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Abstract 

The relationship between the hydrological cycle and the temperature is rather complex and of great importance to 
human socioeconomic activities. The prevailing theory suggests that as temperature increases the hydrological cycle 
is intensified. Practically, this means more and heavier precipitation. However, the exact magnitude of hydrological 
cycle response and its spatio-temporal characteristics is still under investigation. Looking back in Earth’s hydroclimatic 
history, it is easy to find some periods where global temperature was substantially different than present. Here, we 
examine some of these periods to present the current knowledge about past hydrological cycle variability (specifically 
precipitation), and its relationship to temperature. The periods under investigation are the Mid-Miocene Climate Opti-
mum, the Eemian Interglacial Stage, the Last Glacial Maximum, the Heinrich and Dansgaard–Oeschger Events, the 
Bølling–Allerød, the Younger Dryas, the 8.2 ka event, the Medieval Climate Anomaly, and the Little Ice Age. We report 
that the hypothesis that a warmer climate is a wetter climate could be an oversimplification, because the response of 
water cycle appears to be spatio-temporally heterogeneous.
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1 Introduction
Looking back in Earth’s hydroclimatic history, there have 
been substantial shifts in the hydrological cycle (Ljun-
gqvist et  al. 2016). In the past few million years, many 
rapid climate transitions have occurred, with time scales 
ranging from decades to centuries (Corrick et  al. 2020). 
For example, during Holocene, i.e. the last 18–20 thou-
sand years (ka) before present (BP), the paleoclimatic 
records show considerable fluctuations in both the sea-
sonal and spatial distribution of precipitation (Badgeley 
et al. 2020). During the late glacial (18–16.5 ka), sea sur-
face temperature (SST) was about 5–10  °C colder than 
the recent Holocene (11.5–9  ka) over both the North 
Pacific and the North Atlantic (Praetorius et  al. 2020). 
For the same period, the global averaged precipitation 

was about 10–14% lower than today, with the maximum 
reduction over the Northern Hemisphere (NH) due to 
reduced convective activity (Gates 1976; Kwiecien et  al. 
2009; Sun et  al. 2019). As the Last Glacial ended and 
the climate became warmer, there was a shift to wetter 
conditions as well. From 13 to 12  ka BP, the monsoon 
circulation was intensified, resulting to an increase in 
precipitation by about 200–300  mm at lower latitudes 
(Knox and Wright 1983; Maher 2008; Pausata et al. 2020). 
Stronger monsoons were also observed between 8 to 3 ka 
BP, coupling the widespread warming (Chawchai et  al. 
2021). The most affected region was East Asia (Rao et al. 
2016), where precipitation was over 30% higher than 
today from 7.8 to 5.3 ka BP (Yang et al. 2016). All these 
changes occurred in various spatiotemporal scales, and 
therefore, it is still challenging to estimate the hydrologi-
cal cycle variability and quantify it on global, continental, 
and regional scales.
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Besides natural variability, anthropogenic forcing 
(GHG emissions and land-use changes) is also regarded 
as one of the possible drivers of abrupt changes of the 
hydrological cycle (Allan et  al. 2014). Global warming 
is expected to intensify the global hydrologic cycle, and 
increase the frequencies of extremes like heavy rainfall, 
flood, and drought conditions (Huntington 2010). The 
term intensification of the hydrological cycle is used to 
describe an acceleration in the rates of atmospheric water 
vapor content, precipitation, evaporation, and evapotran-
spiration (ET) (Trenberth 1998). There is a solid theo-
retical basis that relates atmospheric warming and the 
intensification of hydrological cycle. The basis for this 
relationship is the Clausius–Clapeyron relation, which 
suggests the exponential response of specific humidity 
to temperature increase (Huntington 2006). The Clau-
sius–Clapeyron formulation implies the slope of this 
relationship has to remain below the 6.5% per Kelvin as 
the evaporation is energy limited (Norris et  al. 2019). 
However, precipitation is also energy limited, because the 
atmosphere should be able to radiate away the latent heat 
produced during precipitation events (O’Gorman 2012). 
This makes the estimation of the precipitation response 
under energy constrain conditions a complex task.

Due to this complexity, General Circulation Models 
(GCMs) are being extensively used in the estimation of 
the intensification hydrological cycle (Watterson et  al. 
1997). The GCMs still show strong variance in their 
results, although there is general agreement that there is 
a detectable increase in global mean precipitation, also 
evident in observational records (Markonis et  al. 2019). 
For example, Allen and Ingram (2002) reported that the 
precipitation will increase by approximately 3.4% per 
Kelvin degree, while Wentz et al. (2007) report a slower 
rate, between 1 and 3% per Kelvin. Another study using 
20 coupled ocean-land–atmosphere models shows 
that precipitation, runoff, and evaporation will globally 
increase by 5.2%, 7.3%, and 5.2%, respectively, respond-
ing to a mean surface air temperature increase of 2.3 °C 
by 2050 (Wetherald and Manabe 2002). Durack et  al. 
(2012) present a 4% increase in precipitation in response 
to 0.5 °C warming. As we see, the precise quantification 
of the relationship between temperature and hydrologi-
cal cycle remains unresolved. A plausible alternative and 
complementary approach to the GCMs is the study of the 
past states of hydrological cycle through paleoclimatic 
reconstructions. By investigating the past hydroclimatic 
variability range, we can shed more light to the underly-
ing physical mechanisms and/or constrain the climate 
model simulations (Seftigen et al. 2017).

This study aims to map the current knowledge about 
hydrological cycle variability, and its relationship to tem-
perature. Since it is extremely difficult to assess all the 

processes related to the global hydrological cycle, we 
focus our review to precipitation and temperature (as 
aproxy for evaporation), which can be used indirectly 
to describe the global water balance Vargas Godoy et al. 
(2021). We have selected past periods with significant 
hydroclimatic fluctuations, that span from centuries to 
million years. The lengthiest of them is Mid-Miocene 
Climate Optimum (MMCO; 17–14.5 million years BP), 
when global temperature was 3–8  °C higher than pre-
industrial levels. Such a warmer climate can help us 
determine future changes of water cycle to extremely 
high temperature conditions. Alternatively, warmer 
periods such as the Eemian Interglacial Stage (tempera-
ture 1.3 °C higher than today) can provide insight in the 
near future changes due to global warming. On the other 
hand, the study of ice age climates can help us determine 
the hydrological cycle response to colder regimes (e.g. 
Last Glacial Maximum when global temperature was 
4.3  °C lower than today). The rapid transitions between 
cold and warm conditions are also of interest, and here, 
we will explore the hydrological cycle shifts during the 
Heinrich and Dansgaard–Oeschger Events. Finally, the 
study of Holocene allows us to examine time scales closer 
to the one of the recent temperature increase. We inves-
tigate the hydroclimatic conditions for Bølling–Allerød, 
Younger Dryas, the 8.2  ka event, the Medieval Climate 
Anomaly, and the Little Ice Age. Assessing the state of 
hydrological cycle during all these periods can offer an 
alternative pathway for anticipating the hydroclimatic 
changes that are yet to come both in the near and distant 
future (Meehl et al. 2007).

Please note that the pre-industrial values of tempera-
ture or precipitation corresponds to the period 1850–
1900. On the other hand, there are studies that compare 
the climatic conditions with today. In this case, we 
assume today as the reference time when the correspond-
ing study was published (industrial era). We use the same 
assumption for the studies without any explicit reference 
to a comparison period.

2  Climatic regimes of the distant past
2.1  MMCO
The MMCO (14 million years BP) is a rather long period 
of significantly warmer conditions compared to present 
(Böhme et al. 2007). What makes it particularly interest-
ing is the evidence of enhanced fluctuations in the carbon 
cycle (Holbourn et al. 2014). Proxy records of alkenones 
(Zhang et  al. 2013), paleosols (Breecker and Retallack 
2014), stomata (Grein et al. 2013), and marine boron iso-
topes (Greenop et al. 2014) show that during the MMCO 
event, atmospheric CO2 was less than 450 ppm, which is 
not far from the current CO2 levels and within the range 
of near future CO2 projections (Steinthorsdottir et  al. 
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2020). However, there are also studies that report lower 
CO2 concentrations, equal to or less than today (Zhang 
et al. 2013), implying that CO2 might not be the main cli-
matic driver (Pearson and Palmer 2000). Nevertheless, 
MMCO presents an excellent opportunity to investigate 
the functioning of the hydrological cycle in a warmer 
climate.

Air temperature reconstructions and model simula-
tions suggest that during the MMCO, the annual mean 
global temperature was between 3 and 8  °C more than 
the pre-industrial levels (You et  al. 2009; Pound et  al. 
2012; Steinthorsdottir et al. 2020). This is in good agree-
ment with temperature proxies of deep-ocean water, 
which reveal a 5–6  °C warmer temperature as of today 
(Haq 1973; Miller et  al. 1991; Zachos et  al. 2008). The 
regions with higher temperatures are located mostly 
at mid to high latitudes (Böhme et al. 2007; Bruch et al. 
2007; You 2010). Alongside with the warmer condi-
tions, the MMCO also exhibited a rather humid climate 
(Zachos et  al. 2001). This is also supported by model 
simulations, which show widespread increases in mean 
annual precipitation across northern and central Africa, 
North America, northern Eurasia, and Greenland (Ken-
nett 1994; Fox and Koch 2004; Retallack 2007; Henrot 
et al. 2010; Herold et al. 2011).

The prevailing wet conditions are also confirmed by 
regional studies. Wet conditions of the MMCO have also 
been reported for Europe, where there was an increase 
in average annual precipitation of about 830–1350  mm 
(Böhme et  al. 2007; Methner et  al. 2020; Kuhlemann 
and Kempf 2002; Schlunegger et  al. 1996). In addition, 
the isotope estimations at the Pannonian basin (Central 
Europe) suggest higher summer precipitation during the 
Late Miocene (about 10 million years BP) (Harzhauser 
et al. 2007). Pollen and leaf proxies from the Nenanacoal 
field (Alaska Range, Alaska) imply a particular warmer 
period from about 18 to 14 million years BP (Leopold 
and Denton 1987). Pollen investigation at the Tian Shan 
(China) and sediment analysis at northeastward of 
Tibetan Plateau (China) show a wet and warm stage (Sun 
and Zhang 2008; Song et al. 2018). Stable isotope sclero-
chronology over northern South America (Guajira Penin-
sula, Colombia) indicates wet conditions with enhanced 
seasonality in regions that today have semiarid condi-
tions due to a northerly shift of the Inter Tropical Con-
vergence Zone (ITCZ) (Scholz et al. 2020). Finally, warm 
and wet climate dominated at Antarctica and the some 
regions of Southern Hemisphere (SH) high latitudes (You 
2010; Feakins et al. 2012).

We have to note, though, that there is also evidence for 
increased aridity over Africa (Retallack 1992; Levin et al. 
2006; Eronen et  al. 2012; Morales-García et  al. 2020), 
Australia (Stein and Robert 1985; Byrne et al. 2008; Wu 

et  al. 2018), South America (Pascual and Jaureguizar 
1990), and some regions of North America (Wolfe 
1985; Chamberlain et al. 2014) and Asia (Jiang and Ding 
2010; Liu et al. 2009). In the latter, there was an expan-
sion of the arid region from the western to the eastern 
coast of China, whereas the humid areas were limited to 
the northern and southern parts (Steininger 1999; Wan 
et al. 2007; Clift et al. 2014). The physical mechanism that 
regulated the aridification over Asia, and the widespread 
mid-latitude arid region of the NH remains enigmatic 
(Hou et al. 2014). Analysis of bulk δ13C, over the central-
eastern Idaho (Railroad Canyon section, USA), suggests 
an average mean annual precipitation of about 190 mm 
(ranges from 10 to 510 mm/year) during the MMCO that 
is almost equivalent to today’s values (about 236  mm/
year) (Harris et al. 2020). In addition, a paleosols analysis 
over the northern Pakistan (Zaleha 1997) suggests mid-
dle Miocene monsoon was similar to today (Allen and 
Armstrong 2012).

