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METHODOLOGY

Toward a long‑term atmospheric CO2 
inversion for elucidating natural carbon fluxes: 
technical notes of NISMON‑CO2 v2021.1
Yosuke Niwa1,2*   , Kentaro Ishijima2, Akihiko Ito1,3,4 and Yosuke Iida2,5 

Abstract 

Accurate estimates of the carbon dioxide (CO2) fluxes at the earth’s surface are imperative for comprehending the 
carbon cycle mechanisms and providing reliable global warming predictions. Furthermore, they can also provide 
valuable science-based information that will be helpful in reducing human-induced CO2 emissions. Inverse analysis 
is a prominent method of quantitatively estimating spatiotemporal variations in CO2 fluxes; however, it involves a 
certain level of uncertainty and requires technical refinement, specifically to improve the horizontal resolution so 
that local fluxes can be compared with other estimates made at the regional or national level. In this study, a novel 
set of inversion schemes was incorporated into a state-of-the-art inverse analysis system named NISMON-CO2. The 
introduced schemes include a grid conversion, observational weighting, and anisotropic prior error covariance, the 
details of which are described. Moreover, pseudo-observation experiments were performed to examine the effect of 
the new schemes and to assess the reliability of NISMON-CO2 for long-term analysis with practical inhomogeneous 
observations. The experiment results evidently demonstrate the advantages of the grid conversion scheme for high-
resolution flux estimates (1° × 1°), with notable improvements being achieved through the observational weighting 
and anisotropic prior error covariance. Furthermore, the estimated seasonal and interannual variations in regional CO2 
fluxes were confirmed to be reliable, although some potential bias in terms of global land–ocean partitioning was 
observed. Thus, these results are useful for interpreting the flux variations that result from real-observation inverse 
analysis by NISMON-CO2 ver. 2021.1.
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1  Introduction
Assessing the carbon dioxide (CO2) fluxes at the earth’s 
surface, between the atmosphere–land and atmosphere–
oceans, is essential for studying the global carbon cycle. 
Within the atmosphere, the mole fraction of CO2 has 
distinct seasonal variations caused by natural CO2 fluxes 
that are superimposed with the human-induced increas-
ing trend. These natural fluxes are induced by dynamic 
photosynthesis and respiratory activity in the terrestrial 

biosphere and by the sea–air CO2 exchange driven by 
ocean thermodynamic activity, oceanic surface mix-
ing, and biological activity. In addition to seasonal vari-
ations, these natural fluxes exhibit notable interannual 
variations in response to major climate events, such as 
El Niño (e.g., Keeling et al. 1995). Changes in physical or 
biological land and ocean conditions can further influ-
ence the CO2 flux trends on the decadal scales. However, 
the mechanisms underlying the natural CO2 flux varia-
tions are still unclear, resulting in considerable uncertain-
ties in global warming predictions made by earth system 
models equipped with climate–carbon cycle feedbacks 
(Friedlingstein et al. 2006).
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An inverse analysis of atmospheric CO2, where an 
atmospheric transport model is used to connect the sur-
face fluxes to the observed mole fraction of atmospheric 
CO2, is a prominent method that provides quantita-
tive observation-based estimates of spatiotemporal sur-
face flux variations. In fact, a number of ground-based 
stations and other observational platforms have been 
used to measure atmospheric CO2 for decades; through 
inverse analyses, they have revealed considerable inter-
annual variations in region-by-region CO2 fluxes (Bous-
quet et  al. 2000; Patra et  al. 2005a,b; Baker et  al. 2006; 
Chevallier et  al. 2010; Peylin et  al. 2013). Over the last 
decade, the four-dimensional variational method (4D-
Var) and ensemble Kalman smoother (or filter), which 
are well-known state-of-the-art data assimilation meth-
ods utilized in meteorological and oceanic research, 
have become common inverse analysis methods and 
have made use of a wide variety of observations (Peters 
et  al. 2007; Chevallier et  al. 2010; van der Laan-Luijkx 
et al. 2017; Niwa et al. 2017b; Liu et al. 2021). However, 
Friedlingstein et  al. (2020) demonstrated that inverse 
analyses have significantly large ranges of interannual 
flux variation estimates, even for zonal means of certain 
latitudinal ranges, further verifying the limited reliability 
of such inverse analyses.

Recently, societal momentum to reduce CO2 emis-
sions has gained traction globally in response to the 
1.5 °C/2.0 °C target of the Paris agreement. Consequently, 
CO2 flux data from inverse analyses are attracting global 
attention because of their potential to provide useful 
information for confirming national inventories. Recent 
studies by Chevallier (2021) and Deng et al. (2022) com-
pared inversion fluxes with national inventories based 
on agriculture, forestry, and other land-use changes 
(LUCs). However, they used data from global-scale inver-
sions with horizontal resolutions around hundreds of 
kilometers. Therefore, further development is required 
to increase the horizontal resolution so that fluxes can be 
compared more consistently with national inventories. 
This is a cumbersome task, because a several-decades-
long analysis is required to investigate long-term trends, 
which is computationally demanding.

Niwa et  al. (2017a, b) developed a sophisticated and 
computationally efficient inversion system based on 
the Nonhydrostatic Icosahedral Atmospheric Model 
(NICAM: Tomita and Satoh 2004; Satoh et  al. 2008, 
2014). The CO2 inverse analysis using this model is 
termed the NICAM-based Inverse Simulation for Moni-
toring CO2 (NISMON-CO2) (Niwa et  al. 2021), and the 
CO2 flux estimates made using this system were included 
in a multi-inversion analysis of the Global Carbon Pro-
ject (GCP) (Friedlingstein et al. 2020, 2022). The general 
features of NISMON-CO2 were described by Niwa et al. 

(2017b), who performed a pseudo-observation experi-
ment. However, the experiment was performed for only 
a year under ideal conditions; therefore, the practical per-
formance of NISMON-CO2 for long-term analysis is yet 
to be demonstrated.

In this study, we describe the latest inversion settings 
of NISMON-CO2, specifically those intended to improve 
the inversion performance. Furthermore, we performed 
a long-term inverse analysis using pseudo-observations 
that emulate actual observation networks. We focused 
on the use of NISMON-CO2 in investigating interan-
nual variations in regional CO2 fluxes and on the effec-
tiveness of the newly introduced techniques. Apart from 
this study, an inverse analysis was performed using NIS-
MON-CO2 with the same inversion settings, but instead 
using actual observations for 1990–2020, whose data are 
publicly available as NISMON-CO2 ver. 2021.1 (Niwa 
2020). This study also aims to present a detailed descrip-
tion of NISMON-CO2 ver. 2021.1.

