time series did not dif-
fer from that for Exps. 1–4, with a significance level of 
1% based on the Student’s t test. With the exception of 

(3)σµ =

√

√

√

√

1

T

T
∑

t=1

{µ(t)− xbias(t)}
2,

Exp. 5 (red line in Fig. 10a), all experiments converged 
to statistically stationary time series within 6 h.

Figure  11 shows the convergence times for each 
experiment; here, the convergence time was defined as 
the period from the initial time to the first open circle 
in Fig. 10. For experiments where σ = 0.4, the parameter 
converged within only a few DA cycles; this occurred 
at ~ 10 min. This means that if σ was not too small, suc-
cessful parameter estimation occurred within a shorter 
time than the time scale of mesoscale convective sys-
tems (a few hours). The convergence speed is related 
to the persistence of the time series. This was dis-
cussed in quantitative terms by considering the AR(1) 
model in Sect.  3.5. Notably, when σ ≤ 0.2, the conver-
gence speed for μinit = 0.55 (Exps. 5–7) was slower 
than for μinit = − 0.55 (Exps. 9–11). This indicates that 
the convergence speed differs depending on whether 
parameter estimation begins from a larger or smaller 
value than the true value. This is likely to imply that 
model sensitivity to the cR value was not symmetric to 
cR = 130. In addition, it is possible that the parameter 
likelihood itself was not symmetric around the true 
value.

3.5 � Mathematical model of parameter estimation time 
series

Thus far, this study has demonstrated that although the 
precision of parameter estimation may be maximized 
for σ ≤ 0.1 (Fig. 9), the convergence speed for estimation 
accelerates as σ becomes larger, and as such, the conver-
gence time is shortened (Fig. 11). To quantify the preci-
sion and convergence speed of parameter estimation, we 
attempted to model the temporal variation of the esti-
mated parameter. The spectral amplitude that decreases 
with increasing frequency in Fig. 7 suggests the estima-
tion time series was close to the AR(1) time series. Here, 
we approximated the time series of the parameter ensem-
ble mean using the AR(1) model:

where t is each DA time step; μ′(t) ≡ μ(t) − xbias(t) is 
the time series of the parameter ensemble mean where 
the bias component is removed; φ is the autoregres-
sive parameter; and ε(t) is a random perturbation. The 
expected value of ε(t) is assumed as zero (i.e., E[ε] = 0), 
and its variance is referred to as σε

2 = E[ε2], where E[a] 
indicates the expected value of a. When the time series 
by Eq.  (4) is in a statistically stationary state, E[μ′] = 0. 
Under this condition, the variance of μ′ is defined as, 
σμ

2 = E[μ′2]. As the AR(1) model assumes that μ′ and ε 
have no correlation (i.e., E[μ′ε] = 0), the following rela-
tionship between σμ

2 and σε
2 is satisfied:

(4)µ′(t) = φµ′(t − 1)+ ε(t),

Fig. 9  Sample standard deviation of estimated parameters for 
Exps. 1–4. The standard deviation for each trial was calculated after 
removing the bias component (blue line in Fig. 8). Vertical bars 
represent a confidence interval of 99%
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Then, the lag-1 autocorrelation coefficient of μ′, ρ(1), 
satisfies the following:

Note that the range of φ is (− 1, 1). In the AR(1) model, 
φ is a metric of the time series persistence, where if φ is 
close to 1, μ′(t) is highly correlated to the previous value 
μ′(t − 1). In terms of parameter estimation, this means 
that if a parameter value at one step deviates considerably 
from the true value, the parameter at the next step also 
tends to be highly deviating, resulting in a slow conver-
gence speed.

For each trial, σμ
2 was estimated from Eq.  (3); then, 

using Eq. (6), φ was estimated as:

(5)σ 2
µ = φ2σ 2

µ + σ 2
ε .

(6)ρ(1) =
E
[

µ′(t)µ′(t − 1)
]

σ 2
µ

= φ.

Finally, using Eq. (5), we estimated the standard devia-
tion of the random perturbation, σε, as:

Figure 12 shows the φ and σε values, estimated by cal-
culating Eqs. (7) and (8) for all trials and averaged for 
each experimental setting; here, φ approaches 1 as σ 
decreases. This trend corresponds to a slow convergence 
speed of the estimated parameter for the experiment 
with a smaller σ. At the same time, σε increases with σ; 
this trend corresponds to a larger amplitude of the time 
series fluctuation for experiments with a larger σ.