In Table  1, all the analysed studies are presented by 
region, hemisphere, latitudinal zone, and time period. In 
order to highlight the spatiotemporal variability of the 
hydroclimatic conditions, some studies appear to more 
than one rows, e.g. You (2010). In this manner, we can see 
that even in a much warmer world, there is no uniform 
shift of hydrological cycle; some regions became wet-
ter, some became drier, and some appear to be similar to 
today. Still, the comparative examination of temperature 
and precipitation reveals that warmer conditions favor 
more an increase in precipitation than drier climate con-
ditions in an approximately 2:1 ratio (Fig. 1).

2.2  The Eemian Interglacial Stage
The Eemian Interglacial Stage, also known as the Marine 
Isotope Stage (MIS) 5e, is a period that lasted 15 to 17 
thousand years at approximately 130  ka BP (Abarbanel 
and Lall 1996). Commonly referred as the Last Intergla-
cial, it is the period that preceded the last glacial stage, 
with stable climatic conditions similarly to Holocene. Ini-
tially, the Eemian was thought to be quite warmer than 
interglacial. Andersen et  al. (2004) reported that the 
temperature was 5 °C higher as to today, according to an 
oxygen isotope reconstruction. However, more recent 
studies suggested that global average surface tempera-
ture was up to 1.3 °C warmer than the pre-industrial lev-
els (Fischer et al. 2018), reaching a 2 °C maximum in the 
middle of the period (Snyder 2016). The global average 
temperature over land was 1.7  °C warmer than the pre-
industrial levels, while the oceans were 0.8  °C warmer 
(Otto-Bliesner et  al. 2013). The temperature differences 
were quite heterogeneous over land. The mid and high 
northern latitudes experienced considerably warmer 
temperatures, ranging between 2 and 5  °C (Turney and 
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Jones 2010), which are comparable to some global warm-
ing projections (Change 2014). Similarly to the MMCO, 
the Eemian is also an excellent analogue for analysing the 
state of hydrological cycle in warmer conditions (Adams 
et al. 1999).

Most of the available paleoclimatic records show that 
the Last Interglacial was wetter than Holocene. This is 
also supported by model simulations, demonstrating an 

intensified hydrological cycle (Weaver and Hughes 1994; 
Pedersen et  al. 2017; Johnston et  al. 2018; Zhang et  al. 
2021b). Enhanced precipitation is observed mainly at the 
NH in paleoclimatic records over the low latitudes (Wil-
liams et al. 2020), boreal mid-latitude regions (Members 
2006), and the Arctic (Kim et al. 2010). In addition, the 
ice melt pulses from Greenland have been suggested to 
influence the enhanced climate variability across the 

Table 1 Temperature and precipitation conditions during the MMCO

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in million years BP and average age 
uncertainty is ± 1 million years

Study site Hemisphere Zone Period T P Citation(s)

Global NH/SH 0 17–14.5 Warm 0 You et al. (2009)
Pound et al. (2012)
Steinthorsdottir et al. (2020)

N. Hemisphere NH M-L 17–14.5 Warm Dry Böhme et al. (2007);
Bruch et al. (2007); You (2010) Zachos et al. (2001)

N. Hemisphere NH H-L 17–14.5 Warm Dry Böhme et al. (2007)
Bruch et al. (2007), You (2010), Zachos et al. (2001)

Deep Ocean NH H-L 17–14.5 Warm 0 Haq (1973), Miller et al. (1991)
Zachos et al. (2008)

S. Hemisphere SH H-L 17–14.5 Warm Wet You (2010), Feakins et al. (2012)

Asia NH M-L 17–14.5 0 Dry Jiang and Ding (2010)
Liu et al. (2009)

Africa NH L-L 17–14.5 0 Dry Retallack (1992)
Levin et al. (2006)
Eronen et al. (2012)
Morales-García et al. (2020)

Antarctica SH H-L 17–14.5 Warm Wet You (2010); Feakins et al. (2012)

S. America SH L-L 17–14.5 0 Dry Pascual and Jaureguizar (1990)

N. America NH M-L 20–14.5 Warm Wet Kennett (1994); Retallack (2007)
Fox and Koch (2004); Henrot et al. (2010) Herold et al. (2011)

N. America NH M-L 17–14.5 0 Dry Wolfe (1985) Chamberlain et al. (2014)

Europe NH M-L 17–14.5 0 Wet Böhme et al. (2007); Methner et al. (2020)
Kuhlemann and Kempf (2002)
Schlunegger et al. (1996)

Australia SH M-L 17–14.5 0 Dry Stein and Robert (1985)
Byrne et al. (2008)
Wu et al. (2018)

N. Eurasia NH H-L 21–14.5 Warm Wet Kennett (1994); Retallack (2007)
Fox and Koch (2004); Henrot et al. (2010) Herold et al. (2011)

Central Africa NH L-L 19–14.5 Warm Wet Kennett (1994); Retallack (2007)
Fox and Koch (2004); Henrot et al. (2010) Herold et al. (2011)

N. Africa NH M-L 18–14.5 Warm Wet Kennett (1994); Retallack (2007)
Fox and Koch (2004); Henrot et al. (2010) Herold et al. (2011)

Northern S. America SH L-L 17–14.5 0 Wet Scholz et al. (2020)

China NH M-L 17–14.5 Warm Wet Sun and Zhang (2008)
Song et al. (2018)
Steininger (1999)
Wan et al. (2007)
Clift et al. (2014)

Greenland NH H-L 21–14.5 Warm Wet Kennett (1994); Retallack (2007)
Fox and Koch (2004); Henrot et al. (2010) Herold et al. (2011)

E. Idaho, USA NH M-L 17–14.5 0 Dry Harris et al. (2020)

N. Pakistan NH M-L 17–14.5 0 Dry Allen and Armstrong (2012)

Alaska Range, Alaska NH H-L 18–14 Warm 0 Leopold and Denton (1987)
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Mediterranean (Tzedakis et  al. 2018). During that time, 
when insolation was at its peak over the NH (Nehme 
et  al. 2015), wet intervals were observed over Southern 
Europe (Brauer et  al. 2007), and specifically, over the 
Eastern Mediterranean (Bar-Matthews 2014; Bar-Mat-
thews et al. 2019). Continental North America was also 
wetter and warmer compared to today (Anderson et  al. 
2014). However, there were, also, some fluctuations to 
dry intervals (Curry and Baker 2000), which are further 
observed in the high values of carbon isotope (δ13C29 and 
δ13C31) (Suh et al. 2020).

Furthermore, there is an increase in NH summer mon-
soons (Wang et  al. 2008). Both the proxy and model 
approaches explicitly suggest higher monsoon activity 
over North African and Asia (Prell and Kutzbach 1987; 
Scussolini et  al. 2019). Terrestrial proxy records sug-
gest wetter and warmer climate over the Sahara Arabian 
desert area compared to the present (Rosenberg et  al. 
2013; Petit-Maire et  al. 2010). This is further confirmed 
by both the oxygen isotopes on speleothems at Soreq 
Cave (Israel) and climate models, showing increased 
regional rainfall during the Last Interglacial, attributed to 
wetter winters and increased summer monsoons (Orland 
et  al. 2019). In addition, speleothems and fossil corals 

reconstructions in the reef terraces also indicate a wetter 
Eemian interglacial alongside the Gulf of Aqaba at Ara-
bian Peninsula (Yehudai et al. 2017). Similar speleothem 
findings as well confirm a wetter climate over Southern 
Arabia (Vaks et al. 2006).

On the other hand, there are also regions that experi-
enced enhanced aridity. The evaluation of the Eemian cli-
mate across Europe using pollen reconstructions presents 
a different picture to the one described above. Colder and 
dryer conditions prevailed in the southern regions and 
conditions that are similar to today in the higher lati-
tudes (Brewer et al. 2008). Sediment records from Maar 
lake (Germany) show a late Eemian cold and arid event 
that lasted 468 years (Sirocko et al. 2005). Weakening of 
the southern summer monsoon has been reported in the 
modeling and some proxy records (Montoya et al. 2000). 
Supporting evidence can be found in the speleothems of 
Western Australia, which indicate arid conditions (Zhao 
et  al. 2001). Drier conditions also appeared in Argen-
tina as detected in loess (paleosols) records (Tofalo et al. 
2011), and Bolivia, where sediment records from Lake 
Titicaca suggest warmer and more arid conditions dur-
ing the Eemian period (Fritz et  al. 2007). This seems to 
be a recurring pattern during warm interstadials and 

Fig. 1 Relationship of temperature and precipitation during the MMCO. The number of studies used for the warm/cold or wet/dry conditions can 
be found in Table 1
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interglacials, when the southeastern regions of Australia 
show comparatively arid conditions (Ayliffe et  al. 1998). 
In general, both proxy records and model simulations 
suggest weakened monsoonal precipitation over the SH 
compared to the pre-industrial times (Nikolova et  al. 
2013).

Similarly to the MMCO, during the MIS-5e, there was 
a substantial warm-and-wet pattern which was far from 
homogeneous. The majority of the studies on tempera-
ture shows warmer climate, i.e. about 85%, while the rest 
reveal cold conditions (Fig. 2 and Table 2). In precipita-
tion records, the difference is slightly milder with about 
75% of the studies suggesting wet conditions and about 
25% a drier climate.

2.3  The Last Glacial Maximum
The Last Glacial Maximum (LGM) corresponds to the 
period during the last Glacial Stage that the ice sheets 
extended to their maximum length reaching their high-
est mass. It occurred between 30 and 15  ka (Prentice 
et  al. 1992), although more recent estimates place it 
between 26.5 and 19  ka BP (Clark et  al. 2009). During 
the LGM, the climate conditions at NH high latitudes 
were much colder and drier than today (Bigelow et  al. 

2003; Otto-Bliesner et  al. 2006; Yokoyama et  al. 2000). 
The global average temperature is estimated at 3–6  °C 
lower than the modern values (Bush and Philander 
1999; Schmittner et al. 2011), while locally, e.g. at Green-
land Summit, reached approximately 15–20  °C colder 
than the present levels (Johnsen et al. 1995; Cuffey et al. 
1995; Miller et al. 2010). Even the tropics were substan-
tially colder, ranging between 2 and 3.5 °C below present 
temperatures (Barker et al. 2005; Annan and Hargreaves 
2013). This has also been confirmed by model results, 
which also estimate the difference around 2.5  °C across 
the equatorial regions (Crowley 2000; Ballantyne et  al. 
2005). Similarly to the Eemian the main driver for the 
temperature decline is the incoming insolation (Bush and 
Philander 1999; Clark et al. 2009).

The decline in temperature is also confirmed by 
decrease in the SST over multiple oceans. The Multi-
proxy Approach for the Reconstruction of the Glacial 
Ocean surface (MARGO) project suggests that there 
was an annual tropical SST cooling of 1.7(± 1) °C during 
the LGM. Similarly, the eastern and western equatorial 
Pacific, northwestern Pacific subarctic gyre, and north-
western tropical Pacific regions also show that the SST 
was lower (0.9–3.6  °C) than the present (Kucera et  al. 

Fig. 2 Relationship of temperature and precipitation during the Eemian Interglacial Stage. The number of studies used for the warm/cold or wet/
dry conditions can be found in  Table 2
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2005). The lower SST resulted in increased upwelling of 
colder water across the continental margin and, finally, 
a cooler climate, especially over the NH (Rosell-Mel´e 
et  al. 2004). There is also limited evidence about the 
SST decline in finer scales. For example, the Mediter-
ranean Sea shows that the SST was about a 1  °C lower 
than the present, particularly in the eastern part (Hayes 
et al. 2005). On the other hand, not all the studies agree 
on a lower SST during the LGM. The SST derived from 
the central tropical Pacific and northern subtropics were 
similar to the modern levels of the SST (Lee et al. 2001), 
while a few regions have experienced a higher SST, such 
as the Northwest Pacific margin, southern parts of Ice-
land–Faroe Ridge, Iberian margin, north–south-west 
African boundary currents, and Japan Sea (Waelbroeck 

et  al. 2009). Still the majority of the SST records advo-
cate for cold conditions, which are expected to affect 
the hydroclimate of the nearby landmasses (Seager et al. 
2007).

