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METHODOLOGY

Classification of imbalanced cloud image 
data using deep neural networks: performance 
improvement through a data science 
competition
Daisuke Matsuoka*   

Abstract 

Image data classification using machine learning is an effective method for detecting atmospheric phenomena. 
However, extreme weather events with a small number of cases cause a decrease in classification prediction accuracy 
owing to the imbalance in data between the target class and the other classes. To build a highly accurate classification 
model, I held a data analysis competition to determine the best classification performance for two classes of cloud 
image data, specifically tropical cyclones including precursors and other classes. For the top models in the competi-
tion, minority data oversampling, majority data undersampling, ensemble learning, deep layer neural networks, and 
cost-effective loss functions were used to improve the classification performance of the imbalanced data. In par-
ticular, the best model of 209 submissions succeeded in improving the classification capability by 65.4% over similar 
conventional methods in a measure of the low false alarm ratio.
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1  Introduction
In recent years, deep learning, which is machine learn-
ing using multilayered neural networks, has attracted 
much attention in various research and industrial fields 
as a technology that greatly exceeds the performance of 
conventional methods. In particular, deep convolutional 
neural networks, which are specialized for image recog-
nition, are highly efficient at extracting spatial feature 
patterns (Krizhevsky et  al. 2012). One of the simplest 
tasks that a convolutional neural network can perform is 
the classification of image categories. In atmospheric sci-
ence, image classification has been applied to detect hur-
ricanes, fronts, and atmospheric rivers (Liu et  al. 2016), 
tropical cyclones (Kim et  al. 2017), and precursors of 

tropical cyclones (Matsuoka et al. 2018) and to estimate 
hurricane intensity (Pradhan et  al. 2018), among other 
applications.

Although previous studies have reported interest-
ing results by using classifications, the imbalance in the 
amount of data between classes is still an issue. Target 
phenomena or structures such as hurricanes and tropical 
cyclones occur relatively infrequently, whereas other pat-
terns are countless. For example, Matsuoka et al. (2018) 
classified 50,000 positive and 1,000,000 negative example 
images, with a balance of 20 times. This class imbalance 
is known to cause a decrease in classification perfor-
mance (e.g. Sun et al. 2009).

Such problems in classifying imbalanced data are called 
the imbalanced learning problem, and several methods 
have been proposed in various fields to solve this prob-
lem (e.g. He and Garcia 2009; Leevy et  al. 2018). These 
methods can be categorized into data-level approaches, 
such as training data sampling and feature selection, 
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and algorithm-level approaches, such as cost-sensitive 
learning and ensemble learning. Furthermore, several 
derivative methods have been proposed. However, each 
method often requires empirical judgment and intui-
tion, with domain-specific dependencies. Above all, it is 
impractical in terms of computational and human costs 
to try all method combinations, especially for deep learn-
ing, which deals with large amounts of data.

To solve these problems and obtain the best perform-
ing model, we opened the data used in our previous study 
(Matsuoka et al. 2018) and held a data science competi-
tion event to determine the classification performance 
of tropical cyclones. The competition was held over a 
2-month period from August to October 2018, with the 
participation of over 200 scientists and engineers from 
various backgrounds, such as medicine, physics, eco-
nomics, computer sciences, and atmospheric science. 
The models proposed by the winners of the competition 
achieved classification performances that far exceeded 
those of Matsuoka et al. (2018) based on deep convolu-
tional neural networks. This paper presents the methods 
used in the top models and discusses effective techniques 
for classifying imbalanced image data in atmospheric 
science.

2 � Data set and evaluation metrics
In this section, the details of the data used in the com-
petition and the metric used to evaluate the classification 
performance are described.

2.1 � Data set
In the competition, tropical cyclones, including precur-
sors (Fig.  1a), and other outgoing longwave radiation 
(OLR) data (Fig. 1b) were used, as per a previous study. 
The former data (hereafter TCs or positive examples) 
were derived from the 30-year climate experiment data of 
the cloud-resolving model NICAM (Kodama et al. 2015) 
using the tropical cyclone detection algorithm (Yamada 
et al. 2017; Nakano et al. 2015; Sugi et al. 2002). The latter 
data (hereafter referred to as nonTCs or negative exam-
ples) were assumed to be non-tropical cyclones in the 
past, present, and future. The OLR data were normalized 
from 0 to 1 in the range of 300.0–100.0  W/m2, and the 
single-precision real values were readable TIFF format 
image files. The number of pixels in the image was set to 
64 × 64 (approximately 1000 km in actual scale).