2 � Methods
2.1 � NICAM‑TM and NISMON‑CO2
Initially, we describe the fundamental features of the 
NISMON-CO2 inversion system. One distinct feature 
of NICAM, on which NISMON-CO2 is based, is that it 
adopts an icosahedral grid system and calculates the con-
tinuity equation using the finite volume method (Tomita 
and Satoh 2004). Thanks to the finite volume method, the 
NICAM-based transport model (NICAM-TM) can com-
pletely conserve tracer mass without any numerical mass 
fixer, which motivates the usage of NICAM for simulat-
ing atmospheric transport of long-lived species such as 
CO2 (Niwa et  al. 2011a, b). Simulations with NICAM-
TM are performed iteratively in an inverse analysis of 
NISMON-CO2. Further details about NICAM-TM are 
described by Niwa et al. (2017a).

The inverse analysis system NISMON-CO2 uses 
4D-Var to optimize surface CO2 fluxes consistently with 
atmospheric observations (Niwa et al. 2017b). In 4D-Var, 
the cost function J, whose minimum state is sought, is 
defined as:

where δx represents the model parameter to be opti-
mized, which comprises deviations from its prior esti-
mate xpri of surface fluxes and the initial global mole 
fraction offset. Meanwhile, M(.) is an operator repre-
senting the model calculation, and d is a vector defined 
by the observational vector y as d = y −M xpri  . The 
matrices B and R are the error covariance matrices of 
prior estimates and the model–observation mismatches, 

(1)J (δx) =
1

2
δxTB−1δx +

1

2
(M(δx)− d)TR−1(M(δx)− d),
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respectively. The iterative calculation of 4D-Var uses the 
gradient of the cost function:

to find the optimal model parameters (i.e., poste-
rior estimates) that minimize the cost function. MT 
in Eq.  (2) represents the transpose of M, where M is 
the tangent linear operator of M(.). In fact, the relation 
M�x ≈ M(�x) is satisfied because the model calculates 
atmospheric transport linearly and does not include any 
chemical reactions. The calculations of M(.) and MT are 
performed by the forward and adjoint simulations using 
NICAM-TM, which only simulates CO2 transport in the 
so-called offline mode with prescribed meteorological 
data. The meteorological data are prepared in the “online 
mode,” in which meteorological fields are simulated by 
nudging horizontal winds toward those of the reanalysis 
data. In this study, we used the same model settings and 
prescribed meteorological data as those of Niwa et  al. 
(2017a). The forward and adjoint transport simulations 
were performed with the horizontal grid level “glevel-5” 
of NICAM, whose mean grid interval was 223  km. The 
model contains 40 layers in vertical up to a height of 
approximately 45 km above the sea level.

The model operator M(.) includes spatiotemporal 
interpolation from the model grids and temporal steps 
to observational locations and times and the conversion 
of flux data from latitude–longitude grids to NICAM’s 
icosahedral grid, as well as atmospheric transport. There-
fore, the matrix M and its transpose can be expressed as:

where H and G represent the spatiotemporal interpola-
tion and the flux data conversion, respectively. Matrix M′ 
is the integral calculation of atmospheric transport. This 
study newly introduces G, which allows the flux data con-
tained in δx to be arrayed in latitude–longitude grids, so 
the optimization can be performed in that space, but not 
in the model grid space (i.e., the icosahedral grids). The 
detailed conversion scheme is described in the next sec-
tion. In NISMON-CO2, the optimization is performed 
using a quasi-Newton method-based scheme termed the 
Preconditioned Optimizing Utility for Large-dimensional 
analyses (POpULar: Fujii and Kamachi 2003; Fujii 2005).

2.2 � Grid conversion scheme
The icosahedral NICAM grid shapes hexagons or pen-
tagons, which requires an elaborate conversion from 
latitude–longitude grids, because flux input datasets are 
originally prepared in latitude–longitude grids. Previous 

(2)∇δxJ = B−1δx +MTR−1(M(δx)− d)

(3)M = HM′G,

(4)MT
= GTM′THT,

studies (Niwa et al. 2011a, 2012, 2017a, b, 2021) adopted 
simple area averaging, in which data from within a cer-
tain distance in the surrounding latitude–longitude grids 
were averaged. Subsequently, flux values were slightly 
modified using scaling to ensure mass conservation. 
In this study, we have updated to a more sophisticated 
method of grid conversion, which no longer requires 
mass-conserving scaling, thus retaining its linearity.

The new method initially divides the latitude–longitude 
grid data into a finer-scale latitude–longitude grid, as 
depicted in Fig. 1 (the bold dark-gray mesh becomes the 
thin light-gray mesh), i.e., rasterizing. Next, each finer-
scale grid is allocated to a hexagonal grid whose borders 
are trigonometrically defined in latitude–longitude coor-
dinates. In Fig. 1, the colored grid areas are allocated to 
the centered icosahedral grid, which derives contribu-
tions from the surrounding latitude–longitude grids. 
Consequently, the flux value converted into the ith icosa-
hedral grid f′i can be expressed as:

where Gj denotes the original latitude–longitude grid that 
overlaps the ith icosahedral grid and Ni is the number of 
those grids (Ni = 9 in the case of Fig. 1). The partial area 
of each original latitude–longitude grid overlapped by 
the ith icosahedral grid is derived from the finer latitude–
longitude grids, which is represented as ai,j (individual 

(5)f ′i =

Ni
∑

j=1

ai,j f
(

Gj

)

/Ai,

Fig. 1  Illustration of flux conversion from latitude–longitude grids 
to icosahedral grids. The black line indicates the boundaries of the 
icosahedral grids, while the dark-gray and light-gray lines represent 
original and finer latitude–longitude grids, respectively. In the 
conversion, fluxes in colored areas are allocated to the centered 
icosahedral grid
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colored areas in Fig.  1). The area of the ith icosahedral 
grid is denoted as Ai. Because every finer latitude–longi-
tude grid is allocated to one of the surrounding icosahe-
dral grids, the total amount of global data is conserved. 
Because of the linearity of Eq. (5) and the absence of any 
mass-conserving scaling, this grid conversion scheme is 
entirely linear and thus represented by the matrix G in 
Eq.  (3). This property enables us to easily develop the 
adjoint code represented by GT in Eq. (4). By introducing 
G and GT into the model operator and its adjoint, respec-
tively, the control variables can be arrayed in latitude–
longitude grids.

Optimizing fluxes in the latitude–longitude grid has 
two technical advantages. First, conversion of flux data 
from icosahedral grids to latitude–longitude grids after 
inversion for comparison with other datasets is not 
required. Such conversion often causes deterioration of 
mass conservation and requires additional modification. 
Second, the flux data can be provided at a higher resolu-
tion than the icosahedral grid data. In this study, we opti-
mized the flux data at a 1° × 1° resolution, which is finer 
than the resolution at the icosahedral grid (approximately 
223  km). This allows the optimized fluxes to retain the 
high-resolution information originally contained in the 
prior flux data. During the grid conversion in this study, 
we divided 1° × 1° latitude–longitude grids by 10 × 10 to 
obtain finer grids.

2.3 � Flux model
The surface CO2 fluxes input to NICAM-TM can be 
described as:

where x and t represent the flux location and time, 
respectively. Fluxes from fossil fuel use and cement pro-
duction, gross primary production (GPP) and respiration 
(RE) of the terrestrial biosphere, LUC, biomass burning, 
and oceans are denoted as ffos, fGPP, fRE, fLUC, ffire, and focn, 
respectively; they are prescribed using flux datasets and 
here have a monthly temporal resolution.