Most of the proxy records suggest that during the LGM 
the global hydrological cycle was weaker compared to 
today (Cragin et  al. 1977; Yung et  al. 1996; Steffensen 
1997; Li and Zhang 2020). Dry conditions were typical 
over both hemispheres and model simulations show that 
the decline in global temperature is linked to a decline in 
atmospheric water vapor concentration. Otto-Bliesner 
et  al. (2006) estimated that precipitable water was 18% 
less than today resulting to an annual average precipita-
tion of about 2.49 mm per day. The weakening the global 
hydrological cycle is due to a reduction of about 10% in 

Table 2 Temperature and precipitation conditions during the Eemian Interglacial Stage

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in ka BP and average age uncertainty 
is ± 5 ka

Study site Hemisphere Zone Period T P Citation(s)

Global NH/SH 0 130–116 Warm 0 Fischer et al. (2018)
Snyder (2016)
Otto-Bliesner et al. (2013)

Global NH/SH 0 130–116 0 Wet Weaver and Hughes (1994)
Pedersen et al. (2017)
Johnston et al. (2018)
Zhang et al. (2021b)

N. Hemisphere NH 0 130–116 Warm 0 Andersen et al. (2004)

N. Hemisphere NH 0 130–116 0 Wet Wang et al. (2008)
Williams et al. (2020)
Members (2006)
Kim et al. (2010)

N. Hemisphere NH M-L 130–116 Warm 0 Turney and Jones (2010)

N. Hemisphere NH H-L 130–116 Warm 0 Turney and Jones (2010)

Asia NH M-L 130–116 0 Wet Prell and Kutzbach (1987)
Scussolini et al. (2019)

N. America NH M-L 130–116 Warm Wet Anderson et al. (2014)

Europe NH M-L 130–116 Cold Dry Brewer et al. (2008)

Australia SH M-L 130–116 0 Dry Ayliffe et al. (1998)

N. Africa NH M-L 130–116 0 Wet Prell and Kutzbach (1987)
Scussolini et al. (2019)

S. Europe NH M-L 130–116 0 Wet Brauer et al. (2007)

W. Australia SH M-L 130–116 0 Dry Zhao et al. (2001)

Arabian desert NH M-L 130–116 Warm Wet Rosenberg et al. 2013 Petit-Maire et al. (2010)

Greenland NH H-L 130–116 Warm 0 Tzedakis et al. (2018)

E. Mediterranean NH M-L 130–116 0 Wet Bar-Matthews (2014) Bar-Matthews et al. (2019)

Arabian Pen NH M-L 130–116 0 Wet Yehudai et al. (2017)

Germany NH M-L 130–116 Cold Dry Sirocko et al. (2005)

Bolivia SH L-L 130–116 Warm Dry Fritz et al. (2007)

Argentina SH M-L 130–116 0 Dry Tofalo et al. (2011)

Argentina SH M-L 130–116 0 Dry Nikolova et al. (2013)

S. Arabian Pen NH M-L 130–116 0 Wet Vaks et al. (2006)

Soreq Cave, Israel NH M-L 130–116 0 Wet Orland et al. (2019)
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both evaporation and precipitation (Bush and Philander 
1998; Gasse 2000). The simulations also suggested a sur-
plus of precipitation over evaporation that has lowered 
the net amount of water vapor in the atmosphere (Bush 
and Philander 1999; Rojas et al. 2009).

Proxy records and model simulations (CCSM3) report 
a weakened summer monsoon for both tropical as well 
as northern Africa (Prentice et al. 2000). Moreover, anal-
ysis of lake sediments from the Pretoria Saltpan (South 
Africa) suggests a negative shift in the monsoonal pre-
cipitation with total precipitation approximately 15 to 
20% less than today (Patridge et  al. 1997; Simon et  al. 
2015). The drier conditions were also confirmed by dia-
tom estimates from the same site (Metcalfe 1999; Gasse 
and Van Campo 2001). The lake records from the east 
and southwest Amazonia also suggest lower precipitation 
levels than the present (Absy et al. 1991; Sifeddine et al. 
2001). Similar changes are reported for high latitudes. 
Lake sediment records over southern east Siberia (Lake 
Baikal) show a drop of about 11% in annual precipitation 
and about 80% drop in summer precipitation, compared 
to the present climate (Osipov and Khlystov 2010). Simi-
larly, the yearly precipitation over the Greenland Summit 
has been found up to three times less than the present 
values (Cuffey and Clow 1997; Johnsen et al. 2001).

In Europe, where regional climate modeling sug-
gests that the annual average air temperature was about 
6–9  °C lower than the present, while the precipitation 
was quite lower, especially over the northern regions 
(Strandberg et  al. 2011). Interestingly, the decline was 
linked to a change in the atmospheric circulation pat-
tern that determines the precipitation regime and 
strength. Currently, the precipitation pattern over cen-
tral Europe is controlled by a westerly to northwesterly 
circulation system. During the LGM, the atmospheric 
moisture reached central Europe through south-west-
erly advection (Becker et  al. 2016). This was also sup-
ported by the oxygen isotope analysis on speleothems 
of the Sieben Hengste cave (Bernese Alps), which report 
southwesterly moisture advection (during 26.5–23.5  ka) 
(Luetscher et al. 2015). The change in atmospheric circu-
lation resulted to an increase in precipitation over south-
ern Europe (Kuhlemann et al. 2008). In the eastern and 
central Mediterranean, there has been evidence for an 
increase in mountain glaciers at several locations, as well 
as an increased rate of winter precipitation (Strandberg 
et  al. 2011). The Mediterranean is not the only region 
that wetter conditions appeared, as there is evidence of 
similar fluctuations over the extra-tropics (Clark and 
Mix 2002). Similar findings were found in the assessment 
on lake levels over East Africa, even though palaeoveg-
etation analysis point to a dry climate (Barker and Gasse 
2003). However, these changes are spatially limited and 

do not significantly alter the global signal of decline in 
precipitation.

Contrary to the warm conditions of the MMCO and 
the Eemian Interglacial Stage, the cold conditions that 
prevailed in the LGM are mostly associated with drier 
climate. However, again the climatic conditions may dif-
fer spatially. For instance, in Fig.  3 and Table  3, we can 
see that about 20% of precipitation records correspond 
to regions with wet climate during this doubtlessly cold 
period. Another plausible explanation, besides spatially 
heterogeneity, could lie to the climatic proxy nature and 
the processes involved, which might falsely interpret 
solid precipitation or glacial extension as a wet regime. 
In any case, the global signal advocates for a weakening in 
water cycle strength (Li and Zhang 2020).

3  The abrupt climatic events of the last glacial
3.1  Dansgaard–Oeschger and Heinrich events
During the last glacial period, Earth’s climate has gone 
through some abrupt changes over the North Atlan-
tic region (Dansgaard et  al. 1993). Proxy records sug-
gest more than 24 cooling and warming events, termed 
as the Dansgaard–Oeschger (D–O) events (Rasmussen 
et al. 2016). During the D–O events, most of the NH is 
influenced by abrupt warming, which is then succeeded 
by a more gradual cooling (Martrat et  al. 2004). Ice 
core records collected from Greenland suggest a rapid 
increase in atmospheric temperature ranging between 
10 and 16 °C that occurred within a few decades (John-
sen et  al. 1989; Lang et  al. 1999; Budsky et  al. 2019). In 
addition, there is evidence that warmer climate condi-
tions were coupled with higher precipitation (Genty et al. 
2003). The factors driving the D–O events are under 
vigorous debate, ranging from ocean–atmosphere or 
sea ice-atmosphere interactions (Broecker et  al. 1990; 
Li and Born 2019) to cyclic Greenland ice sheet calving 
(Van Kreveld et al. 2000) and Earth’s orbital forcing (Van 
Geel et al. 1999). Widespread signs of D–O events in the 
Nordic seas and North Atlantic have been found to be 
associated with the Atlantic Meridional Overturning Cir-
culation (AMOC) instability, influenced by the variabil-
ity in convection rate (Rasmussen et al. 2016). However, 
there are also D–O events that did not only influence 
the North Atlantic, but had a large-scale, or even global, 
impact to the climatic system. The fingerprint of D–O 
events can be found in deep-sea records, where it can be 
seen on planktonic and benthic records across the globe 
(Shackleton et al. 2000), or the Vostok ice core record at 
Antarctica (Jouzel et al. 1987). This is probably due to the 
relationship between the D–O events and the intensity of 
the AMOC (Santos et al. 2020).

The D–O events are also evident over the Mediterra-
nean region, where there was an increase in precipitation 
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over the Iberian Peninsula (Nebout et  al. 2002; Budsky 
et  al. 2019) and Italy (Alley and Clark 1999). In addi-
tion, the D–O events are observed in the oxygen isotope 
record of the Soreq cave (Israel), where low δ18O and 
high δ13C values suggest wet conditions (Bar-Matthews 
et al. 2000). An increase in precipitation is also reported 
for Great Basin (Nevada; United States), where there is an 
increase in the lake levels, derive by the analysis of δ18O 
proxy records (Benson et al. 1998). Some D–O events can 
also be linked with climatic fluctuations across the Indian 
Ocean (Altabet et  al. 2002), such as events D–O events 
7 and 8, which occurred at approximately 34–41  ka BP 
(Beck et al. 2001). The δ18O estimates in the stalagmites 
collected from northern Vietnam, Indian, and Chinese 
caves show strengthening in the Indian and Asian sum-
mer monsoons (Dung et  al. 2020; Cheng et  al. 2016; 
Kathayat et  al. 2016). Additionally, the D–O event 12 
(45 ka BP (Genty et al. 2003)) was linked to the increased 
intensity of the Asian southwest monsoon during about 
50–40  ka (Anderson and Prell 1993). Similar findings 
have been reported for other regions over Asia (Wang 
et al. 2001), while there is evidence that the D–O events 
can also be detected at South America (Peterson et  al. 
2000).

Between the D–O events, there are also some abrupt 
transitions to rather cold periods. They were named after 
Hartmut Heinrich, who investigated the characteristics of 
six intervals from 70 to 14 ka BP that occurred between 
the D–O events and appear to be the coldest events of 
the glacial (Heinrich 1988). The Heinrich events affected 
most of the Eurasia and North America, resulting to 
drier and colder conditions (Genty et  al. 2003; Benson 
et  al. 1996; Asmerom et  al. 2010). Although the drivers 
of the Heinrich events are still not fully understood, there 
is general agreement that they are related to changes in 
the oceanic circulation over the North Atlantic (Thomas 
et  al. 1995) and in the ice sheets over NH (Broecker 
2000). They are mainly linked with the release of large 
volume of freshwater through iceberg melting (Boers 
2018). These large-scale cold freshwater pulses caused 
further changes all over the global climatic system.

A 5 to 8 °C cooling has been observed over the Medi-
terranean surface water (Rohling et  al. 1998), and sig-
nificant aridity has been observed over the southwestern 
USA (Wagner et al. 2010). The influence of some Hein-
rich events extends to the tropics, where enhanced arid-
ity has been reported (Leuschner and Sirocko 2000). 
Other Heinrich events are correlated with arid and cold 

Fig. 3 Relationship of temperature and precipitation during the LGM. The number of studies used for the warm/cold or wet/dry conditions can be 
found in Table 3
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climate at central China and even to Antarctica (Thomp-
son 1991). Finally, they can also been detected over the 
Indian Ocean (Bay of Bengal), linked to increased vari-
ability in the summer monsoon and drier conditions all 
over India (Colin et  al. 1998; Wang et  al. 2001). Simi-
larly to the LGM or other glacial stages, there is strong 
evidence that the decline in atmospheric/oceanic tem-
perature results to the weakening or deceleration of the 
hydrological cycle and consequently to drier conditions 
(Mangerud et al. 2003; Grimm et al. 2006).

However, fluctuations to warm and wet conditions 
have also been reported. Warmer SST has prevailed 
over Southern California (Hendy and Kennett 2000), 
while low isotopic values suggest an extremely wet 
climate across the western USA between 40–30  ka 
28.5–26.5  ka, and around 13  ka (Benson et  al. 1996). 
In addition, the δ18O records from the Owens Lake, 
Great Basin (western United States) present overflow 

conditions, which were caused by either high precipi-
tation or enhanced ice melting (Gale 1914; Oster et al. 
2014). The substantial growth in central Andean gla-
ciers is an indication of increased precipitation across 
tropical South America during the Heinrich events 1 
and 2 (Wang et al. 2004) and across northeast Brazil for 
Heinrich events 1 to 5 (Smith and Rodbell 2010).