The images released for the competition were divided 
into two categories, training data used to construct 
classification models and test data used for evalua-
tion, based on the order of the time series for practical 
situations. The number of images for the training data 
was set to 2,244,223 (for 15  years from 1984 to 1998), 
and the number of images for the test data was set to 

Fig. 1  Examples of training data. a TCs and b nonTCs (positive and negative examples, respectively)
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299,135 (for 2 years from 1999 to 2000). For reference, 
the plots of the first and second principal components 
of the training and test data, dimensionality reduced 
using principal component analysis, are shown in Addi-
tional file 1: Fig. S1. In both TCs and nonTCs, the plots 
of the training and test data almost overlap, indicat-
ing that this is an appropriate setting for the problem. 
Although the amount of data was different from that 
of Matsuoka et  al. (2018), the balance of positive and 
negative examples was almost the same, with a ratio of 
approximately 1:20. The training data were opened to 
the user with a correct label (TC or nonTC) for super-
vised learning. Although the test data were not labeled, 
participants could check the tentative evaluation results 
through the submission system for the duration of the 
event. Since the final evaluation in the competition was 
performed using a portion of the test data, the tentative 
evaluation results for the test data and the final evalua-
tion did not necessarily match.

2.2 � Evaluation metrics
In this competition, Conditional precision as an evalua-
tion metric for classifying imbalanced cloud image data 
was used as follows:

Here, Recall is a measure of the correctness of the clas-
sification in the correct label, also called the hit ratio. 
Precision is a measure of the correctness of the inference 
result, and 1-Precision indicates the false alarm ratio. 
The Precision and Recall are defined by the following 
equations:

where TP (true positive) is the number of cases in which 
the correct answer was correctly predicted as a positive 
example, FP (false positive) is the number of cases in 
which the correct answer was incorrectly predicted as a 
positive example, and FN (false negative) is the number 
of cases in which the correct answer was incorrectly pre-
dicted as a negative example. There is a trade-off between 
the Precision and Recall reproduction and the fit rate, 
and it is possible to adjust the balance between them by 
the parameter setting. In the results of Matsuoka et  al. 
(2018), when Recall was set to approximately 80%, the 
decrease in Precision became an issue. Therefore, in this 
competition, we used Precision as an evaluation metric 
when the Recall was approximately 80% or higher.

(1)Conditional precision =

{

Precision (Recall ≥ 0.79)

0 (otherwise)

(2)
Precision = TP/(TP + FP),Precision = TP/(TP + FP),

(3)
Recall = TP/(TP + FN )Recall = TP/(TP + FN )

Of note that, with the aforementioned evaluation met-
ric, even if the Recall is much higher than 0.79, it is not 
properly evaluated as the goodness of the model. To 
evaluate the comprehensive performance, it is necessary 
to show the trade-off between Precision and Recall. The 
Precision-Recall (P-R) curve, the plot of Precision (y-axis) 
and Recall (x-axis) for different thresholds of a classifier, 
is often used to show their trade-off.

3 � Methods/experimental
In this section, the methods and their combinations used 
in the best model of the competition are described to 
improve the classification performance of imbalanced 
data.