In Eq.  (6), we separate the terrestrial biosphere fluxes 
into GPP and RE components following the method of 
Lokupitiya et al. (2008) because GPP and RE vary differ-
ently. The coefficients, βGPP and βRE , are scaling factors 
that produce diurnal variations. βGPP and βRE distribute 
fluxes at a three-hourly resolution from the monthly 
fGPP and fRE, respectively, whose values are derived from 
the downward shortwave radiation at the earth’s surface 
and 2-m height air temperatures data from the Japanese 

(6)
fCO2

(x, t) = ffos(x, t)− βGPP
(

fGPP(x, t)+�fGPP(x, t)
)

+ βRE
(

fRE(x, t)+�fRE(x, t)
)

+ (1+�αLUC(x, t))fLUC(x, t)+ (1+�αfire(x, t))ffire(x, t)

+ focn(x, t)+�focn(x, t),

55-year Reanalysis (JRA-55: Kobayashi et  al. 2015; 
Harada et al. 2016). This is similar to the method of Olsen 
and Randerson (2004). The nature of the terrestrial bio-
sphere causes βGPP and βRE to show different diurnal var-
iations (e.g., βGPP is zero at night because photosynthesis 
is inactive, which is not the case for βRE).

In this study, fossil fuel emissions were not optimized, 
i.e., they were fixed as ffos, whereas the flux deviations 
of �fGPP , �fRE , and �focn were optimized. Furthermore, 
the LUC and biomass burning fluxes vary with scal-
ing factors, whose deviations from 1, �αLUC and �αfire 
were optimized. Therefore, the LUC and biomass burn-
ing fluxes were not allowed to change where their basic 
fluxes were set to zero in the optimization.

A monthly temporal resolution was selected for the 
flux parameters �f  and �α , except for the ocean flux 
�focn , whose temporal resolution is set annually. This is 
because ocean flux variations are smaller than terrestrial 
flux variations, and some erroneous values could arise 
in the optimized ocean fluxes due to “leakage” of terres-
trial signals to the oceans. An annual temporal resolution 
may help mitigate such flux leakage; however, this does 
not allow the inversion to optimize seasonal variations in 
ocean fluxes.

In NISMON-CO2 ver. 2021.1, where real observations 
were used, we used fossil fuel emission data from the 
GCP-Gridded Fossil Emission Dataset (GCP-GridFED: 
Jones et al. 2021) ver. 2021.2 for ffos, and the GPP, RE, and 
LUC data were obtained from the Vegetation Integrative 
SImulator for Trace gases (VISIT: Ito and Inatomi 2012; 
Ito 2019, 2021) for fGPP, fRE, and fLUC, respectively. The 

biomass burning emission data were obtained from the 
Global Fire Emissions Database (GFED) ver. 4.1s (van der 
Werf et al. 2017) for ffire, and the air–sea CO2 exchange 
data were taken from the Japan Meteorological Agency 
(JMA) (Iida et  al. 2015, 2021) for focn. Except for focn, 
these data were originally provided at a higher resolution 
than 1° × 1°; however, for ease of analysis, we uniformly 
aggregated the data at 1° × 1°. Some of these flux datasets 
were replaced in the pseudo-observation experiment in 
this study, which is described in the next section.

Note that although the terrestrial flux is separated 
into GPP, RE, LUC, and biomass burning, they are not 
intended to be fully optimized independently. As dem-
onstrated by Niwa et  al. (2021), inversion can identify 
drastic flux signals, such as a large-scale biomass burning 
event; however, estimating fluxes independently for each 
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component is difficult because the inversion only uses 
observations of atmospheric CO2 mole fractions. The 
separation of those fluxes is intended to represent the dif-
ferent diurnal variations in GPP and RE and to consider 
future possible constraints such as those from carbonyl 
sulfide (Campbell et al. 2015).

2.4 � Prior error covariance
A 4D-Var calculation requires not only a prior estimate 
but also its prior error covariance matrix, as denoted 
by B in Eqs. (1) and (2). In the inverse experiment by 
Niwa et al. (2017b), the prior error covariances (i.e., the 
off-diagonal elements of B) were simply designed with 
a Gaussian function commonly used for the globe, in 
which a correlation scale length was arbitrarily deter-
mined. However, that assumption is too simple because 
the error covariances should dynamically vary in space 
and time according to the flux mechanisms.

In this study, we define the error covariance matrix 
using an ensemble set of prior fluxes as follows. First, we 
prepare a monthly long-term flux dataset and consider 
each year of data as a member of the ensemble. There-
fore, the number of years equals the number of ensemble 
members, and each member contains 12 temporal com-
ponents. For a prior flux component n, we approximate 
the covariance matrix using m members as

where the subscript “cyc” represents cyclostationary, 
whose matrix is applied repeatedly for each year. The 
superscript k is an ensemble index, and δxkn describes the 
deviation of the flux of the kth member from the ensem-
ble mean (i.e., the long-term mean). However, due to the 
limited number of ensemble members (years), erroneous 
correlations occur in remote areas, i.e., so-called sam-
pling errors. Therefore, to localize covariances, we apply 
the Schur product of B̃n, cyc with a correlation matrix C as

Here, we use the Gaussian function for each element of 
C as

where the indices i and j represent different flux loca-
tions, whose distance is denoted by lij. L is a constant 
and set to 2000 km, which is long enough to only damp 
erroneous correlations in remote areas. In practice, we let 
Cij = 0 where lij > 4000 km to minimize the computational 
burden. In Eq.  (8), the scaling factor γn is introduced as 

(7)B̃n, cyc =
1

m− 1

m
∑

k=1

δxkn

(

δxkn

)T
,

(8)Bn,cyc = γnB̃n,cyc ◦ C.

(9)Cij = exp

(

−
l2ij

L2

)

,

a tuning parameter to adjust the degree to which fluxes 
are subjected to change by observational constraints. 
Furthermore, we replaced the resulting negative covari-
ances with zeros, as we consider negative correlations to 
be primarily generated by sampling errors. The technique 
described in Eq.  (8) has been used as “the covariance 
localization” in an ensemble Kalman filter assimilation 
(Lorenc 2003); however, we have applied it here for the 
4D-Var inverse analysis.