The studies on the Last Glacial abrupt climatic transi-
tions are divided in warm (D–O) and cold (Heinrich) 
events. All D–O events are associated with wet condi-
tions, while the hydroclimatic shift for Heinrich events 
is not so clear (Fig. 4 and Table 4). The cold transitions 
appear to result to both dry and wet conditions, with 
the dry conditions appearing more often (about a third 
of the studies). Thus, the hydrological cycle response 
to Heinrich events appears more heterogeneous com-
pared to the D–O events. Still the relatively low num-
ber of studies may affect these findings.

Table 3 Temperature and precipitation conditions during the LGM

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in ka BP and average age uncertainty 
is ± 5 ka

Study site Hemisphere Zone Period T P Citation(s)

Global NH/SH 0 30–15 Cold 0 Bush and Philander (1999)
Schmittner et al. (2011)

Global NH/SH 0 30–15 0 Dry Cragin et al. (1977)
Yung et al. (1996)
Steffensen (1997)
Li and Zhang (2020)
Bush and Philander (1998) Gasse (2000)

N. Hemisphere NH 0 30–15 Cold Dry Bigelow et al. (2003)
Otto-Bliesner et al. (2006)
Yokoyama et al. (2000)

Tropics NH/SH L-L 30–15 Cold 0 Barker et al. (2005)
Annan and Hargreaves (2013)
Crowley (2000)
Ballantyne et al. (2005)

Tropics NH/SH L-L 30–15 0 Dry Prentice et al. (2000)

Europe NH M-L 30–15 Cold 0 Strandberg et al. (2011)

Extra-tropics NH L-L 30–15 0 Wet Clark and Mix (2002)

E. Africa NH L-L 30–15 0 Wet Barker and Gasse (2003)

N. Africa NH M-L 30–15 0 Dry Prentice et al. (2000)

S. Africa SH L-L 30–15 0 Dry Patridge et al. (1997)
Simon et al. (2015)

N. Europe NH M-L 30–15 0 Dry Strandberg et al. (2011)

S. Europe NH M-L 30–15 0 Wet Strandberg et al. (2011); Kuhlemann et al. (2008)

Mediterranean NH M-L 30–15 0 Wet Clark and Mix (2002)

SE. Siberia NH M-L 30–15 0 Dry Osipov and Khlystov (2010)

E. & SW. Amazonia SH L-L 30–15 0 Dry Absy et al. (1991) Sifeddine et al. (2001)

Greenland NH H-L 30–15 Cold 0 Johnsen et al. (1995)
Cuffey et al. (1995)
Miller et al. (2010)

Greenland NH H-L 30–15 0 Dry Cuffey and Clow (1997)
Johnsen et al. (2001)
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3.2  Bølling–Allerød interstadial
During the final stages of the last glacial period, an abrupt 
warm and moist period that occurred between 14.8 and 
12.85 ka BP (On et al. 2018). In some regions, the period 
is divided into the¨ Bølling oscillation, with a peak closer 

to 14.5  ka BP and duration around 1400  years, and the 
Allerød oscillation, with a peak around 13  ka BP and a 
duration of 700 years (Seierstad et al. 2005). According to 
the δ18O proxies of the GRIP ice core, the Bølling climate 
was 1  °C colder than today, while Allerød was 5–12  °C 

Fig. 4 Relationship of temperature and precipitation during the Last Glacial. A D–O events, B Heinrich events. The number of studies used for the 
warm/cold or wet/dry conditions can be found in Table 4
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colder (Johnsen et  al. 1995). The lake sediments from 
the Lago di Origlio at Southern Swiss Alps suggest that 
during the Bølling–Allerød interstadial the temperature 
increased about 2.5 to 3.2 °C (Samartin et al. 2012). Sedi-
ment analyses over the Aegean Sea and Lake Maliq show 
an increased average annual temperature of about 10 °C 
in the onset of the Bølling–Allerød interstadial, which 
remained rather stable consequently (Bordon et al. 2009; 
Kotthoff et al. 2011). Still, its onset is considered amongst 

the most dramatic deglaciation events over the NH, pos-
sibly linked with the revival of the AMOC (Thiagarajan 
et al. 2014).

The changes in Atlantic oceanic circulation intensified 
the hydrological cycle over various regions across the 
globe. One of the regions that were significantly affected 
is the Mediterranean. Sediment analysis from Lake 
Prespa (Greece) revealed enhanced humid conditions 
(Aufgebauer et  al. 2012). Additionally, this increased 

Table 4 Temperature and precipitation conditions during the Last Glacial

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in ka BP and average age uncertainty for 
this period is ± 10 ka

Study site Hemisphere Zone Event Period T P Citation(s)

Global NH/SH 0 Heinrich 18–16.5 0 Dry Gates (1976)
Kwiecien et al. (2009)
Sun et al. (2019)

N. Hemisphere NH 0 D–O 80–12 Warm 0 Martrat et al. (2004)

Tropics NH/SH 0 Heinrich 70–14 0 Dry Leuschner and Sirocko (2000)

Eurasia NH M-L Heinrich 70–14 Cold Dry Genty et al. (2003)
Benson et al. (1996)
Asmerom et al. (2010)

Asia NH M-L D–O 80–12 0 Wet Dung et al. (2020)
Cheng et al. (2016)
Kathayat et al. (2016)

Asia NH M-L D–O 50–40 0 Wet Wang et al. (2001)

N. America NH M-L Heinrich 70–14 Cold Dry Genty et al. (2003)
Benson et al. (1996)
Asmerom et al. (2010)

S. America SH L-L D–O 50–40 0 Wet Peterson et al. (2000)

Antarctica SH H-L Heinrich 70–14 Cold Dry Thompson (1991)

Tropical S. America SH M-L Heinrich 15 and 22 0 Wet Wang et al. (2004)

SW. Asia NH M-L D–O 50–40 0 Wet Anderson and Prell (1993)

W. Europe NH M-L D–O 80–12 Warm Wet Genty et al. (2003)

N. Europe NH M-L Heinrich 43–26 Cold Dry Mangerud et al. (2003)
Grimm et al. (2006)

Mediterranean NH M-L Heinrich 70–14 Cold 0 Rohling et al. (1998)

India NH M-L Heinrich 70–14 Cold Dry Colin et al. (1998) Wang et al. (2001)

Central China NH M-L Heinrich 70–14 Cold Dry Thompson (1991)

Iberian Peninsula NH M-L D–O 80–12 0 Wet Nebout et al. (2002)
Budsky et al. (2019)

Greenland NH H-L D–O 80–12 Warm 0 Johnsen et al. (1989) Lang et al. (1999)
Budsky et al. (2019)

Italy NH M-L D–O 80–12 0 Wet Alley and Clark (1999)

Israel NH M-L D–O 80–12 0 Wet Bar-Matthews et al. (2000)

NE. Brazil SH L-L Heinrich 40–15 0 Wet Smith and Rodbell (2010)

SW. US NH M-L Heinrich 70–14 0 Dry Wagner et al. (2010)

W. US NH M-L Heinrich 40–30 0 Wet Benson et al. (1996)
Gale (1914)
Oster et al. (2014)

W. US NH M-L Heinrich 28.5–26.5 0 Wet Benson et al. (1996)
Gale (1914)
Oster et al. (2014)

Florida, US NH M-L Heinrich 70–14 Warm Wet Grimm et al. (2006)

Great Basin (Nevada, US) NH M-L D–O 80–12 0 Wet Benson et al. (1998)



Page 13 of 37Pratap and Markonis  Progress in Earth and Planetary Science            (2022) 9:30  

humid conditions were observed at Lake Maliq (Bordon 
et al. 2009), Eastern Mediterranean (Bar-Matthews et al. 
1999), and also Lago Grande di Monticchio (Italy) (Allen 
et  al. 1999). At the same time, there was a widespread 
increase in both tropical and monsoon precipitation. 
Significant increases are reported for equatorial Africa 
(Putnam and Broecker 2017; Tierney and deMenocal 
2013), western Himalayas, Nepal and India (Sinha et  al. 
2005; Zech et al. 2014), and Northwest China (Zhou et al. 
2001). Similar fluctuations in precipitation were observed 
over Southern and Central America. Wet and warm con-
ditions have been identified in lake sediments of Laguna 
de Los Anteojos (Venezuela) (Stansell et al. 2010), Pet´en 
Itz´a (Guatemala) (Hodell et al. 2008), La Yeguada and El 
Valle (Panama) (Bush et al. 1992) and Caribbean (Hughen 
et al. 1996).

All the evidence suggest that the multi-centennial 
increase in temperature was accompanied by an increase 
in precipitation too. In Fig. 5 and Table 5, we can see that 
more than 90% of temperature records are confirming 
warm conditions and about 85% of precipitation records 
for wet conditions. Again, this abrupt transition suffers 
from a low number of studies, especially at larger spatial 
scales (global, hemispheric, and continental).

3.3  Younger Dryas
The Bølling–Allerød interstadial was followed by another 
cool phase, the Younger Dryas event (from 13 to 11.7 ka 
BP). An abrupt decline in temperature disrupted the 
general warming trend that was driven by the increas-
ing solar insolation (Dansgaard et al. 1989). Similarly to 
LGM and Heinrich events, the drop in temperature was 
accompanied by generally dry conditions (Hodell et  al. 
2008; Mayewski et al. 1993; Mayewski and Bender 1995). 
The Younger Dryas was mainly observed over the North 
Atlantic region (Fairbanks 1990), but is also evident in 
paleoclimatic records from all over the globe. However, 
the shift in the global climate was not homogeneous; 
contrary to the colder conditions of the high latitudes, 
the tropics were characterized by comparatively warmer 
conditions (Gagan et  al. 2000). The temperature recon-
structions of the Younger Dryas show a decline in tem-
perature around 15  °C over central Greenland (Johnsen 
et al. 1995), and a drop between 6 and 9  °C in the Nor-
wegian Sea (Karpuz and Jansen 1992). There is no doubt 
that Europe was substantially influenced by the Younger 
Dryas event (Brauer et al. 2008; Rach et al. 2014). A 4 to 
6  °C decrease over western Europe has been reported, 
reaching 6 to 7 °C over Poland (Go´slar et al. 1995). There 

Fig. 5 Relationship of temperature and precipitation during the Bølling–Allerød interstadial. The number of studies used for the warm/cold or wet/
dry conditions can be found in Table 5
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is also evidence of re-extension of the North European 
ice sheet (Aufgebauer et  al. 2012). Consequently, this 
process led to the southerly flow of dry and cold northern 
air masses towards the Mediterranean area (Bordon et al. 
2009), which led to colder temperatures in the Aegean 
Sea (Kotthoff et  al. 2011). On the other hand, a pollen 
record from east Beringia revealed a more constrained 
drop in temperature, estimated at 1.5  °C (Fritz et  al. 
2012), which is in agreement with evidence that several 
coastal areas near western Novaya Zemlya (Russia) were 
ice-free (Serebryanny et al. 1998).