3.1 � Convolutional neural network
The architecture of a convolutional neural network 
(CNN) generally consists of convolutional, pooling, and 
fully connected layers, as shown in Fig.  2a (LeCun and 
Bengio 1995). The convolutional layer extracts spatial 
patterns, called feature maps, such as edges and gradi-
ents, by applying convolutional filters to the input data. 
In the example of the first layer in Fig. 2a, N feature maps 
are obtained for the input image by using N convolution 
filters with a window size of M × M. The output data of 
the convolutional layer are transferred as the input data 
of the next layer through a nonlinear function, called 
the activation function. The pooling layer compresses 
the dimensionality of the input image, making it robust 
to horizontal misalignment. The fully connected layer 
combines the extracted features into one dimension and 
converts them into values for each output class using a 
function. At this time, the softmax function is often used 
to normalize the output values to a probability for each 
class (Goodfellow et  al. 2016). Then, when the normal-
ized value for a positive class exceeds a certain thresh-
old, the model predicts that it is a positive example. In 
the output layer, the class 1 for a positive example and 
0 for a negative class are often used in binary classifica-
tion. To reduce the error between the output class of the 
CNN and the correct class (ground truth), the parame-
ters of the CNN such as weights and biases are updated 
such that the error function (called loss function) is mini-
mized. In this procedure, called backpropagation, the 
gradient of the loss function for the weights and biases 
is calculated for the given training data, and the gradi-
ent is propagated from the output layer to the input layer 
(Rumelhart et  al. 1986). Here, the mini-batch gradient 
decent is typically used to update the weights for several 
pieces of training data together (called a mini-batch).

In models using neural networks, whereas deepen-
ing the layers generally improves the ability to represent 



Page 4 of 11Matsuoka ﻿Progress in Earth and Planetary Science            (2021) 8:68 

features, the gradient disappears during back propagation 
away from the output layer (the vanishing gradient prob-
lem). To overcome this problem, there are several known 
methods such as using appropriate activation functions, 
special setting of initial weights, batch normalization, and 
a residual network (Hochreiter 1998; Hu et al. 2018). The 
residual network, as shown in Fig. 2b, introduces a short-
cut connection that skips some layers, thereby directly 
transferring the gradient to the lower layers during back 
propagation and preventing gradient disappearance. 
Some of the known architectures using residual mod-
ules are ResNet (He et al. 2016), WideResNet (Zagoruyko 
and Komodakis 2016), and PyramidNet (Han et al. 2017), 
among others. These architectures are characterized by 
deep layers and a large number of convolutional filters.

3.2 � Data sampling
To classify imbalanced data, duplicate samples from the 
minority class (oversampling) and selecting samples from 
the majority class (undersampling) are considered (Leevy 
et al. 2018). Data augmentation, a technique for minority 
class oversampling, is widely used to increase the image 
recognition performance for deep learning (Shorten and 
Khoshgoftaar 2019). As shown in Fig. 3, vertical flip, hor-
izontal flip, random crop, and random rotation are com-
mon methods used in image recognition. Because the 

size of the data as a result of random crop and random 
rotation will be smaller than the original image, there is a 
method called padding, in which pixels are filled outside 
the original image to make the size equal to the original 
image. Cutout (DeVries and Taylor 2017) and random 
erasing (Zhong et al. 2020) were also used to mask par-
tial regions in the image. Whereas cutout masks a square 
area at a random position with a value of 0, random eras-
ing masks a rectangular area at a random position and 
size with a random value. For other data augmentation 
methods, such as image-to-image translation (e.g., Kim 
et  al. 2019; Wei et  al. 2020), refer to the survey paper 
(Shorten and Khoshgoftaar 2019). Many of these meth-
ods have also been implemented in deep learning frame-
works such as Keras and PyTorch, and users can utilize 
them with simple functions.

Next, by undersampling the majority of class data, we 
can reduce the amount of training data that are easy to 
classify. In this study, we introduce a method to sample a 
certain number of misclassified negative examples (false 
positives) into the training data, as shown in Fig. 4. The 
size of the mini-batch used for training is n, and the num-
ber of positive and negative examples is n/2. Of the mini-
batches, the positive example data are sampled randomly, 
but a certain percentage (X) of the negative example data 
contain cases that were misclassified by the CNN (hard 

Fig. 2  Convolutional neural networks (CNNs) for binary classification. Basic architectures of a simple CNN, and b residual networks: ResNet (He et al. 
2016), WideResNet (Zagoruyko and Komodakis 2016), and PyramidNet (Han et al. 2017)
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Fig. 3  Data augmentation for cloud image: vertical flip, horizontal flip, cutout, random erasing, random rotation, random crop, and random shift

Fig. 4  Undersampling of the majority class using hard negative mining
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negative example). Here, X is the hard-negative ratio. 
The probability distribution (P) is updated such that the 
sampling probability of misclassified negative examples 
is higher for mini-batches with a lower classification 
accuracy of the CNN model. A new mini-batch is gen-
erated by sampling the data based on the updated prob-
ability distribution. By repeating the series of processes, 
the number of negative examples that are easy to classify 
from the training data is reduced.