The power spectral density function of AR(1) model is 
expressed as:

(7)φ =
1

T − 1

T
∑

t=2

µ′(t)µ′(t − 1)/σ 2
µ.

(8)σε = σµ

√

1− φ2.

(a) σ = 0.05 (b) σ = 0.1

(c) σ = 0.2 (d) σ = 0.4

Fig. 10  Composite time series of parameter ensemble mean for Exps. 5–12. Red (blue) lines are for the initial ensemble mean of μinit = 0.55 (− 0.55); 
a experiments where parameter ensemble spread (σ) was 0.05 (Exps. 5 and 9); b σ = 0.1 (Exps. 6 and 10); c σ = 0.2 (Exps. 7 and 11); and d σ = 0.4 
(Exps. 8 and 12). Note that the bias component (xbias) shown as the blue line in Fig. 8 was removed from each time series prior to compositing. Color 
shade represents the standard deviation of all trials. The origin of the time axis corresponds to the initial times of each trial. Open circles on each line 
indicate that the set of time series does not differ from Exps.1–4, with a significance level of 1% based on the Student’s t test
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where f is frequency (Wilks 2011). Here, f was discretized 
as f = n/T for n = 0, 1, …, T/2; f = 1/2 was the Nyquist 
frequency corresponding to a 10  min period. Figure  13 
presents the power spectral density function of Eq.  (9) 
using the estimates of φ and σε in Fig. 12 (dotted lines), 

(9)S
(

f
)

=
4σ 2

ε /T

1+ φ2 − 2φ cos
(

2π f
) ,

alongside the power spectral density directly derived 
from the experimental time series (solid lines). Note that 
the experimental power spectral density slightly differed 
from Fig.  7 because the bias component was removed 
from each time series. For σ = 0.05, the spectrum func-
tion was in good agreement with the experimental spec-
trum, except for the right end of the spectrum (red lines). 
We inferred that the AR(1) model could suitably approxi-
mate the parameter estimation time series for the tar-
get parameter cR. As σ increased, the spectrum function 
deviated slightly from the experimental spectrum, par-
ticularly for low-frequency components. This disagree-
ment may be related to the relatively large uncertainty of 
estimated φ, when σ is large (Fig.  12a). As for the disa-
greement in the low-frequency range, it is also possible 
that the frequency components having a period of several 
hours and more were not detected accurately since the 
simulation time was just 24  h. From the perspective of 
the AR(1) model, the rapidly fluctuating time series for a 
large σ is explained in terms of the dependence of power 
spectral density function on φ. As the parameter ES (σ) 
becomes larger, the autoregressive parameter φ value 
declines (Fig.  12a), resulting in the increase of power 
spectral density for the high-frequency (larger f) range as 
per Eq. (9).

3.6 � Quantitative understanding of precision 
and convergence speed

This section quantifies the precision and convergence 
speed of parameter estimation based on the AR(1) 
model. Figures 9 and 11 present the experimental results, 
illustrating the dependence of precision and convergence 

Fig. 11  Convergence time plotted against the parameter ensemble 
spread (σ). Red line shows Exps. 5–8 where the initial ensemble mean 
of μinit = 0.55; blue line shows Exps. 9–12 where μinit = − 0.55. The 
time series of Exp. 5 does not converge within 6 h, and as such, was 
not plotted

(a) Autoregressive parameter (b) Amplitude of random perturbation

Fig. 12  Two AR(1) model parameters estimated from the time series of Exps. 1–4: a estimated autoregressive parameter φ of Eq. (7); and b 
estimated standard deviation of the random perturbation σε of Eq. (8). Each plot represents the mean value for all the trials of Exp. 1 (σ = 0.05), Exp. 2 
(σ = 0.1), Exp. 3 (σ = 0.2), and Exp. 4 (σ = 0.4). The vertical bars represent a confidence interval of 99% for each estimated value
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time on the parameter ES (σ). This section reconsid-
ers this in terms of the dependence of φ and σε in Eq. (4) 
for σ. Based on Eq.  (4), the convergence from the initial 
wrong value to the true value is expressed as:

where μ′(0) is the initial parameter ensemble mean; we 
used E[ε] = 0. The e-folding time was estimated by substi-
tuting μ′(0)/e into the left-hand side of Eq. (10) and solv-
ing it for t:

Here, we assumed φ > 0, which is reasonable for this 
experiment (Fig. 12a). As the DA time step, t, should be 
an integer, the actual time step where the expected devia-
tion from the true value is < 1/e of its initial deviation 
assuming the AR(1) model, is:

Here, ⌈a⌉ indicates the least integer greater than or 
equal to a. Figure  14 shows the tAR(1) calculated using 

(10)
[

µ′(t)
]

= φtµ′(0),

t = −
1

ln (φ)
.

(11)tAR(1) =

⌈

−
1

ln (φ)

⌉

.

Eq.  (11), where the estimated φ was adopted from 
Fig. 12a. The right vertical axis of the figure presents the 
actual time in the correspondence, where one time step 
is 5  min. The AR(1)-based convergence time in Fig.  14 
was in good agreement with the convergence time shown 
in Fig.  11, indicating that the AR(1) model approxima-
tion is reasonable. The convergence speed accelerates 
as σ increases. In terms of convergence time, a larger σ 
was more advantageous for parameter estimation; how-
ever, the acceptable convergence time was dependent on 
the time scale of the phenomena (e.g., the time scale of 
deep convective clouds). If convergence time is within 
an acceptable range, the optimal parameter ES should be 
determined to maximize precision.

The standard deviation of the estimated σμ is a metric 
of estimation precision, which is expressed by rewriting 
Eq. (5) for σμ:

Figure  15 shows the σμAR(1) obtained using Eq.  (12), 
where the estimated φ and σε values are shown in 
Fig.  12; here, σμAR(1) was minimized at σ = 0.05. How-
ever, the σμAR(1) values for σ = 0.05 and 0.1 did not dif-
fer greatly; σμAR(1) = 9.63 × 10−2 for σ = 0.1, was only 4% 
larger than σμAR(1) = 9.27 × 10−2 for σ = 0.05. By contrast, 
σμAR(1) = 1.06 × 10−1 for σ = 0.2, was 11% larger than 
for σ = 0.1. Thus, we suppressed the estimation uncer-
tainty by setting σ to ≤ 0.1. With a decrease in σ, φ and 
σε were asymptotic to 1 and 0, respectively (Fig. 12). This 

(12)σµAR(1) =
σε

√

1− φ2
.

Fig. 13  Power spectral density function assuming the AR(1) model. 
The lines of spectral functions were based on Eq. (9) using estimated 
values of autoregressive parameter φ and standard deviation of the 
random perturbation σε for experiments where σ = 0.05 (red), 0.1 
(purple), 0.2 (cyan), and 0.4 (yellow) (dotted lines). Solid lines show 
power spectral density directly derived from the experimental time 
series. The experimental power spectral density differed slightly from 
Fig. 7 because the bias component (blue line in Fig. 8) was removed 
from each time series prior to calculating power spectral density

Fig. 14  Time step until the expected deviation from the true value 
becomes < 1/e assuming the AR(1) model. Each value was calculated 
based on Eq. (11) using the estimated autoregressive parameter, φ, 
for experiments where σ = 0.05, 0.1, 0.2, and 0.4 (Fig. 12a). The right 
vertical axis shows the actual time in correspondence where one 
time step is 5 min
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means that the numerator and denominator on the right-
hand side of Eq. (12) becomes zero in the σ = 0 limit. By 
decreasing σ, the behavior of σμAR(1) is determined by how 
the numerator and denominator of Eq.  (12) approach 
zero. For the current target parameter, the ratio of the 
speed at which the denominator and numerator were 
asymptotic to zero was almost constant for σ ≤ 0.1; σμAR(1) 
was minimized for this condition. This demonstrates that 
the parameter ES of σ ≤ 0.1 achieves the best estimation 
precision.