In terms of hydroclimate, various regions of the NH 
have experienced drier conditions during the Younger 
Dryas (Dahl and Nesje 1992; Fawcett et al. 1997; Hughen 
et al. 2000; Starkel 1991; Velichko et al. 2002). However, 
there are many regions that did not maintain a stable 
cold and dry regime, but instead the cold climate was 
coupled by centennial oscillations between dry and wet 
phases (Wang et  al. 2018). For instance, the increase 
in the hydrogen isotope values at about 12  ka BP and 
12.2  ka BP suggesting wetter and warmer phases over 
western Europe (Rach et  al. 2014). This is also evident 
in Central Europe, where paleoclimatic records (Magny 
2001) and certain periglacial characteristics (Kaiser and 
Clausen 2005) suggest wet conditions during the Younger 
Dryas (Weber et al. 2011), especially during winter (Isa-
rin and Bohncke 1999). Other evidence of precipitation 

comparative to the present has been recorded in Poland 
(Prosna River, about 30% higher) (Rotnicki 1991), Neth-
erlands (Bos et al. 2006), and Scotland highlands (Lukas 
and Bradwell 2010). A multi-proxy reconstruction from 
central Poland for the Younger Dryas reports two phases 
(Pawl owski et  al. 2015). The first (12.5–12  ka BP) was 
marked by a decrease in precipitation and temperatures 
during winter, but a rise in summer precipitation. The 
second (12–11.5 ka BP) shows increased winter and sum-
mer temperature with increased annual precipitation. In 
the southern Europe, pollen records from Mediterranean 
show increased precipitation during the whole deglacia-
tion phase (18–10 ka), without any influence by Younger 
Dryas (Paterne et al. 1999).

A zonal gradient in precipitation response appears in 
North America. Drier conditions dominate the north-
ern parts of the continent (Carlson 2013; Dorale et  al. 
2010), transitioning to considerably wetter conditions as 
we move southwards (Grimm et  al. 2006; Voelker et  al. 
2015). There, the precipitation levels have been estimated 
at about 15% higher values than today, probably due to 
increased southern atmospheric moisture flow (Rens-
sen et al. 2018). Wetter phases over central and southern 
North America are further supported by various proxy 
evidence in plant-macrofossil and palynology studies 
over Florida, and speleothems from New Mexico (Polyak 
et  al. 2004) and Arizona (Wagner et  al. 2010). Climate 

Table 5 Temperature and precipitation conditions during the Bølling–Allerød interstadial

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in ka BP and average age uncertainty 
is ± 1 ka

Study site Hemisphere Zone Period T P Citation(s)

N. Hemisphere NH L-L 13–12 0 Wet Knox and Wright (1983)
Maher (2008)
Pausata et al. (2020)

S. & C. America NH M-L 14.8–12.85 Warm Wet Stansell et al. (2010)
Hodell et al. (2008)
Bush et al. (1992)
Hughen et al. (1996)

Equatorial Africa NH M-L 14.8–12.85 0 Wet Putnam and Broecker (2017) Tierney 
and deMenocal (2013)

Arctic NH H-L 14.5 Cold 0 Johnsen et al. (1995)

E. Mediterranean NH M-L 14.8–12.85 0 Dry Bar-Matthews et al. (1999)

Greece NH M-L 14.8–12.85 0 Dry Aufgebauer et al. (2012)

Italy NH M-L 14.8–12.85 0 Dry Allen et al. (1999)

W. USA NH M-L 13 0 Wet Benson et al. (1996)
Gale (1914)
Oster et al. (2014)

Aegean Sea NH M-L 14.8–12.85 Warm 0 Bordon et al. (2009) Kotthoff et al. (2011)

S. Swiss Alps NH M-L 14.8–12.85 Warm 0 Samartin et al. (2012)

W. Himalayas NH M-L 14.8–12.85 0 Wet Sinha et al. (2005)

(Nepal & India) Zech et al. (2014) Zhou et al. (2001)

Lake Maliq, Albania NH M-L 14.8–12.85 Warm 0 Bordon et al. (2009) Kotthoff et al. (2011)
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model simulations also present a warmer climate with 
increased precipitation in the central regions of North 
America during the Younger Dryas when compared to 
the Bølling–Allerød period (Renssen 2020).

In the SH, there are conflicting results. Some studies 
provide evidence for enhanced precipitation and condi-
tions similar to the Heinrich Events (Arz et al. 1998). For 
instance, the analysis lake sediments from Lake Titicaca 
(Bolivia, Peru) demonstrates the overflowing of the lake 
and thus higher precipitation between 13 and 11.5 ka BP 
(Baker et al. 2001). On the other hand, the lake sediment 
records at the lake Laguna de Los Anteojos (Venezuela) 
present a transition to an intense cold and dry regime 
during the Younger Dryas (Stansell et  al. 2010). This 
is further supported by a significant drop in the Ama-
zon River discharge that is probably a result of reduced 
monsoon precipitation over the lowland tropical South 
America (Maslin and Burns 2000). Moreover, arid con-
ditions are reported across the northern tropical Andes 
and wetter conditions over the southern tropical Andes 
(Stansell et al. 2010).

With 80% of the studies revealing a transition to cold 
conditions, there is little doubt about the tempera-
ture conditions of the Younger Dryas (Fig. 6). The same 

cannot be said about the hydroclimatic regime, where 
studies remain split almost in the half. About 60% of the 
records suggest wet conditions, while the remaining 40% 
present a drier climate. The majority of the studies at 
larger spatial scales (global and N. Hemisphere) point to 
dry conditions, while wet conditions are more frequent 
in the finer scales.

4  Climatic fluctuations in the Holocene
4.1  The 8.2 ka event
The’8.2  ka cold event’ is another abrupt climatic event 
that was experienced across the entire globe originating 
from the North Atlantic region (Alley and Ágústsdóttir 
2005). As the name implies, it occurred around 8.2 ka BP 
and lasted for 160.5 ± 5.5  years, with the coldest period 
spanning 69 ± 2  years (Thomas et  al. 2007). Other esti-
mates suggest a duration between 150 and 200 years (Von 
Grafenstein et al. 1998; Snowball et al. 2002). The avail-
able proxy records show an abrupt cooling up to 6 ± 2 °C 
(Allen et al. 2007; Alley et al. 1997; Dansgaard et al. 1993), 
resulting to a global decrease by 0.9–1.8 °C (Heikkilä and 
Seppä 2010). Greenland is one of the regions with the 
most intense drops, about 3 to 8 °C (Alley et al. 1997; Von 
Grafenstein et al. 1998), as well as, enhanced windy and 

Fig. 6 Relationship of temperature and precipitation during the Younger Dryas. The number of studies used for the warm/cold or wet/dry 
conditions can be found in Table 6
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dry conditions over most parts of the NH (T¨ornqvist 
et al. 2004) at a time when the climatic conditions were 
similar as of today (Alley et al. 1997).

The areas with the most rapid transition were wide-
spread across the entire Baltic Sea basin (Borzenkova 
et al. 2015), the western Europe (Davis et al. 2003), and 
the regions affected by the NAO, in particular (Sepp¨a 
et  al. 2008). The latter experienced a decline between 
1.5 and 3  °C, as both land and marine records suggest 
(Klitgaard-Kristensen et  al. 1998; Bond et  al. 1997; Von 
Grafenstein et  al. 1998). The above results are in good 
agreement with model simulations. The models present 
cooling around 2 to 5  °C over Greenland (Gasse 2000), 

2.5 °C at the lake Annecy (France) (Magny et al. 2003), 1 
to 2  °C over northwestern Europe (Renssen et al. 2001), 
as well as approximately 2  °C over Germany and the 
North Sea (Klitgaard-Kristensen et al. 1998).

Some model simulations also suggest a 30% drop in 
precipitation (Gasse 2000). This is in good terms with the 
dry conditions which have been generally observed over 
the NH (Clarke et  al. 2004; Alley et  al. 1997), particu-
larly in the wintertime (Alley and Ágústsdóttir 2005). In 
Europe, the transition to dryer conditions was observed 
to latitudes over 50°N, as well as a significant part of the 
Mediterranean, including Spain, Northern Africa, and 
Italy (Magny and B´egeot 2004). On the other hand, 

Table 6 Temperature and precipitation conditions during the Younger Dryas

NH: Northern Hemisphere, SH: Southern Hemisphere, H-L: High-latitudes, M-L: Mid-latitudes, L-L: Low-latitudes. Period units are in ka BP and average age uncertainty 
is ± 0.5 ka

Study site Hemisphere Zone Period T P Citation(s)

Global NH/SH 0 13–11.7 Cold Dry Hodell et al. (2008)
Mayewski et al. (1993)
Mayewski and Bender (1995) Fairbanks (1990)

N. Hemisphere NH H-L 13–11.7 Cold 0 Gagan et al. (2000)

N. Hemisphere NH 0 13–11.7 0 Dry Dahl and Nesje (1992)
Fawcett et al. (1997)
Hughen et al. (2000), Starkel (1991)
Velichko et al. (2002)

Tropics NH/SH L-L 13–11.7 Warm 0 Gagan et al. (2000)

Norwegian Sea NH H-L 13–11.7 Cold 0 Karpuz and Jansen (1992)

N. America NH M-L 13–11.7 0 Dry Carlson (2013)

(Northern part) Dorale et al. (2010)

N. America NH M-L 13–11.7 0 Wet Grimm et al. (2006)

(Southern part) Voelker et al. (2015) Renssen et al. (2001)

Central & Southern NH M-L 13–11.7 0 Wet Polyak et al. (2004)

N. America Wagner et al. (2010)

N. America (Central) NH M-L 13–11.7 Warm Wet Renssen (2020)

W. Europe NH M-L 13–11.7 Cold 0 Go´slar et al. (1995)

W. Europe NH M-L 12–12.2 Warm Wet Rach et al. (2014)

Central Europe NH M-L 13–11.7 0 Wet Magny (2001)
Kaiser and Clausen (2005) Weber et al. (2011)
Isarin and Bohncke (1999)

S. Europe NH M-L 18–10 0 Wet Paterne et al. (1999)

N. Tropical Andes SH M-L 13–11.7 0 Dry Stansell et al. (2010)

S. Tropical Andes SH M-L 13–11.7 0 Wet Stansell et al. (2010)

Tropical S. America SH L-L 13–11.7 0 Dry Maslin and Burns (2000)

Bolivia & Peru SH L-L 13–11.7 0 Wet Baker et al. (2001)

Poland NH M-L 13–11.7 Cold 0 Go´slar et al. (1995)

Poland NH M-L 13–11.7 0 Wet Rotnicki (1991)

Netherlands NH M-L 13–11.7 0 Wet Bos et al. (2006)

Venezuela NH L-L 13–11.7 Cold Dry Stansell et al. (2010)

E. Beringia NH M-L 13–11.7 Cold 0 Fritz et al. (2012)

N. Scotland NH M-L 13–11.7 0 Wet Lukas and Bradwell (2010)

Aegean Sea NH M-L 13–11.7 Cold 0 Kotthoff et al. (2011)

Central Greenland NH H-L 13–11.7 Cold 0 Johnsen et al. (1995)



Page 17 of 37Pratap and Markonis  Progress in Earth and Planetary Science            (2022) 9:30  

during the 8.2 event, a worldwide snowfall increase was 
observed (Borzenkova et al. 2015). This could explain the 
lake-level rises in many European palaeoclimate records, 
related to higher runoff (Magny 1992). The lake-level 
rise becomes more evident over the central Alps (Swit-
zerland, France, and northern Italy) (Magny and B´egeot 
2004).

All the evidence suggest that the 8.2 event was char-
acterized by colder and drier climate conditions (Fig. 7), 
with only two studies presenting wet conditions over 
the Alps (Table 7). Even though there is good agreement 
between the records at both coarse and fine spatial scales, 
we cannot rule out though a small-sample bias in this 
conclusion due to the limited number of studies describ-
ing the precipitation of this cold period.

4.2  Medieval climate anomaly
The Medieval Climate Anomaly (MCA), also known 
as Medieval Warm Period, is the most recent period of 
abrupt warming, with onset around 800–1000 CE and 
termination at 1300–1400 CE (Hughes and Diaz 1994). 
It affected mostly Europe and parts of North America, 
which mainly experienced warmer than average con-
ditions (Lamb 1965). The centennial-scale patterns of 

spatiotemporal temperature reconstructions suggest 
widespread warm and arid conditions over the NH with a 
similar geographic extent and magnitude as in the twen-
tieth century mean (Ljungqvist et  al. 2016). Between 
1200 and 1300 CE, the temperature was similar to the 
present over northwestern Europe (Guiot 1992). In addi-
tion, a temperature reconstruction across the Alps sug-
gests that in the twelfth century the temperature was 
0.3 °C higher than today (Trachsel et al. 2012). In North 
America, there is conflicting evidence about the increase 
magnitude. Viau et  al. (2012) demonstrated that there 
was a 0.5 degree increase, which resulted to cooler than 
the present conditions, whereas Woodhouse et al. (2010) 
report temperatures of about 1  °C higher than today. 
There is also evidence of high temperatures over China 
(Yang et al. 2002), South Atlantic (Jones and Mann 2004), 
and Northern Pacific (Mann et al. 2009). Even though the 
extent of temperature increases during MCA remains 
under investigation, there is general agreement that there 
has been a clear signal of the increase at least in the NH.