For the prior covariances of the terrestrial biosphere 
GPP and RE, we used a long-term VISIT simulation for 
1901–2020, generating 120 members for the covariance 
calculation (Eq. 7). After applying the correlation matrix, 
the resulting covariance was inflated by γn = 4 so that the 
globally integrated variance was approximately (2 Pg C 
yr−1)2. The defined uncertainty of 2 Pg C yr−1 is derived 
from the difference between the global total net flux of 
the prior data and that estimated from the growth rate of 
the atmospheric observations; this is under the assump-
tion that terrestrial flux is the dominant driver of global 
flux variations. To determine the error covariance of the 
prior ocean flux, we used the JMA ocean flux data for 
1990–2019. Because we optimized the annual means 
of ocean fluxes, each annual mean was considered one 
ensemble member (with 30 members in total). The covar-
iance for the ocean fluxes was derived similarly to that 
of the terrestrial biosphere using Eqs. (8) and (9) with 
γn = 2 . The resulting global variance was approximately 
(0.17 Pg C yr−1)2; this number is rather arbitrary com-
pared with that for the terrestrial flux, but it was derived 
after several trial experiments. When γn was increased 
from 2, we obtained unrealistic variations in posterior 
ocean fluxes. Although 0.17 Pg C yr−1 is too small as a 
global ocean flux uncertainty, such small prior errors are 
needed to stabilize ocean flux estimates.

For the other flux components such as LUC and bio-
mass burning, we do not consider error correlations and 
define each prior flux error covariance matrix Bn,cyc as a 
diagonal matrix, whose diagonal elements (i.e., variance) 
are all set to 4.0; this yields errors of 200%. We combined 
all Bn,cyc and applied them to every year, whose values are 
arrayed in the same grid and resolution as those of the 
prior flux, i.e., 1° × 1°. Finally, we obtained the full matrix 
of B by including the variance of the global initial mole 
fraction offset of (0.5 ppm)2.

Examples of the prior flux error covariance are given in 
Fig. 2, which shows error correlations 

(

= Bij/

(

B
1/2
ii B

1/2
jj

))

 
of a given prior GPP for April and July. The original error 
correlations were significant in both months, even at a 
large distance. That feature was more pronounced in July, 
whereas larger correlations were present at a short dis-
tance in April (gray crosses in Fig. 2a and b). After per-
forming the calculation in Eq.  (8), those correlations 
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became localized, whereas the above-mentioned feature 
was maintained (red crosses in Fig. 2a and b). The error 
correlations generated using this method have aniso-
tropic spatial structures, as shown in Fig. 2c and d. Fur-
thermore, they differ by location as shown in Fig. 2e and 
f. In fact, these anisotropic correlation features arise from 
year-to-year variations in the long-term VISIT data, 
which are driven by changes in meteorological conditions 
(shortwave radiation, temperature, moisture, etc.). We 
expect them to reflect actual biogeochemical mecha-
nisms better than the previously used simple isotropic 
correlations.

2.5 � Observations
The observational data input to NISMON-CO2 was 
derived from the dataset named Observation Package 
(ObsPack)-GLOBALVIEWplus and the related near-
real-time version ObsPack-NRT, provided through the 
National Oceanic and Atmospheric Administration 

(Masarie et  al. 2014). Additionally, we used other inde-
pendently provided data. In NISMON-CO2 ver. 2021.1, 
versions 6.1_2021_03-01 (Schuldt et  al. 2021a) and 
6.1.1_2021-05-17 (Schuldt et  al. 2021b) of ObsPack-
GLOBALVIEWplus and ObsPack-NRT were used, 
respectively; all data are listed in Niwa (2020). To dem-
onstrate the potential performance of NISMON-CO2 ver. 
2021.1, we performed pseudo-observation inversions for 
this study by emulating observational data at actual sites 
and times. The locations of the observations are shown 
in Fig. 3. For this dataset, we used all available observa-
tions provided from selected institutes (Niwa 2020), of 
which some sites have a constant data record over the 
entire period, and some do not. Therefore, several tem-
poral observational gaps were present; we can investigate 
to determine the effect of these data gaps on flux esti-
mations using the pseudo-observation experiment. As 
shown in Fig. 3, we only used surface observations (flask 
samplings and in situ measurements at ground-based 

Fig. 2  Error correlations of a prior gross primary production (GPP) flux at near 60.5° N, 100.5° E along with distance for April (a) and July (b). Gray 
and red crosses represent correlations before and after localization (Eq. 8), respectively. Spatial structures of the localized error correlations of a and 
b are shown in c and d, respectively. Furthermore, e and f are the same as c and d but for a different prior GPP flux at near 30.5° N, 110.5° E
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stations and tower sites, and shipboard observations). 
This is because NISMON-CO2 ver. 2021.1 was intended 
to aid in the inversion comparison of GCP (Friedling-
stein, et al. 2022), which is designed to use only surface 
observations so that aircraft data could be used as inde-
pendent data for evaluating the inversions.

2.6 � Observation–model mismatch errors
We defined the observation–model mismatch error 
covariance matrix R as:

where ri denotes the standard deviation of the mole frac-
tions around the ith observation and Ni represents the 
number of observations within a certain spatiotemporal 
range of the ith observation. In this study, we apply a spa-
tiotemporal range of one week, a 1000  km horizontal 
diameter circle, and a 1 km vertical depth. Furthermore, 
we introduce a scaling factor β so that χ2

(

:=
2Jmin
m

)

 , 
where m is the number of observations and Jmin is the 
minimum of the cost function, should be < 1 (Tarantola 
2005). We calculated ri from the simulated daily mole 
fraction variations of CO2 at the site of observation i 
ranging from one week prior and one week after the 
observational timing; the simulation was performed 
using NICAM-TM with prior fluxes. As denoted by 

(10)Rii =
1

(βri)
2Ni

,

Eq.  (10), R is a diagonal matrix, which assumes that all 
observations are independent from each other. However, 
this is a simplistic assumption, specifically in cases where 
observations were obtained with high density. Therefore, 
we inflate the variances for such areas by introducing Ni, 
which reduces the weights of such dense observations in 
space and time. This variance inflation prevents continu-
ous in  situ observations from imposing exceedingly 
strong constraints compared with discrete flask sampling 
observations. For NISMON-CO2 ver. 2021.1, we adopted 
a strategy of using as many available observations as pos-
sible. Consequently, this resulted in duplicated observa-
tions because several institutes share the same 
observational platforms; Ni places a single-site constraint 
on such collocated observations.

2.7 � Pseudo‑observation inversion experiment
To investigate the general performance of NISMON-CO2 
and effectiveness of the proposed inversion settings, we 
performed an inverse analysis under ideal conditions; 
that is, we know the “true” state of fluxes. We prepared 
two datasets, one of which was regarded as “true” and 
the other one was used as a prior estimate. First, we per-
formed a forward transport simulation of atmospheric 
CO2 using the true flux dataset and extracted the simu-
lated CO2 mole fractions at the above-mentioned obser-
vational points and times. Next, we performed inverse 
experiments incorporating those pseudo-observations. 

Fig. 3  Locations of observations used in the pseudo-observation inversion experiment. The observations are the same as those of NISMON-CO2 
v2021.1 (Niwa 2020) but for those available during 2007–2018. Flask air sampling and in situ observations at ground-based stations are depicted by 
filled magenta and unfilled purple triangles, respectively. Light blue circles denote shipboard observational locations. Tower observation sites are 
denoted by cyan crosses
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Niwa et al. (2017b) conducted a similar experiment; how-
ever, the experiment in this study was designed more 
practically, using a combination of continuous in  situ 
and discrete flask measurements (Fig.  3) and covering 
a longer analysis period. Furthermore, by virtue of the 
implemented grid conversion scheme, we optimized 
fluxes in a latitude–longitude grid of 1° × 1° rather than in 
the icosahedral grid.