Following this, we determined the minimum ES for 
an acceptable convergence time. The convergence time 
for σ = 0.1 was approximately 1 h, as shown in Fig. 14. 
This time scale was comparable or shorter than long-
lasting convective systems. On the other hand, the con-
vergence time for σ = 0.05 was approximately 3 h. This 
is likely to be excessive duration for practical param-
eter estimation to target deep convection. In terms 
of convergence speed, we accepted a value of σ ≥ 0.1; 
and therefore, concluded that σ = 0.1 was the optimal 
parameter ES to estimate true cR in this twin experi-
ment. Table 2 summarizes the estimated φ and σε val-
ues for different σ, and the convergence time step and 
the standard deviation of the estimated σμ, on the basis 
of the AR(1) fitting.

The first and second rows show the estimated autore-
gressive parameter, φ, and standard deviation of the 
random perturbation, σε, respectively. The third row pre-
sents the tAR(1) calculated using Eq.  (11); the fourth row 

presents σμAR(1) obtained using Eq. (12); these values were 
calculated using the estimated φ and σε.

4 � Discussion
As the previous section illustrated, the AR(1) model 
was able to sufficiently approximate the time series for 
cR value estimation. As such, the optimal ES may be 
discussed by considering the autoregressive parameter 
and the amplitude of random perturbation in the AR(1) 
model. However, there were also discrepancies with the 
simple AR(1) time series; for example, for the target 
parameter, cR, Fig. 11 shows that the convergence speed 
varies slightly, depending on whether the estimation 
starts from a value larger than or smaller than the true 
value. This may be because the autoregressive param-
eter φ in Eq. (4) is asymmetrically distributed around the 
true value instead of being a constant. If the autoregres-
sive parameter under constant ES varies depending on 
model sensitivity to the parameter, it is expected that the 
estimation time series will follow the AR(1) model more 
closely by using the method in Ruiz et al. (2013b). Their 
method modified the parameter ES depending on model 
sensitivity to the parameter. It also raises an interesting 
question as to whether the optimal parameter ES esti-
mated by their method approaches the ES determined 
based on our AR(1) model approach. This issue should be 
addressed in the future by applying the method in Ruiz 
et al. (2013b) to this twin experiment and comparing the 
results.

In the present study, we chose the AR(1) model because 
of its simplicity in interpretation. However, in general, 
we can approximate the time series as an autoregres-
sion model with an arbitrary order of p (AR(p) model) 
by considering the autocorrelation from lag-1 to lag-p. 
In this case, we can construct a model fitting better with 
the experimental time series by using larger p, but we 
should choose reasonable p value based on some infor-
mation criteria (e.g., Akaike’s information criterion). It 
is possible that the relative magnitudes for each autore-
gressive parameter of the AR(p) model are related to 
the time scales of various physical processes involved in 
a target phenomenon, in this case a squall-line convec-
tion system. In the present study, both state variables and 

Fig. 15  Standard deviation of estimated values assuming the AR(1) 
model. This standard deviation was based on Eq. (12) using the 
estimated φ and σε for experiments where σ = 0.05, 0.1, 0.2, and 0.4 
(Fig. 12)

Table 2  List of parameters assuming the AR(1) model for 
different parameter ensemble spread

σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.4

Estimated φ 0.973 0.922 0.802 0.655

Estimated σε 2.13 × 10−2 3.72 × 10−2 6.36 × 10−2 1.25 × 10−1

tAR(1) 37 13 5 3

σμAR(1) 9.27 × 10−2 9.63 × 10−2 1.06 × 10−1 1.65 × 10−1
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the parameter were updated at each DA step, and thus, 
the 2nd to pth autoregressive parameters might become 
smaller than the 1st one. However, if we conduct the state 
estimation with a longer time interval than that for the 
parameter estimation, the magnitudes of second and sub-
sequent autoregressive parameters may become larger 
depending on the time scale of physical processes.

Note that the method of parameter transformation 
affects the estimation results. In the case of the trans-
formation of Eq.  (2), when the cR value approaches its 
upper or lower limit, the spread in the cR space becomes 
smaller even though σ in the x space does not change. In 
this case, the persistence of the estimate could become 
larger due to lower parameter sensitivity, leading to less 
convergence to the true value. If we apply more sophisti-
cated method, such that σ in the x space becomes larger 
when the cR approaches its limit values to keep the cR 
spread approximately constant, the estimation time 
series might better fit the AR(1) model. Furthermore, we 
need to keep in mind the possible effects of constrain-
ing the lower limit of the parameter to zero. This could 
skew the parameter likelihood distribution, which might 
result in the estimation bias and/or the different conver-
gence speed between larger and smaller initial parameter 
values. While this issue did not appear to have a signifi-
cant impact on our results, it can cause some problems in 
the case of more complex experimental settings. Effects 
of parameter transformation settings on the precision 
and convergence speed need to be investigated in future 
research.