3.3 � Ensemble learning
In the present study, we used ensemble learning, which 
attempts to improve accuracy by combining multi-
ple training models. One of the most basic and power-
ful methods of ensemble learning is bagging (Breiman 
1996), which uses multiple models trained with differ-
ent randomly sampled data. In bagging, the generaliza-
tion error is stochastically reduced by using the average 
result of the outputs from multiple models with different 
properties. The method proposed in this study is based 
on Bagging and consists of five different classification 
models as shown in Fig. 5. The five models (Models A–E) 
are built using different training data of different hard 
negative ratios (X = 0.05, 0.2, 0.35, 0.5, and 0.65) instead 
of random sampling. In the training phase, the amount 
of training data is increased fivefold by using four types 
of data augmentation (vertical flip, horizontal flip, ran-
dom shift, and cutout). The final output is determined by 
taking the weighted average of the output results of the 
five different models. The weights of the output of each 
model are calculated using Bayesian optimization during 
the training phase.

In the test phase for untrained data (Fig. 5b), the final 
output is determined by the weighted average of the 
outputs of the five trained models for one input image. 
The output of each model is a simple average of the out-
put values for the five input images that were increased 
by data augmentation. This data augmentation during 
the test phase is called test time augmentation (TTA) 
(Simonyan and Zisserman 2015). The proposed method 
is a hybrid model of the TTA and ensemble learning. To 
determine the final output result, soft voting is used as 
the average of the final layer outputs, whereas hard voting 
is used for the majority vote of multiple results (Kabari 
and Onwuka 2019; Leon et al. 2017).

4 � Results and discussion
In this section, we show the classification performance of 
all submissions, including the top model of the competi-
tion described in the previous section. Insights into the 
methods used in the top four models from both technical 
and meteorological perspectives are also discussed.

4.1 � Classification performance
The final evaluation results of the 209 models submit-
ted by the participants in the competition are shown 
in Fig.  6. From the definition of Conditional precision 
shown in Eq. (1), although the final evaluation of the sub-
mission with Recall < 0.79 (represented by a blue triangle 
in the figure) was zero, both Precision and Recall val-
ues are shown for reference. Because there is a trade-off 
between the two, the results were concentrated around 
Recall = 0.8 (represented by a dotted line in the figure) 
with a small margin to clear the condition of Recall ≥≥ 
0.79. If other Recall values were set as the threshold, the 
results of many models would gather around that thresh-
old in order to get a high ranking. For the first-ranked 
model, Precision = 0.6236 and Recall = 0.8062, which 
are much higher than the results (Precision = 0.4005 and 
Recall = 0.8060) presented by Matsuoka et  al. (2018). 
The second- and third-ranked models also had a Preci-
sion > 0.6, with Recall ≥≥ 0.79. There were a few mod-
els around Precision = 0.6, where Recall was marginally 
less than 0.79, but with good enough performance, even 
though they received zero marks in the competition.

The P-R curves of the top four models are also shown 
in Fig. 6. The curves show that all models had a natural 
curve for all Recall values without overfitting around 
Recall = 0.79. The classification performance of each 
model can also be evaluated by the area under the P-R 
curve (PR-AUC​). The PR-AUC​ represents both Precision 
and Recall for a classifier as a single score, which ranges 
from 0 to 1 (1 for a perfect model). The PR-AUC​ values 
of the first, second, third, and fourth ranked models were 
0.8204, 0.8001, 0.7927, and 0.7838, respectively, which 
are in the same order as the final evaluation results.