The forward simulation used to generate the pseudo-
observations (true run) employed the same NICAM-TM 
settings used for the inversion, except for the horizontal 
resolution. The horizontal resolution is “glevel-6,” whose 
mean grid interval is 112  km. This is one level higher 
than that used for the inverse analysis (glevel-5, 223 km). 
Therefore, the true run can simulate much smaller mole 
fraction variations. This can provide insights into the 
influence of errors in model representativeness, although 
the mean grid interval of 112 km is not sufficiently small 
to fully consider this aspect.

The true fluxes used in this study were obtained from 
the posterior fluxes of NISMON-CO2 ver. 2021.1 (Niwa 
2020), which were generated from real observations; 
therefore, the generated pseudo-observations of atmos-
pheric CO2 mole fractions have realistic seasonal and 
interannual variations, and the true fluxes are assumed 
to reflect this. Thus, except for the fossil fuel emissions, 
which were taken from the same GCP-GridFED dataset, 
we made moderate changes to the prior fluxes from those 
in NISMON-CO2 ver. 2021.1 (described in Sect. 2.3). For 
the terrestrial fluxes (fGPP, fRE, fLUC, and ffire), we employed 
the same VISIT and GFEDv4.1s datasets as in NISMON-
CO2 ver. 2021.1, but they were climatologically aver-
aged for 2006 to 2018. Meanwhile, the ocean fluxes (focn) 
were based on different ocean flux data from Takahashi 
et al. (2009), which provide climatological fluxes for the 
reference year 2000. Therefore, excluding the fossil fuel 
emissions, the prior fluxes do not contain interannual 
variations.

The inversion calculation was performed from Janu-
ary 2007 to March 2018, with the first 12  months and 
last three months disregarded as the spin-up and spin-
down times of the analysis, respectively. Therefore, the 

inversion fluxes were evaluated over a ten-year period. 
Note that this analysis period is nearly one-third as 
short as that of NISMON ver. 2021.1 (1990–2020) for 
the ease of performing the multiple inverse experiments 
described in the next section.

2.8 � Sensitivity tests
In addition to the control experiment performed with the 
settings mentioned above (referred to as CTL), we per-
formed four inversions with different settings (Table  1). 
The first (referred to as NO_ERR) was conducted using 
the pseudo-observations produced by the model with 
the same horizontal resolution as the inversion (i.e., 
glevel-5), ensuring that the model’s representation error 
is no longer present. For the other three tests, we set each 
updated method back to those used in previous studies 
(Niwa et al. 2017b, 2021). The second inversion (referred 
to as ICO) was performed by optimizing fluxes on the 
icosahedral grids. The third experiment (referred to as 
NO_WTS) did not consider the observational weight-
ing applied to the observation–model mismatch error, 
i.e., Ni = 1 in Eq. (10). In this study, for a fair comparison 
with the CTL case, we changed β in Eq. (10) so that the 
cost function (Eq. 1) is nearly equivalent to that of CTL 
at the beginning of the iterative calculation. The fourth 
inversion (referred to as ISO_ERR) employed the iso-
tropic prior error covariance that was simply defined 
using a Gaussian function with correlation scale lengths 
of 500 km and 1000 km for land and ocean fluxes, respec-
tively. In this experiment, also for a fair comparison, each 
γn in Eq. (8) was tuned so that the global integrated value 
of the resulting global prior error covariance was nearly 
equivalent to that of CTL.

3 � Results
3.1 � Cost function and number of iterations
In the inverse analysis by Niwa et  al. (2017b), the opti-
mization for estimating 12 monthly fluxes required 
approximately 50 iterations. The experiment assumed 
weekly observation sampling at 65 sites. The optimiza-
tion was expected to require over 50 iterations when 
using an expanded observation network with more than 

Table 1  List of the sensitivity tests

Experiment name Optimization grid Observation generator 
resolution

Observational 
weighting

Prior error covariance

CTL Latitude–longitude (1° × 1°) glevel-6 Yes Anisotropic

NO_ERR Latitude–longitude (1° × 1°) glevel-5 Yes Anisotropic

ICO Icosahedral (~ 223 km) glevel-6 Yes Anisotropic

NO_WTS Latitude–longitude (1° × 1°) glevel-6 No Anisotropic

ISO_ERR Latitude–longitude (1° × 1°) glevel-6 Yes Gaussian
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a hundred sites consisting of continuous measurements 
and flask air sampling (Fig. 3). In fact, it required a few 
hundred iterations. Moreover, Fig. 4 depicts the changes 
in cost function from the beginning to the 300th itera-
tion for the CTL experiment and the other four sensitiv-
ity cases. As shown in Fig. 4, all cost functions decrease 
smoothly but do not fully converge at the 300th itera-
tion. However, we did confirm that seasonal and inter-
annual variations in the optimized fluxes, which will be 
discussed later, mostly converged at the 300th iteration. 
Although they did not converge perfectly, 300 iterations 
seemed to be the limit in practical use due to the com-
putational demand. Hereafter, we present results from 
fluxes optimized by 300 iterations for all experiments.

3.2 � Comparison of CO2 mole fractions 
with the pseudo‑observations

The comparison of CO2 mole fractions with the pseudo-
observations at Minamitorishima (24.3° N, 154.0° E) and 
Syowa Station (69.0° S, 39.6° E) is depicted in Fig. 5, which 
are well-established background stations in the northern 
and southern hemispheres, respectively. At both sites, 
the model with the posterior flux of CTL reproduced 
atmospheric CO2 mole fractions without bias, indicating 
that the inversion reasonably incorporated the pseudo-
observations. Furthermore, the root-mean-square (RMS) 
differences denoted in the lower panels of Fig. 5 indicate 
that, except for NO_ERR, the compatibility with the 
pseudo-observations is similar across all sensitivity tests. 
The significantly smaller RMS differences in NO_ERR are 
attributed to the absence of the transport model error. 
The inset of Fig.  5a shows the CO2 mole fraction time 
series zoomed for January 2017, including the lower-
resolution pseudo-observation used for NO_ERR. The 

CTL model accurately reproduced elevated events. How-
ever, their magnitudes are underestimated even after the 
inversion and are rather comparable to those of the low-
resolution pseudo-observation. This indicates that the 
inversion did not fix the surface fluxes and consequent 
atmospheric mole fractions beyond the model’s represen-
tation error (i.e., not overfitting to the observations).