The results for cR estimation do not guarantee that 
any other parameter estimation follows the AR(1) time 
series. Parameters that have little or an indirect effect 
on observed values might show almost random-walk 
time series that is also the AR(1) process with φ = 1. 
Conversely, it may be suggested that parameters with a 
direct impact on observed values follow the autoregres-
sive process and may easily be estimated. For parameter 
optimization using real observations (e.g., operational 
radar observations), the “true value” cannot be known 
a priori, unlike the twin experiment in this study. Fur-
thermore, it is possible that a parameter value does not 
converge to one specific value in a real situation; it is 
unclear whether the time series of parameter optimiza-
tion follows an autoregressive process. Thus, we suggest 
the following steps. First, we attempt some short-period 
optimization experiments beginning from different ini-
tial parameter ensemble means. Here, a relatively large 
parameter ES should be utilized, because, as shown in 
Fig. 12a, it is expected that the larger the ES is, stronger 
the autoregression (smaller the φ in Eq.  (4)) becomes. 
Suppose there are some signs of autoregression in a time 
series during the experiment, such as a tendency for the 

parameter to begin at different initial values to approach 
the same value. In this case, we can apply the idea of opti-
mal ES discussed in this study to the parameter to be 
optimized. Then, by estimating the dependence of the 
autoregressive parameter and the amplitude of the ran-
dom perturbation on the parameter ES based on some 
experiments, we can identify its threshold in terms of 
precision. Finally, we determine the optimal ES by com-
paring the expected convergence time and the time scale 
of the target phenomena. If we determine the optimal ES, 
we can conduct a longer period estimation with sufficient 
reliability and efficiency. If the estimated parameter value 
is trapped near prescribed lower or upper limit of param-
eter transformation, the true value might be located out-
side the limit. In this case, we should extend the limit 
value.

This study also highlighted an interesting albeit prob-
lematic issue that the estimated value contains some bias; 
this was also true for the twin experiment framework 
using the perfect model (Fig.  8). The overestimation of 
the cR for T = 14–20  h in the experiment implies that a 
slightly larger value than the true cR = 130 would reduce 
prediction error during this period. This is likely a result 
from the observations during this period. While the 
nature run of the experiment provided one realization 
under cR = 130, it is not necessarily the most likely reali-
zation in the state space under this condition. The time 
evolution of the nature run for T = 14–20  h probably 
went through the path which was the most likely realiza-
tion when cR value was slightly larger than 130. This esti-
mation bias may be removed if the parameter estimation 
was carried out over a longer simulation time or the esti-
mates were averaged over many different simulations. For 
parameter optimization using real observations, the “true 
value” is likely to vary depending on time and space. The 
bulk cloud microphysics scheme used was highly simpli-
fied compared with real microphysics. Thus, we would be 
unable to determine the unique optimal parameter values 
that produce the best prediction accuracy under various 
atmospheric conditions. The optimized parameter values 
for the cloud microphysics scheme will vary depending 
on the type of target convective system, model resolu-
tion, and combination with other physical models. In 
parameter optimization for practical numerical weather 
prediction, there is a need to clarify the phenomenon to 
be predicted, the parameter that requires optimization 
for such a phenomenon, and how the parameter interacts 
with observed values.

Note that there were also many issues to be consid-
ered, even for the simple twin experiment in this study. 
For example, altering the time interval of the DA may 
also change the precision and convergence speed of 
parameter estimation. This study assimilated the radar 
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reflectivity every 5 min; if the time interval is reduced, 
the effects of different parameter values on the radar 
reflectivity distribution may not be apparent during 
the ensemble forecast, making parameter estimation 
difficult. Conversely, if the time interval is lengthened, 
nonlinearities of the microphysical processes col-
lapses a clear correlation between the target parameter 
and radar reflectivity, also making parameter estima-
tion difficult. In this case, however, the possible det-
rimental effect of nonlinearities may be mitigated by 
conducting the state estimation with a time interval 
shorter than that for the parameter updates. Ensem-
ble size is also an important factor of data assimilation; 
increasing ensemble size may improve the precision 
and convergence speed of the estimation without 
altering other settings. Additionally, the simultaneous 
estimation of multiple parameters may change some 
results. In reality, the optimal parameter values esti-
mated concurrently may differ from those estimated 
separately due to interactions among multiple param-
eters. The estimation of multiple parameters is an area 
that should be addressed in future research.