The hydroclimatic response, though, was not so homo-
geneous. Substantial precipitation deficiencies were 
observed in northern Europe (Cook et al. 2015) and East 
Africa (Verschuren et  al. 2000). In addition, model and 

Fig. 7 Relationship of temperature and precipitation during the 8.2 ka cold event. The number of studies used for the warm/cold or wet/dry 
conditions can be found in Table 7
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paleoclimatic records show that western North America 
experienced persistent and extensive aridity from 900 to 
1300 CE (Woodhouse et  al. 2010). On the other hand, 
anomalously lower δ18C values in bristlecone pine from 
the White Mountains, California, highlight a wet period 
from 1080 to 1129 CE (Hughes and Diaz 1994). Similarly, 
Mauquoy et al. (2004) also suggested the times from 1030 
to 1100 CE was a wet period for western North America, 
while there is also evidence of higher lake levels, or fresh-
water availability, over the Arizona monsoon-influenced 
area from 700 to 1350 CE (Hughes and Diaz 1994). How-
ever, the occurrence of increased aridity over most of 
the areas of western North America was also evident in 
tree-ring records between 650 and 1050 CE (Parish et al. 
2020) and from 900 to 1300 CE (Cook et al. 2007).

In Asia, dry climatic conditions prevailed, mainly 
linked with atmospheric circulation (Chen et  al. 2015). 
This in good terms with the proxy analysis over southern 
China indicates comparatively weak monsoonal precipi-
tation over most of the regions (Chen et al. 2015) and the 
periods of extensive aridity from 1140 to 1220 and 1420 
to 1490 (Li et al. 1987). On the contrary, pollen estimates 
from Maili pond at northeast China reveal wet condi-
tions (from 950 to 1290 CE), suggesting an increase in 
the East Asian summer monsoon (EASM) during this 
period (Ren 1998). Additionally, the decades between 
1230–1250 CE, and 1380–1410 CE show intensification 
of the South-Asian monsoon resulting to wet conditions 
(Li et al. 1987). Most of the proxy records suggest precip-
itation decrease over the EASM region after the termina-
tion of MCA around 1300 CE (Lan et al. 2020).

South America also experienced a highly variable cli-
mate during MCA. Perhaps this is due to a humidity 

dipole between the southern and northern Amazon Basin 
(Marengo 2004). This humidity dipole could suggest an 
enhanced land–ocean temperature gradient or north–
south migration of the ITCZ, driven by seasonal variation 
in the distribution of insolation (Wright et al. 2017). Con-
sequently, the wetter phase over the northeast area was 
synchronous with the drier phase over Southern Amazo-
nia (Thompson et al. 2013). For instance, a marine sedi-
ment core at Peru  (12◦S) shows intense aridity between 
800 to 1250 CE (Rein et  al. 2004), while a titanium (Ti) 
record from the Cariaco Basin (Venezuela) indicates wet-
ter conditions between 950 to 1450 CE (Haug et al. 2001). 
Additionally, the assessment of lake sediment oxygen 
isotopes (δ18O) at the Central Peruvian Andes presents 
higher values from 900 to 1100 CE, implying a weakened 
South American Summer Monsoon and a prolonged 
period of aridity (Bird et  al. 2011). On the other hand, 
wet conditions prevailed in Central America, as indicate 
by the lower values of oxygen isotope in sediments from 
Nicaragua from 950 to 1250 CE (Stansell et al. 2013).

Another feature of MCA is the emergence of simul-
taneous mega-droughts in various regions of the globe 
(Stager et  al. 2005). The main region affected of these 
multi-decadal droughts can be found at North America 
(Cook et al. 2014). There, two prolonged drought events 
with an approximately 90  years time span have been 
recorded over North America. The first event occurred 
between 1197 and 1289 CE, while the second event 
occurred between 1486 and 1581 CE (Parish et al. 2020). 
Other shorter events have been also detected, present-
ing higher severity, though, such as the mega-drought 
from 1140 to 1162 CE or the one between 1150 to 1159 
CE (Cook et  al. 2007). In Europe, the multi-decadal 

Table 7 Temperature and precipitation conditions during the 8.2 event

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes. Period units are in ka BP

Study site Hemisphere Zone Time T P Citation(s)

Global NH/SH 0 8.2 Cold 0 Alley and Ágústsdóttir (2005)
Thomas et al. (2007)
Heikkilä and Seppä (2010)

N. Hemisphere NH 0 8.2 Cold Dry T¨ornqvist et al. (2004)
Clarke et al. (2004) Alley et al. (1997)

North Sea NH M-L 8.2 Cold 0 Klitgaard-Kristensen et al. (1998)

N. Africa NH M-L 8.2 Cold Dry Magny and B´egeot (2004)

NW. Europe NH M-L 8.2 Cold 0 Renssen et al. (2001)

Greenland NH H-L 8.2 Cold 0 Alley et al. (1997)
Von Grafenstein et al. (1998) Gasse (2000)

Germany NH M-L 8.2 Cold 0 Klitgaard-Kristensen et al. (1998)

France NH M-L 8.2 Cold 0 Magny et al. (2003)

Spain NH M-L 8.2 Cold Dry Magny and B´egeot (2004)

Italy NH M-L 8.2 Cold Dry Magny and B´egeot (2004)

Central Alps NH M-L 8.2 0 Wet Magny (1992); Magny and B´egeot (2004)
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reconstruction over the Sierra Nevada (Spain) highlights 
four multi-decadal droughts that prevailed during the 
MCA (800–859 CE, 1020–1070 CE, 1197–1217 CE, and 
1249–1365 CE) (Graumlich 1993).

The main hypothesis about the driver of the enhanced 
hydroclimatic variability of MCA is the positive state of 
NAO, which persisted at centennial time scale (Trouet 
et  al. 2009). The result was a northeastward shift of the 
cyclonic storm tracks, and consequently the transport of 
atmospheric moisture to higher latitudes (Solomon et al. 
2007). The spatial hydroclimatic variability is also evident 
in finer scales. A typical case is highlighted over the Ibe-
rian Peninsula. There, a climate reconstruction shows 
warmer and humid conditions across the northwest 
regions, while the rest of the peninsula shows warm and 
arid conditions (Moreno et al. 2012). Similar patterns can 
be seen in tree-ring records over Morocco, where some 
unusually frequent wet years occurred from 1250 to 1300 
CE (Till et al. 1990).

During the MCA, all the studies analyzed clearly sug-
gest a warmer climate (Fig. 8 and Table 8). However, con-
trary to the other warm periods presented in this study, 
the multi-centennial warming was coupled with dry 
conditions. About two thirds of the records indicate a 

transition to a dry climate, which might be seen as con-
tradiction to the prevailing theory of water cycle intensi-
fication and will be discussed in detail below.

4.3  Little Ice Age
The Little Ice Age (LIA) is the most recent shift to colder 
conditions. It lasted from 1350–1450 CE to 1900 CE 
(Mayewski and Bender 1995), and the global temperature 
was 0.5 to 1.5 °C lower than the twentieth century average 
(Crowley and North 1991; Graumlich 1993; Mann et al. 
1998; Christiansen and Ljungqvist 2012; Schneider et al. 
2015). Trachsel et  al. (2012) have reported that during 
fourteenth, late sixteenth, and seventeenth century, the 
global temperature was a 1  °C lower than the twentieth 
century average. The NH experienced the most substan-
tial decrease (about 0.9 °C lower) from 1570 to 1730 CE 
(Bradley and Jonest 1993), whereas in Europe LIA peaked 
in 1650–1750 CE (Bond et al. 2001). In SH, paleoclimatic 
oceanic records show an average cooling of 1.6 °C (± 1.4) 
compared to the last 150 years (Rhodes et al. 2012). Ice 
core analysis near the Ross Sea (Antarctica) shows colder 
conditions of 2 °C in surface temperature, as well as lower 
SST over the Southern Ocean coupled by enhanced sea 
ice extent during the LIA (Bertler et al. 2011). In general, 

Fig. 8 Relationship of temperature and precipitation during the MCA. The number of studies used for the warm/cold or wet/dry conditions can be 
found in Table 8
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the lowest temperatures were observed in the period of 
1680 to 1730 CE, for both Hemispheres (Stuiver et  al. 
1995).

The LIA has been compared to the abrupt changes 
that occurred in the last glacial stage (Bond et al. 1999), 
such as the D–O events (Broecker 2000). However, even 
though LIA affected the whole globe, this did not happen 

simultaneously. Most local or regional paleoclimatic 
reconstructions show unusually cold phases from 1580 
to 1880 CE, interrupted by decades of warmer conditions 
(Ahmed et al. 2013). Similarly to MCA, the main hypoth-
esis for the spatio-temporal variability lies in the changes 
of atmospheric circulation (Zhang et  al. 2021a). Com-
pared to the current patterns of atmospheric circulation, 

Table 8 Temperature and precipitation conditions during the MCA

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes. Period units are in AD and average age uncertainty for 
the MCA is ± 100 years

Study site Hemisphere Zone Time T P Citation(s)

N. Hemisphere NH 0 800–1400 Warm Dry Ljungqvist et al. (2016)

Asia NH M-L 900–1300 0 Dry Chen et al. (2015)

N. America NH M-L 1197–1289 0 Dry Cook et al. (2014)

And 1486–1581 Parish et al. (2020)

N. America NH M-L 1140–1162 0 Dry Cook et al. (2007)

N. America NH M-L 800–1400 Warm 0 Woodhouse et al. (2010)

N. America NH M-L 800–1400 Warm 0 Lamb (1965)

Europe NH M-L 800–1400 Warm 0 Lamb (1965)

N. Europe NH M-L 800–1400 0 Dry Cook et al. (2015)

S. Asia NH M-L 1230–1250
and 1380–1410

0 Wet Li et al. (1987)

E. Asia NH M-L 1300 0 Dry Lan et al. (2020)

NW. Europe NH M-L 1200–1300 Warm 0 Guiot (1992)

S. America (NE area) SH L-L 800–1400 0 Wet Thompson et al. (2013)

Western N. America NH M-L 900–1300 Warm Dry Woodhouse et al. (2010)

Western N. America NH M-L 1030–1100 0 Wet Mauquoy et al. (2004)

Western N. America NH M-L 650–1050 0 Dry Parish et al. (2020)

Western N. America NH M-L 900–1300 0 Dry Cook et al. (2007)

E. Africa NH M-L 800–1400 0 Dry Verschuren et al. (2000)

S. Atlantic SH M-L 800–1400 Warm 0 Jones and Mann (2004)

N. Pacific NH M-L 800–1400 Warm 0 Mann et al. (2009)

China NH M-L 800–1400 Warm 0 Yang et al. (2002)

S. China NH M-L 800–1400 0 Dry Chen et al. (2015)

S. China NH M-L 1140–1220
and 1420–1490

0 Dry Li et al. (1987)

NE. China NH M-L 950–1290 0 Wet Ren (1998)

Southern Amazonia SH L-L 800–1400 0 Dry Thompson et al. (2013)

Peru SH L-L 800–1250 0 Dry Rein et al. (2004)

Morocco NH M-L 1250–1300 0 Wet Till et al. (1990)

Central America NH M-L 950–1250 0 Wet Stansell et al. (2013)

Spain (Sierra Nevada) NH M-L 800–859,
1020–1070,
1197–1217,
And 1249–1365

0 Dry Graumlich (1993)

Venezuela NH L-L 950–1450 0 Wet Haug et al. (2001)

Arizona, USA NH M-L 700–1350 0 Wet Hughes and Diaz (1994)

California, USA NH M-L 1080–1129 0 Wet Hughes and Diaz (1994)

Iberian Peninsula NH M-L 800–1400 Warm Dry Moreno et al. (2012)

Central Peruvian Andes SH L-L 900–1100 0 Dry Bird et al. (2011)

Alps NH M-L twelfth century Warm 0 Trachsel et al. (2012)
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LIA experienced stronger meridional transport (Lamb 
2013). This was observed over the North Atlantic and 
polar South Pacific at the beginning of the LIA, evident 
in ice cores from central Greenland, Siple Dome, and 
West Antarctica (Kreutz et al. 1997). The colder and drier 
conditions that prevailed were a result of the enhanced 
atmospheric circulation, as reported in numerous pale-
oclimatic records in the NH and the Equator (Thompson 
et al. 1995; O’Brien et al. 1995). Additionally, numerical 
model experiments have identified sea ice-ocean–atmos-
phere (Zhong et al. 2011) and volcanic feedbacks (Miller 
et al. 2012) as a factor that triggered the LIA cooling over 
the North Atlantic and Europe.