3.3 � CO2 flux maps and comparison with icosahedral grid 
optimization

An example of the optimized fluxes is depicted in Fig. 6, 
which shows the distributions of CO2 fluxes averaged 
for July 2011. (Fossil fuel emissions are excluded.) Here, 
we compare the optimized flux of CTL with that of ICO, 
as well as the true (i.e., NISMON-CO2 ver. 2021.1) and 
prior fluxes. Both the CTL and ICO cases successfully 
retrieved the true flux pattern from the prior fluxes, as 
evidenced by the continental sinks in Eurasia and the 
east side of North America, sources in central Africa and 
South Asia, and the southwest side of North America. 
However, the south of the Amazon shows notable dis-
crepancies from the true fluxes. This is probably because 
of the lack of inland observations and convective vertical 
mixing, leading to poorly captured flux signals by surface 
stations.

Although the ocean fluxes were optimized annually, 
the flux pattern was retrieved to some extent. The tongue 
shape of the sources in the eastern equatorial Pacific, 
which persisted throughout the entire year, was suit-
ably retrieved, and the strength of the sources increased 
toward the true fluxes.

Notably, CTL, where fluxes were optimized in the lati-
tude–longitude grid, showed a similar global distribution 
to the ICO case while resolving smaller flux distributions. 
For instance, over the Himalayas, CTL shows a flux pat-
tern with finer-scale variations (not necessarily closer to 
the true), reflecting the complexity of the topography. 
These results indicate that the newly introduced lati-
tude–longitude grid optimization in this study functions 
reasonably well.

3.4 � Seasonal and interannual variations in regional CO2 
fluxes

Here, we present seasonal and interannual variations in 
CO2 fluxes via various iterations to demonstrate how 
those temporal variations converge as the iterative cal-
culation progresses. The seasonal variations in nonfossil 
fuel CO2 fluxes in the 11 TransCom terrestrial regions 
(Gurney et al. 2002; Baker et al. 2006) averaged for 2008–
2017 are illustrated in Fig. 7. In most areas, the optimized 
seasonal variation is highly consistent with that of the 
true flux. Furthermore, the optimization converges well 
within 50 iterations for northern high-latitude areas, 

Fig. 4  Cost function changes with iterations for the CTL case (blue) 
and the other four sensitivity tests of NO_ERR (light blue), ICO (light 
green), NO_WTS (orange), and ISO_ERR (pink)
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which contain dense observations (Europe, Boreal Asia, 
and Boreal North America). The flux variations con-
verged within 100 iterations, even in other regions.

However, for interannual variations, convergence 
required more iterations. For example, in Fig. 8, interan-
nual variations in regional CO2 fluxes had not converged 
after 100 iterations, even in northern high-latitude areas. 
Moreover, interannual variations converged much more 
slowly than seasonal variations toward the 300the itera-
tion. Also, significant differences still exist between 200 
and 300 iterations (e.g., Boreal N. America), indicating 
that 300 iterations may not be fully sufficient for conver-
gence. This is consistent with the decreasing cost func-
tion even at the 300th iteration (Fig. 4).

Nevertheless, after 300 iterations, the posterior flux 
revealed interannual variations consistent with those of 
the true flux, specifically in northern high-latitude areas. 
In other areas, notable peaks and troughs of the interan-
nual variations were more or less well retrieved, albeit 

with some noticeable errors (e.g., consistently smaller 
than the true flux in South America).

The slower convergence speed of the interannual vari-
ations than that of the averaged seasonal variations is 
attributed to their small degree of variation. Fluxes in 
northern high-latitude areas have a seasonal amplitude of 
approximately 10 Pg C yr−1, whereas their annual aver-
ages vary by approximately 1 Pg C yr−1. These results 
imply that optimizing such small flux variations requires 
a large number of iterations. This also applies to ocean 
fluxes. The yearly variations in ocean fluxes for the 11 
TransCom ocean regions are depicted in Fig. 9. Although 
the posterior ocean fluxes changed gradually, they 
approached the true fluxes from the prior data. In fact, 
the ocean flux variations were much smaller than those 
of terrestrial flux variations; the range of interannual 
variations was at most 0.4 Pg yr−1. The inversion mostly 
reproduced those interannual variations and 10-year 
trends (generally decreasing trends), although some areas 

Fig. 5  Upper panels indicate the time series of CO2 mole fractions at Minamitorishima (24.3° N, 154.0° E) (a) and Syowa Station (69.0° S, 39.6° E), 
Antarctica (b). Black and red lines represent the pseudo-observation and the model with the CTL posterior flux, respectively. The inset of panel 
(a) depicts the CO2 mole fraction time series zoomed for January 2017, including the lower-resolution pseudo-observation (gray line). (The 
x-axis covers the whole period of January 2017, and the y-axis ranges from 406 to 420 ppm.) Lower panels indicate the differences between the 
CTL model and the pseudo-observation (model–observation) at Minamitorishima (c) and Syowa Station (d), where the number indicates the 
root-mean-square difference for each sensitivity experiment. Note that the NO_ERR case is compared with the pseudo-observations generated 
from the lower-resolution model
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had persistent biases (approximately 0.1–0.2 Pg Cyr−1). 
However, the posterior fluxes do not fully represent the 
recent uptake increases in the North Pacific and North 
Atlantic (Fig. 9b and d), despite those regions having rela-
tively dense observation networks of marine stations and 
ships (Fig.  3). This is probably because these areas are 
located on the downwind sides of the continents. Terres-
trial flux signals from the continents are transported over 
the oceans with higher magnitudes than those of ocean 
fluxes, which might make it difficult to clearly distinguish 
ocean fluxes in the inversion.

Figures  7, 8 and 9 depict seasonal and interannual 
variations that were derived under the assumption of no 
model error (NO_ERR, blue dotted line). The model error 
can be grasped from the inset of Fig. 5a and the RMS dif-
ferences in Fig. 5c and d. As shown in Fig. 7, the posterior 
flux of NO_ERR showed approximately the same pat-
terns in terrestrial seasonal variations as CTL. Although 
the NO_ERR case was better than the CTL case for the 
interannual variations of the terrestrial fluxes, it did not 
perfectly follow the true flux (Fig.  8). Conversely, NO_
ERR showed little improvement in interannual variations 

over the oceans (Fig. 9). Figures 10 and 11 confirm those 
NO_ERR features, in which the RMS errors of the yearly 
posterior flux variations for NO_ERR are better over ter-
restrial areas and similar to those of CTL over the oceans 
(see blue and cyan bars).