In addition to these issues, how to determine the 
optimal ES for the estimation of time-dependent 
parameters needs further discussion. When param-
eters to be estimated are time-dependent, slow con-
vergence speed could be more fatal than low precision. 
The parameter ensemble mean might never reach the 
true value at each time step because the estimate can-
not follow the time variation of it due to the slow con-
vergence speed. In this case, it is better to prioritize 
the convergence speed over the precision in determin-
ing the better parameter ES. Other compromise solu-
tion is to estimate the parameter for a longer period 
and average the result to determine one optimal value.

Finally, we note that the dependence of the precision 
and convergence speed on the parameter ES should be 
explained from the mathematical view of the data assimi-
lation. Large persistence of the time series for the small 
parameter ES might reflect low parameter sensitivity 
due to the small parameter uncertainty. On the other 
hand, large fluctuation amplitude for the large parameter 
ES seems to be more difficult to be explained. It could 
reflect some interaction among the parameter uncer-
tainty, the observational errors, and the state variables’ 
uncertainties. In addition, it is important to investigate 
how the settings for the parameter uncertainty affects 
the accuracy of state estimation to understand the rela-
tion between parameter and state estimations. Theoreti-
cal studies on these issues should be addressed in future 
research.

5 � Conclusions
This study carried out an OSSE, focusing on model 
parameter estimation; the dependence of the precision 
and convergence speed of estimation on the parameter 
ES was investigated. We experimentally demonstrated 
that the precision deteriorates with increasing parameter 
ES, while the convergence speed accelerates. However, 
there is a threshold for ES, where any smaller values do 
not result in any further improvements to the estima-
tion precision. By using this approach, we determined 
the optimal parameter ES that provides the best precision 
and reasonable convergence time shorter than the time 
scale of target phenomena. At the same time, we checked 
the accuracy of estimation. We found there exists some 
systematic errors of estimated values which depend on 
the observation at each time step. In contrast to the pre-
cision and convergence speed, the accuracy cannot be 
controlled by setting the parameter ES.

In addition, we clarified that the time series of param-
eter estimation follows a simple mathematical model. We 
approximated the estimation time series as the AR(1) 
model, demonstrating that the precision and conver-
gence speed of the estimation may be quantified by two 
AR(1) model parameters: the autoregressive parameter 
and the amplitude of random perturbation. As the ES 
of the parameter increases, the autoregressive param-
eter decreases, contributing to improving the precision 
and accelerating convergence speed. By contrast, as the 
amplitude of random perturbation increases; this reduces 
precision. From this perspective, the estimation precision 
was determined based on the balance between autore-
gression and random perturbation. This viewpoint is also 
useful in determining the optimal ES for other parame-
ters that were not the focus of this study.

The final objective of this study was to establish a prac-
tical procedure to optimize the parameters of atmos-
pheric models by assimilating real observations and 
improving the accuracy of numerical weather and cli-
mate prediction. For example, parameter optimiza-
tion for cloud-resolving models using state-of-the-art 
observation equipment, such as phased array weather 
radars, may improve the accuracy of severe weather pre-
dictions. However, there is still a large gap between the 
findings of this study and achieving this final objective. 
From this study, we will gradually complicate the prob-
lem settings. For example, we will attempt parameter 
optimization of a low-resolution model by assimilating 
high-resolution simulation. In addition, optimization for 
a single-moment cloud microphysics scheme will be car-
ried out by assimilating simulations with a more precise 
double-moment scheme. The simultaneous estimation of 
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multiple parameters and the estimation of time-depend-
ent parameters are also important issues; by successively 
building knowledge, practical applications of parameter 
optimization for actual numerical weather predictions 
may be achieved.
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