The drop of temperature was coupled to wet condi-
tions over the most of the European territory (Luoto and 
Nevalainen 2018; Brönnimann et al. 2019). Both the spe-
leothem record from Scotland (Proctor et  al. 2000) and 
a reconstruction from England-Wales (Lamb 1965) are 
notably similar, showing a 10% decrease in the precipita-
tion (for September to June) from the late thirteenth to 
the mid fourteenth century, and a constant drop from 
the mid of sixteenth to late eighteenth century. Precipi-
tation reconstructions from southern Moravia (Czech 
Republic) show that the highest precipitation occurred 
between 1670 and 1710 CE, succeeding a period with 
low precipitation (Br´azdil et al. 2002). Proxy estimates of 
seasonal precipitation over Europe exhibit increased win-
ter (DJF) precipitation during the beginning of the eight-
eenth century (Pauling et al. 2006), which is attributed to 
a significant increase in winter temperatures (Nesje et al. 
2008). This is in good agreement with the abrupt increase 
in floods reported from 1760 to 1800 CE over various 
locations (Blöschl et al. 2020). Other similar periods are 
1560–1580 and 1840–1870, when the climate conditions 
were abruptly shifted to a warmer phase (Glaser et  al. 
2010) and consequently increasing precipitation and/or 
snowmelt (Br´azdil et  al. 1999). This is particularly true 
for the end of the LIA, when there has been a monotonic 
increase towards more humid conditions (Cook et  al. 
2015; Markonis et al. 2018).

Over the North American continent, there is evidence 
of strong spatiotemporal heterogeneity in the observed 
changes. In general, wetter conditions were observed in 
the central regions compared to the present, while drier 
conditions prevailed over both the West and East Coast 
(Ladd et  al. 2018). In most of the wet periods, precipi-
tation increased during the winter (Parish et  al. 2020), 
lasted for a couple of decades and were succeeded by 
long dry intervals (Meko 1992). For instance, a precipi-
tation reconstruction at Banff, Alberta (Canada) shows 
higher precipitation from 1515 to 1550 CE, 1585 to 1610 
CE, 1660 to 1680 CE, and during the 1880s, while 1950 to 
1970s exhibit both enhanced precipitation and decreased 

summer temperatures (Luckman 2000). On the other 
hand, the spatio-temporal drought and precipitation 
records over North America suggest a widespread limi-
tation in moisture availability during the late sixteenth 
century while relative abundance during the early seven-
teenth century (Cook et al. 1997; Bradley et al. 2003; Mat-
thews and Briffa 2005).

Various changes are reported in the rest of the world, 
related to the fluctuations of atmospheric circulation. 
Sediment records from the northeastern Arabian Sea 
show a weakening of Indian summer monsoon from 1450 
to 1750 CE and consequently a shift to drier conditions 
(Agnihotri et al. 2002). Northern China also faced a mod-
erately weak monsoon (Chen et al. 2015). The lakelevels 
and diatom estimates over Africa (Street-Perrott and 
Perrott 1990), and dust records in an equatorial ice core 
(Thompson et al. 1995) also display increased aridity. The 
paleoclimate records from the Argentina show during 
about 1800 and 1930 as the wet period (Mauquoy et al. 
2004). However, the isotope (increased values) evidence 
from Central America suggests the persistence of drier 
conditions during most of the LIA (Stansell et al. 2013). 
Additionally, the tree-ring analysis from southern South 
America indicates cold-dry/drought phase between 1280 
and 1450, 1550 and 1670, and 1780 to 1830 CE; while the 
warm-wet/high-rainfall phases from 1220 to 1280, 1450 
to 1550, 1720 to 1780, and 1830 to 1905 CE (Villalba 
1994).

Increased precipitation was also observed in various 
regions across the world. Low concentration of micro-
particles in ice core records from the Antarctic Penin-
sula indicates likely higher precipitation and intense 
cyclonic activity (Rogers 1983). The enhanced meridi-
onal circulation has been expected to influence the mid 
and low latitude circulation, resulting to a shift of the 
westerlies belt and increased precipitation over the 
Patagonia and California around 1400 CE (Stine 1994). 
Additionally, the arid central Asia region is showing rel-
atively wet conditions, and pluvial conditions prevailed 
over southern China (Chen et al. 2015). The wet condi-
tions were often succeeded by arid conditions, result-
ing to 18 extreme flood and 16 drought events during 
the LIA in China (Zheng et  al. 2006). Similarly, sedi-
ment geochemistry from a subalpine lake at northern 
Taiwan indicated four pluvials (1660 CE, 1730, 1820, 
and about 1920) (Wang et  al. 2013; Zhao et  al. 2018). 
In South America, the oxygen isotope (δ18O) estimates 
of a speleothem record at northeastern Peru report 
enhanced variability in precipitation, with annual pre-
cipitation being 10% higher than today from fifteenth to 
eighteenth century (Reuter et al. 2009). This is in good 
agreement with the results of an oxygen isotopes (δ18O) 
analysis at the Central Peruvian Andes lake, showing a 
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prolonged regionally synchronous intensification in the 
South American Summer Monsoon (Bird et  al. 2011). 
Similar conclusions were drawn in the study of Polis-
sar et al. (2006) about the growth of glaciers at the high 
elevations over the Venezuelan Andes, which can be 
interpreted as evidence of higher precipitation.

The analysis of the corresponding literature advo-
cates that LIA is not homogeneous event in space 
and time. There are approximately 25% of studies that 
reveal some region and/or period of warm conditions 
(Fig. 9). This is due to the availability of higher resolu-
tion reconstructions, which can detect shorter warmer 
periods within the prevailing cold conditions, such 
as for example the 1560–1580 and 1840–1870 warm 
intervals over Europe (Br´azdil et al. 1999; Glaser et al. 
2010). In addition, there are numerous locations with 
cold and wet conditions, resulting to a sum of 60% of 
studies presenting a wet LIA, and 40% of records sug-
gesting otherwise. Similarly to MCA, this is a reversed 
relationship between temperature and precipitation 
compared to the other periods studied. A possible 
explanation for this outcome could lie to the fact that 
the majority of the studies come from Europe, amplify-
ing the wet signal (Table 9).

5  Insights from the past
Although our literature review study focuses in provid-
ing the empirical evidence of past hydroclimatic changes, 
in this last Section we will briefly discuss some plausible 
explanations for our findings. Perhaps the most striking 
result is that even during the highest temperature devia-
tions amongst the ones we examined, the hydrological 
cycle fluctuated within a reasonable range. No extreme 
cases of global long-term aridity or humidity have been 
imprinted in the paleoclimatic records. On the con-
trary, most climatic shifts present substantial spatial 
heterogeneity regardless of their time scale. Of course, 
different physical mechanisms will drive hydroclimatic 
variability in different spatio-temporal scales. Due to the 
large uncertainties involved and the scarcity of the data 
records, it is rather questionable if the exact processes 
could be described, though. What could be more prag-
matic is to distinguish the impact of the thermodynamic 
and dynamic component.

Higher temperatures appear more strongly related to 
wet conditions than lower temperatures to dry (Table 10). 
Out of the five warm periods studied, four present a dis-
tinct warm-and-wet signal and only during the MCA the 
dry conditions prevailed. On the other hand, only two 

Fig. 9 Relationship of temperature and precipitation during the LIA. The number of studies used for the warm/cold or wet/dry conditions can be 
found in Table 9
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Table 9 Temperature and precipitation conditions during the LIA

NH Northern Hemisphere, SH Southern Hemisphere, H-L High-latitudes, M-L Mid-latitudes, L-L Low-latitudes and average age uncertainty for the LIA is ± 50 years

Study site Hemisphere Zone Time T P Citation(s)

Global NH/SH 0 1350–1900 CE Cold 0 Crowley and North (1991)
Graumlich (1993)
Mann et al. (1998)
Christiansen and Ljungqvist (2012) Schneider 
et al. (2015)

Global NH/SH 0 14th, Late sixteenth and seventeenth 
century

Cold 0 Trachsel et al. (2012)

N. Hemisphere NH 0 1570–1730 CE Cold 0 Bradley and Jonest (1993)

S. Hemisphere SH 0 1350–1900 CE Cold 0 Rhodes et al. (2012)

Africa NH L-L 1350–1900 CE 0 Dry Street-Perrott and Perrott (1990)

Antarctica SH H-L 1350–1900 CE Cold 0 Bertler et al. (2011)

Europe NH M-L 1650–1750 CE Warm 0 Bond et al. (2001)

Europe NH M-L Early eighteenth century 0 Wet Pauling et al. (2006)

Europe NH M-L Early eighteenth century Warm 0 Nesje et al. (2008)

Europe NH M-L 1760–1800 CE 0 Wet Blöschl et al. (2020)

Europe NH M-L 1560–1580 CE Warm Wet Glaser et al. (2010) Br´azdil et al. (1999)

Europe NH M-L 1840–1870 CE Warm Wet Glaser et al. (2010) Br´azdil et al. (1999)

N. America NH M-L Late  16th 0 Dry Cook et al. (1997)

and Early seventeenth century Bradley et al. (2003) Matthews and Briffa 
(2005)

Central Asia NH M-L 1350–1900 CE 0 Wet Chen et al. (2015)

Central America NH M-L 1350–1900 CE 0 Dry Stansell et al. (2013)

N. America
(Central regions)

NH M-L 1350–1900 CE 0 Wet Ladd et al. (2018)

N. America
(W & E Coast)

NH M-L 1350–1900 CE 0 Dry Ladd et al. (2018)

Southern S. America SH M-L 1280–1450 CE,
1550–1670 CE,
and 1780–1830 CE

Cold Dry Villalba (1994)

Southern S. America SH M-L 1220–1280 CE
1450–1550 CE,
1720–1780 CE,
and 1830–1905 CE

Warm Wet Villalba (1994)

Antarctic Pen SH H-L 1350–1900 CE 0 Wet Rogers (1983)

Arabian Sea NH L-L 1450–1750 CE 0 Dry Agnihotri et al. (2002)

Argentina SH M-L 1800 and 1930 0 Wet Mauquoy et al. (2004)

Canada NH M-L 1515–1550 CE,
1585–1610 CE,
1660–1680 CE,
and 1880s

0 Wet Luckman (2000)

Czech Republic NH M-L 1670–1710 CE 0 Wet Br´azdil et al. (2002)

Venezuelan Andes NH L-L 1400–1700 CE 0 Wet Polissar et al. (2006)

Scotland NH M-L Late  13th to mid fourteenth century 0 Wet Proctor et al. (2000)

Peru SH L-L 1400–1700 CE 0 Wet Reuter et al. (2009)
Bird et al. (2011)

California, USA NH M-L 1400 CE 0 Wet Stine (1994)

Wales, UK NH M-L Late 13th mid fourteenth century 0 Wet Lamb (1965)

England NH M-L Late 13th mid fourteenth century 0 Wet Lamb (1965)

Patagonia NH M-L 1400 CE 0 Wet Stine (1994)

N. China NH M-L 1450–1750 CE 0 Dry Chen et al. (2015)

N. Taiwan NH M-L 1660, 1730, and 1820 CE 0 Wet Wang et al. (2013)

Zhao et al. (2018)
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out of five cold periods show a cold-and-dry regime, one 
exhibits cold-and-wet conditions (Little Ice Age) and two 
remain inconclusive (Younger Dryas and 8.2  k event). 
It is easy to note that the periods that diverge from the 
Clausius-Clapeyron thermodynamic response are the 
shorter ones (Fig.  10). Longer periods with duration 
comparable to Holocene, such as the Eemian Interglacial 
Stage and the Last Glacial Maximum follow the warm-
and-wet and cold-and-dry paradigms. A similar pattern 
manifests in the spatial domain. Global or hemispheric 
studies are more tightly linked to the thermodynamic 
response, while as spatial scale becomes finer the hetero-
geneity increases highlighting the impact of the changes 
in atmospheric and oceanic circulation (Gasse 2000; Li 
et al. 2012).