3.5 � Global land–ocean partitioning
Table  2 summarizes the global, land, ocean, and total 
carbon budgets, and their interannual variations are 
depicted in Fig.  12. For 2008 to 2017, the global mean 
true sinks over the land and the ocean were 2.62 and 2.04 
Pg C yr−1, respectively (estimated using NISMON-CO2 
ver. 2021.1 with real observations), and the prior esti-
mates were 4.61 and 1.41 Pg C yr−1, respectively. Mean-
while, the inversion estimates by CTL were 3.39 and 1.29 
Pg C yr−1, respectively; thus, the estimated global land–
ocean partitioning had a bias of approximately 0.8 Pg C 
yr−1. However, the global total sink was nearly identical 
to that of the true flux, indicating that the mass conser-
vation was thus ensured. In fact, the bias was coherently 
present over the entire analysis period (Fig.  12). Never-
theless, Fig.  12 depicts that the inversion successfully 

Fig. 6  Distributions of CO2 fluxes averaged for July 2011 from the true (a) and prior (b) flux datasets and the posterior fluxes of the CTL (c) and ICO 
(d) cases. White color areas depict fluxes close to zero. Fossil fuel emissions, which were not optimized, were excluded
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reproduced the interannual variation patterns from the 
constant prior estimates, even for the ocean, which mod-
erately changes. Figure  12 also indicates that 100–150 
iterations are required for convergence of the land–ocean 
partitioning, which is less than those required for esti-
mates of regional interannual variations (Figs.  8 and 9). 
Compared with the CTL case, the NO_ERR case did not 
necessarily provide better estimates of land–ocean parti-
tioning and displayed the same coherent bias and simi-
lar interannual variations (Table 2; Fig. 12). Furthermore, 
Fig. 12 shows that the differences between the posterior 
and true fluxes of the land and the ocean are gradually 
increasing over time. From the former five-year period 
(2008–2012) to the latter five-year period (2013–2017), 
the mean differences between the posterior and true 
fluxes of the global land and ocean changed from 0.66 to 
0.89 Pg C yr−1 and from 0.69 to 0.82 Pg C yr−1, respec-
tively. This is attributable to the fact that prior ocean 

fluxes do not have interannual variations but are accom-
panied by small prior uncertainties, which makes it 
slightly difficult to keep up with the increasing trend of 
the ocean sink and, consequently, the decreasing trend of 
the land sink.

3.6 � Sensitivity to inversion settings
As shown in Table  2, NO_ERR (2.74 × 10−1 gC 
m−2  day−1) had the smallest RMS error for the overall 
fluxes during 2008–2017, which were calculated against 
the true fluxes, while the second smallest value was 
obtained in CTL (3.49 × 10−1 gC m−2 day−1). The smaller 
RMS error of NO_ERR compared with that of CTL is 
due to fluxes over land. This could be attributed to more 
inhomogeneous and larger land fluxes than the ocean, 
and mole fractions simulated from terrestrial fluxes are 
more sensitive to the model transport resolution. The 
difference between CTL and NO_ERR is the model 

Fig. 7  Monthly variations of nonfossil fuel CO2 fluxes averaged for 2008–2017 for the 11 TransCom terrestrial regions (Gurney et al. 2002; Baker et al. 
2006). Light-gray and dark-gray solid lines represent the prior and true fluxes, respectively. The other colors represent posterior fluxes from different 
iterations (10–300) of CTL. The blue dotted line denotes the 300th iteration result in the case where model errors do not exist (NO_ERR)
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reproducibility of atmospheric mole fractions, which is 
derived from the horizontal resolution of the model that 
produced the pseudo-observations. Therefore, the result 
indicates that a change in the model horizontal resolu-
tion could highly impact the terrestrial flux estimates 
than the ocean flux estimates.

The other sensitivity tests, ICO, NO_WTS, and ISO_
ERR, produced similar values for global land and ocean 
uptakes, i.e., similar biases; however, their RMS errors for 
the overall fluxes were larger than those of CTL (Table 2). 
In the ICO case, the larger RMS error came from the ter-
restrial fluxes, a feature that can also be found in inter-
annual flux variations (Fig.  10). This result implies that 
the latitude–longitude optimization introduced in this 
study not only provided higher resolution fluxes but also 
improved the inversion estimates. The NO_WTS case 
showed larger RMS errors over the land and ocean, which 
is true for the overall fluxes (Table 2) and regional inter-
annual variations (Figs. 10 and 11). This impact is highest 
in the sensitivity tests, indicating that the spatiotemporal 

weighting of the observation–model mismatch errors 
plays a crucial role. The ISO_ERR case also had a larger 
RMS error than the CTL case for the overall terrestrial 
fluxes (Table  2). However, this was not necessarily the 
case for the regional interannual variations; ISO_ERR 
had smaller errors in some regions than CTL (Fig. 10).

4 � Discussion
The temporal variations in CO2 fluxes were retrieved 
well in this study, demonstrating the reliability of the 
flux estimates by NISMON-CO2. It is also promising that 
a weakly decreasing trend was retrieved in some ocean 
regions, because detecting such small flux changes is crit-
ical for monitoring carbon sink capacities of natural res-
ervoirs and gaining insights into the future global carbon 
cycle considering the global warming conditions.

However, areas in the southern hemisphere and trop-
ics still have substantial errors in flux estimates, possibly 
due to a sparse observational network there. The inver-
sion reproducing atmospheric mole fractions at the two 

Fig. 8  Same as Fig. 7, but for yearly variations from 2008 to 2017
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sites without any bias is depicted in Fig. 5; however, those 
sites are in regions with persistent flux biases (i.e., North 
Pacific and Southern Ocean, Fig.  9). This suggests that 

fluxes in other areas compensate to make the modeled 
mole fractions consistent with the observations. Such 
flux compensations could occur where observations are 
sparse, which may lead to further errors in flux estimates. 

Fig. 9  Same as Fig. 8, but for the 11 TransCom ocean regions

Fig. 10  Root-mean-square errors of the yearly fluxes against the true 
fluxes for the TransCom terrestrial regions. Results of the CTL and the 
other four sensitivity tests are illustrated here

Fig. 11  Same as Fig. 10, but for the TransCom ocean regions
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This is a typical inversion problem for long-lived species, 
such as CO2.

The persistent bias and long-term trend error in the 
global carbon budgets indicates difficulty in separating 
the land and ocean budgets with the current observation 
network. This land–ocean partitioning error could be 
mitigated by using the best ocean flux dataset available 

for the prior estimate; however, assessing which dataset 
is the best is difficult. Therefore, for the prior ocean flux 
in the real-observation inversion of NISMON-CO2 ver. 
2021.1, we used the JMA’s yearly varying ocean flux data 
(Iida et  al. 2021), which is likely representing the actual 
ocean sink trend better than the climatological data 
(Takahashi et  al. 2009) used in the pseudo-observation 

Table 2  Global-scale net sinks and errors for 2008–2017. The sink values do not include fossil fuel emissions. These errors are derived 
using root-mean-square errors against the true fluxes over the land, the ocean, and the global total carbon fluxes

Flux data Sinks (Pg C yr−1) Root-mean-square errors (× 10−1 g C m−2 day−1)

Land Ocean Total Land Ocean Total

True 2.62 2.04 4.67 n/a n/a n/a

Prior 4.61 1.41 6.02 5.92 0.33 5.93

CTL 3.39 1.29 4.68 3.48 0.29 3.49

NO_ERR 3.38 1.29 4.67 2.73 0.29 2.74

ICO 3.38 1.31 4.69 4.19 0.26 4.19

NO_WTS 3.39 1.26 4.65 4.61 0.32 4.62

ISO_ERR 3.38 1.31 4.69 4.52 0.29 4.53

Fig. 12  Yearly variations of the global land (a), ocean (b), and total (c) CO2 fluxes. (Fossil fuel emissions are excluded.) Light-gray and dark-gray solid 
lines represent the prior and true fluxes, respectively. The other colors indicate posterior fluxes from different iterations (10–300) of CTL. The blue 
dotted line denotes the 300th iteration result where model errors are nonexistent (NO_ERR)
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experiment. Performing multiple inversions with differ-
ent ocean flux datasets could also be useful to account for 
ocean flux uncertainties. Furthermore, using additional 
O2/N2 data, as Rödenbeck et  al. (2008) did, might be 
another approach to improve the land–ocean partition-
ing. However, they are left for future studies.