Thus, it is reasonable to claim that the atmospheric/
oceanic circulation (dynamic component) appears to 
have a more dominant role in the regional fluctuations 
of the hydrological cycle, than the total atmospheric 
moisture content (thermodynamic component). This 
is particularly true for the abrupt climatic events. Even 
though the exact physical mechanisms of their genesis 
remain under investigation, there is a general agree-
ment that most of the past abrupt climatic transitions 
are related to changes in the oceanic circulation. Still, 
it is a concern whether these abrupt climate changes 
arisen from internal climate system processes or be the 
consequence of a stimulated response to a progressive 
external forcing (Clement et  al. 2001). In the case of 
longer climatic regimes, warmer/colder oceans develop 
different circulation patterns, which in turn affect the 

Table 10 Number of studies per period and conditions. The Hydroclimate column describes the most common condition. Average 
duration is estimated in thousand years

Period Duration (ky) Studies Warm Cold Dry Wet Hydroclimate

MMCO 2500 40 49 0 22 39 Warm and wet

MIS-5e 14 32 12 2 7 21 Warm and wet

LGM 15 30 0 13 20 5 Cold and dry

D–O events 0.8 15 5 0 0 12 Warm and wet

H-events 1 18 1 13 17 10 Cold and dry

Bølling–Allerød 2 22 7 1 3 15 Warm and wet

Younger Dryas 1.3 35 3 12 14 17 Cold

The 8.2 ka event 0.16 13 0 16 6 6 Cold

MCA 0.4 28 11 0 24 10 Warm and dry

LIA 0.5 36 9 15 16 25 Cold and wet

Fig. 10 Schematic representation of hydroclimatic conditions in terms of the period length and the uncertainty involved. Uncertainty is 
qualitatively derived from the number of studies
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atmosphere system resulting to different modes of 
atmospheric circulation (Wright et al. 1992).

The majority of the abrupt events studied here were 
mainly associated with the Atlantic longterm variability 
and AMOC in specific. The AMOC is not a circulation 
pattern appearing only in Holocene. Its existence has 
been confirmed both for the Eemian Interglacial Stage 
and the D–O intervals (Corrick et al. 2020). The decline 
of AMOC strength has also been linked to Heinrich 
events, Younger Dryas, the 8.2  ka event, and phases 
of cold conditions in general (Ellison et al. 2006; Rens-
sen et al. 2018). It’s weakening is related to freshwater 
pulses caused by the melting of Arctic ice and high 
latitude glaciers (Li et  al. 2012). The AMOC variabil-
ity can affect the Westerlies, and, thus the atmospheric 
moisture amount that is transferred over land. When 
weak, it has been linked to decline in precipitation 
from western Europe to continental Asia (Mackay et al. 
2013), as well as monsoon activity (Gupta et al. 2003). 
The latter is likely due to the links between the weaken-
ing of AMOC and the southward shift of Inter Tropi-
cal Convergence Zone (ITCZ). As the AMOC weakens, 
the temperature gradient between tropical and North 
Atlantic becomes more intense and drives ITCZ to the 
south (Mohtadi et al. 2014).

Overall, the southward shift of the ITCZ has been 
related to the colder conditions across the northern 
tropics such as Heinrich events (Leduc et  al. 2007), 
Younger Dryas (Peterson and Haug 2006), and the 
weak monsoon during MIS-5e (McGowan et al. 2020). 
In addition, the latitudinal variations of the ITCZ have 
been identified to affect summer-monsoon variations in 
tropical and Asian regions during the D–O and Hein-
rich events (Ivanochko et  al. 2005). On the contrary, 
the northward shift of the ITCZ has been reported to 
intensify the Asian summer monsoon (Peterson et  al. 
2000; Wang et al. 2001), which is also related to warmer 
conditions (Stansell et  al. 2010; Schneider et  al. 2020). 
There is some evidence of this behaviour also during 
mid-Miocene; the enhanced precipitation observed 
across northern Colombia was likely due to the north-
ward shift of ITCZ (Scholz et  al. 2020). Most impor-
tantly, as ITCZ shifts the regions that are no longer 
under its effect will become drier, with an opposite 
outcome to the ones that no longer affected. This is a 
straightforward example of why wetter and drier con-
ditions can co-exist when there is some atmospheric 
reorganization. As ITCZ and the monsoon systems 
involve a large fraction of global precipitation, further 
research is increasingly important to further under-
stand the relationship between oceanic circulation and 
ITCZ/monsoon in past climates.

It is interesting that even though there is substantial 
evidence of the connection between ITCZ and tempera-
ture in the paleoclimatic reconstructions, this was not the 
case for atmospheric moisture divergence zones as well. 
Nowadays, the dominant hypothesis suggests that global 
warming makes the regions with atmospheric divergence 
to become drier and the regions with atmospheric con-
vergence to become wetter, termed as ’dry gets drier, wet 
gets wetter’ (Held and Soden 2006). However, our results 
are not in favor of this hypothesis, which have also been 
recently debated by some empirical studies of observa-
tional (Greve et al. 2014) and paleoclimatic records (Burls 
and Fedorov 2017). On the other hand, we notice that in 
many periods, the prevailing hydroclimatic regime, e.g. 
warm and wet, appears in 65–80% of the studies. This 
could imply that the convergence/divergence did become 
stronger in the past warmer periods, but at the same 
time a substantial reorganization of the atmospheric cir-
culation patterns occurred. Plainly speaking the inten-
sification did occur, but it might have affected different 
regions.

To further investigate the spatial heterogeneity of the 
temperature/precipitation relationship, we also exam-
ined the hemispheric and latitudinal distribution of the 
records during cold and warm periods. No significant 
changes are observed between the hemispheric distribu-
tion of studies during cold periods (Fig. 11A). In the zonal 
domain, there is a divergence between mid and high lati-
tudes, with the former exhibiting a tendency to cold-and-
wet conditions and the latter cold-anddry (Fig.  11B). In 
addition, approximately one-third of the studies docu-
ment warm climates over mid latitudes, with a higher 
occurrence in SH. Even though the uneven number of 
studies per hemisphere and latitudinal zone makes the 
interpretation of the results ambiguous, it provides some 
insight of the enhanced heterogeneity, especially when 
compared with the warm periods. The warm periods 
appear quite more homogeneous in terms of temperature 
for both hemispheres (Fig. 12A). The NH appears to favor 
warm-and-wet conditions in a 2:1 ratio, which drops to 
approximately 1:1 for SH. The distribution appears quite 
similar for all three latitudinal zones, also close to 2:1 
(Fig. 12B). Again, the bias of the low number of studies 
in SH should be taken into account. Nevertheless, the 
hemispheric and latitudinal distribution of the records 
advocate for an asymmetric response of precipitation to 
temperature increase and decrease. It should be noted 
though that due to the limited number of records (espe-
cially precipitation), it is difficult to adequately describe 
the spatial features of the water cycle’s response.

A plausible approach to overcome the reconstruction 
scarcity barrier can be found in earth system model-
ling. Indeed, evidence of abrupt or mild atmospheric 
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reorganization has been presented for some of the cli-
matic periods discussed in our review. For instance, 
model simulations show that during the MCA was 
associate with a substantial expansion of the NH Had-
ley circulation (Graham et  al. 2011). This change the 
atmospheric circulation patterns could explain the dry-
ing over the mid-latitudes and the shifts in the mon-
soon patterns across Africa and South Asia. Other 

reorganization patterns have been suggested for the 
termination of the last deglaciation (Wassenburg et al. 
2016) or the LGM (Justino et  al. 2005). Even though 
this evidence is far from conclusive, the hypothesis of 
a circulation-modulated water cycle intensification is a 
promising direction to reconcile the ’dry gets drier, wet 
gets wetter’ paradigm with the observed changes.

Fig. 11 Relationship of temperature and precipitation during the cold periods (LGM, Heinrich Events, Younger Dryas, 8.2 ka Event, and LIA). A 
studies over different regions, B studies over the different zones
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Unfortunately, earth system modelling comes with cer-
tain limitations as well. The consistency between model 
output and proxy data shows agreement over larger 
scales, but there are crucial discrepancies in the regional 
scales (Heiri et al. 2014). This is a known issue in model 
performance related to the challenges in reproducing 
precipitation properties at finer/regional scales (Flato 
et al. 2014). However, some uncertainties still remain in 

larger scales, due to inconsistencies in the simulation of 
atmospheric circulation (Allan et al. 2020) and its modes 
such as ENSO (Bellenger et al. 2014) or NAO (Zappa and 
Shepherd 2017; Deser et al. 2017). Inevitably, the AMOC 
is also poorly represented (Zhang et  al. 2019), which 
might be related by a common bias in the model’s param-
eterization regarding AMOC stability (Liu et  al. 2017). 
On the other hand, the past millennium scale records 

Fig. 12 Relationship of temperature and precipitation during the warm periods (MMCO, MIS5e, DO events, Bølling–Allerød interstadial, and MCA). 
A studies over different regions, B studies over the different zones
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reveal no evidence of internally originated multidecadal 
oscillation. These multidecadal Atlantic Multi-decadal 
Oscillation-like oscillations have contradicted as the 
manifestation of high-amplitude explosive volcanism epi-
sodes (Mann et al. 2021). With all these open challenges 
in earth system modelling, the need for more high-reso-
lution paleoclimatic reconstructions is increasing.

More paleoclimatic reconstructions would further 
improve our understanding the interaction between tem-
perature and water cycle. The evidence presented here 
suggest that the hypothesis that a warmer climate is a 
wetter climate could be an oversimplification even for 
centennial scales. On the contrary, precipitation response 
appear to be spatio-temporally heterogeneous, with cer-
tain differences among periods. This should be taken into 
account when assessing the future intensification of the 
global water cycle. Even if not regionally precise, the pre-
cipitation response heterogeneity should be evident in 
model simulations or our theoretical constructs of the 
global water cycle functioning. This qualitative metric 
could help improve the model performance, and in turn 
shed more light on the influence of atmospheric and oce-
anic circulation. The remaining challenge, though, is to 
quantify the spatial variability of precipitation response 
in a robust manner. As the number of paleoclimatic 
reconstructions increases, we will soon be able to have a 
more coherent picture of specific warm or cold periods, 
and increase the likelihood to address it.

6  Conclusions
Most climate projections report that the hydrological 
cycle will intensify when the climate will get warmer. As 
a result, the hydrological cycle sensitivity is a major con-
cern for the coming decades. In this study, we reviewed 
the relationship between the hydroclimate and tempera-
ture in the recent and distant past. We confirmed that, 
in general, most paleoclimate records suggest that the 
hydrological cycle intensified in a warmer climate. Cor-
respondingly, the hydrological cycle weakened during 
the colder periods. However, the spatial distribution of 
hydroclimatic changes was not homogeneous around the 
world.

This lack of homogeneity makes paradigms such as “a 
warmer climate is a wetter climate” or “dry gets drier, 
wet gets wetter” appearing as oversimplifications. The 
evidence presented in this study agrees to the hypothesis 
that climate changes at global scale are thermodynamic-
driven, while regional climate changes are more related 
to variations in ocean-atmospheric circulation. How-
ever, due to its enhanced spatiotemporal distribution, 
hydroclimate variability is difficult to be quantified on 
a regional, continental, and global scale. In this context, 
large-scale paleo-hydroclimatic shifts, especially during 

the warm periods, need further investigation as they 
could provide new insights into the present and future 
hydroclimatic changes.
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