It should be noted that we did not select observational 
sites based on their temporal coverage. Therefore, well-
reproduced interannual variations, as shown in Figs.  8 
and 9, indicate that such temporal gaps in the observa-
tional data do not significantly affect the estimation of 
interannual variations. Nonetheless, some interannual 
variations remain poorly estimated and might be affected 
by the observational gaps. Such observational gap effects 
could be mitigated by selecting only observations with 
sufficient temporal coverage, as some other inversion 
studies do (e.g., Chevallier et al. 2010). However, reduc-
ing observations would increase overall flux errors. Fur-
thermore, due to changes in meteorological conditions, 
misestimation of interannual variations could occur even 
with temporally sufficient observations. When wind 
direction at a site changes from year to year, its obser-
vational constraints may also change. Therefore, we 
adopted a strategy to use as many observations as pos-
sible without considering any site-specific selection in 
terms of temporal data coverage. This research demon-
strates that such a strategy can still reproduce reasonable 
interannual variations. It should also be noted that this 
inversion only used surface observations. However, vari-
ous aircraft data are available, which could provide effec-
tive constraints in flux estimates (Niwa et al. 2012, 2021). 
Furthermore, satellite observations (Crisp et  al. 2008; 
Yokota et  al. 2009) may provide different insights from 
surface and aircraft observations, although assessing 
biases and errors of satellite observations can be difficult. 
Incorporating such observations is one way to improve 
NISMON-CO2.

In contrast to a previous study by Niwa et al. (2017b), 
we used a higher resolution model to prepare pseudo-
observations (~ 112  km). This provided insight into the 
representation error of the model, although the actual 
degree of the model’s representation error is probably 
much greater. The inversion performance in retriev-
ing seasonal and interannual variations in surface fluxes 
depicted in this study is possibly overestimated due to the 
small model errors. Nevertheless, the difference between 
CTL and NO_ERR provides valuable insight into the 
effect of model resolution, from which we can predict 
a degree of improvement in a future inversion with a 
higher resolution model.

One major update to the inversion settings of Niwa 
et  al. (2017b) is the implementation of a grid con-
version in the inverse calculation, which enables a 

high-resolution latitude–longitude grid optimization. 
The computational time required for the grid conversion 
is mere minutes, and the convergence speed is almost the 
same as that of ICO (Fig. 4); therefore, this implementa-
tion does not induce any substantial increase in compu-
tational costs. Because it uses the same transport model 
resolution as before, the amount of information that can 
be extracted from the observations does not necessarily 
increase. Nevertheless, it is valuable because the original 
information in the prior flux datasets does not deterio-
rate. Furthermore, such highly resolved fluxes could be 
more useful for regional- or national-scale budget analy-
ses, demand for which has recently increased for use in 
monitoring and reducing national carbon emissions. This 
scheme can be widely utilized because it is also applica-
ble to inversion systems that use a conventional latitude–
longitude grid model. The grid conversion scheme can be 
applied to convert from higher- to lower-resolution lati-
tude–longitude grids.

Other updates to the inversion settings include the 
observational weighting and anisotropic prior error 
covariance. Although both of these updates improved the 
inversion results, the impact of observational weighting 
was considerably greater. Weighting is performed using 
Eq.  (10) with three parameters (horizontal lengths, ver-
tical lengths, and temporal range for counting nearby 
observations), which is much simpler than changing 
the model resolution or the prior flux error covariance 
design. In this study, these parameters were determined 
after a few preliminary sensitivity tests but were not thor-
oughly investigated. Therefore, equation modification or 
parameter sweeping could efficiently improve the inver-
sion. The impact of the anisotropic prior error covariance 
is comparable to that of observational weighting on the 
RMS error of the overall fluxes (Table  2), whereas the 
RMS errors of the regional and temporal variations are 
marginal (Figs.  10 and 11). In fact, the improved result 
from CTL compared to ISO_ERR is partially attributed 
to the fact that the true flux was derived from NISMON-
CO2 ver. 2021.1, which used the same inversion settings, 
including the prior error covariance, as those of CTL. 
This might have given CTL some advantages. Nonethe-
less, the difference between CTL and ISO_ERR indicates 
potential improvements made by the anisotropic error 
covariance and inversion estimates could be improved by 
shaping the error covariance according to real flux varia-
tions. Because a long-term flux dataset is used to derive 
not only the prior estimate but also its error covariance, 
preparing such a flux dataset has become more vital. Fur-
thermore, the anisotropic error covariance is also valu-
able for providing high-resolution fluxes with the grid 
conversion scheme. If isotropic error covariance is used, 
the patterns of flux increments from prior fluxes would 
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be blurred even when the optimization is performed in 
the latitude–longitude grid as the isotropic error covari-
ance works on spatial smoothing. However, as depicted 
in Fig. 2, the anisotropic error covariance retains the fine 
scale patterns derived from flux dynamics.

5 � Conclusions
In this study, we described the updated inversion set-
tings for NISMON-CO2. Furthermore, to demonstrate 
the practical application of long-term inverse analy-
sis, we conducted 10-year inversion experiments using 
pseudo-observations that emulate an inhomogeneous 
observation network consisting of continuous meas-
urements and flask air samplings with actual data gaps. 
Despite a persistent global bias in the land–ocean par-
titioning, the seasonal and interannual variations were 
sufficiently retrieved in the experiment, demonstrating 
the reliability of NISMON-CO2 and its real-observation 
inversion product (NISMON-CO2 ver. 2021.1). Moreo-
ver, sensitivity experiments revealed that the flux estima-
tion improvements were attributed to grid conversion, 
observational weighting, and anisotropic prior error 
covariance, all of which were newly introduced to NIS-
MON-CO2. Hence, these schemes will be useful as the 
default settings of NISMON-CO2 and can also be applied 
to inversion analyses of other atmospheric constituents 
(e.g., methane).

Since the adoption of the Paris Agreement in 2015, eve-
ryone globally is working toward reducing greenhouse 
gas emissions with the common goal to limit global 
warming well below 2  °C, preferably below 1.5  °C, com-
pared with pre-industrial levels. To verify the achieve-
ments in CO2 emission reductions, regular evaluations 
of surface CO2 fluxes are imperative. To this end, we will 
operationally conduct inverse analysis using NISMON-
CO2 and provide science-based estimates of CO2 fluxes, 
as well as developing the system further.
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