Of the 8,883 positive (TCs) and 290,251 negative 
(nonTCs) examples, there were 1,135 false negatives and 
2,133 false positive. Examples of false negatives and false 
positives that were misclassified for the test data by all 
top four models are shown in Fig. 7a, b, respectively. As 
shown in Fig. 7 and the histograms of the average OLR 
in each test dataset (Additional file  1: Fig. S2), there 
was a tendency to misclassify positive examples with 
few clouds and negative examples with many clouds. 
The detailed discussion of the quantitative differences 
between true positives and false negatives and between 
true negatives and false positives, is beyond the scope of 
this paper and was omitted.

4.2 � Classification strategies
The methods used in the top four models, which were 
the most representative, are summarized in Table 1. First, 
to increase the accuracy, it is effective to use a deep and 
wide network or to increase the number of tuning trials 
with a shallow and narrow model. Matsuoka et al. (2018) 
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used a shallow and narrow network with four convolu-
tional layers and up to 64 convolutional filters, whereas 
the top three models used a deep and wide network based 
on ResNet. The first-ranked model was a 110-layer Pyra-
midNet, followed by a 10-layer WideResNet, and 26-layer 
ResNet, with the maximum number of convolution filters 

for any of the models of 256 (Fig. 2c). In addition, Shake-
Shake regularization (Gastaldi 2017), a data augmenta-
tion method to the output (feature map) of the middle 
layer, was used in the third-ranked model. The fourth-
ranked model was MobileNetV2 (Sandler et  al. 2018), a 
pre-trained model with three convolutional layers. In 

Fig. 5  Proposed ensemble learning model. a Training and b test phase
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general, the larger the number of parameters in a model, 
the higher the representational capability, but the more 
time required for training. As shown in Table 1, the first-
ranked model had a relatively large number of parameters 

and a long learning time, and thus, the number of trials 
becomes small under the limited time and computational 
resource conditions. However, the second-ranked model 
had a relatively small number of parameters and a short 

Fig. 6  The final evaluation results of the classification performance of the 209 submissions in the competition

Fig. 7  Examples of a false negatives and b false positives for the test data by all top four models
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training time, and thus, it is possible to repeat a lot of 
trial and error.

Data augmentation for minority classes during train-
ing and/or testing was effective in improving the classi-
fication performance. In all top three models, methods 
such as horizontal flip, vertical flip, random shift, cutout, 
and random rotation (four patterns of 0°, 90°, 180°, and 
270°) were used (in the fourth-ranked model, only dur-
ing training). In particular, the second-ranked model 
increased the original image 20-fold by combining five 
patterns of crops in the center and four corners (5 Crop) 
with four patterns of random rotation (and random eras-
ing for each image during the training phase). In addition, 
MixUp (Zhang et al. 2018), which creates new images by 
superimposing positive and negative example images, 
was used in the fourth model. These data augmentation 
methods improved the accuracy of repeated experiments 
and were finally determined to be effective. However, the 
direction of the image has meteorological significance, 
as the direction of rotation of tropical cyclones differs 
between the northern and southern hemispheres, and 
the location of windy areas toward the direction of move-
ment differs. In this sense, horizontal flip and random 
rotation might not be meteorologically valid, and their 
use should be considered. However, random cropping is 
a method that can be used for data augmentation without 
any inconsistency. Moreover, random erasing and cutout 
are also valuable methods because they provide regulari-
zation effects and are robust to noise. To summarize on 
data augmentation, all models had room for considera-
tion in terms of physical consistency.

Ensemble learning, which combines multiple mod-
els, is also an effective method for improving classifica-
tion accuracy. The first-ranked model used the weighted 

average of the output results from five models with differ-
ent hard-negative ratios. The fourth-ranked model used 
the simple average of the output results of the five models 
with different preprocessing methods or learning rates. 
In addition, Matsuoka et  al. (2018) used the weighted 
average of the output results from 10 models trained on 
different negative samples. These are all methods that can 
process multiple models in parallel. However, boosting 
(Freund and Schapire 1997), which is a sequential process 
to preferentially learn the results of the previous model’s 
misclassification, is also known to be a powerful method 
and was used by Matsuoka et al. (2017). The second- and 
third-ranked models were trained and tested using only a 
single model. Whereas ensemble models are effective in 
improving classification accuracy, they also increase the 
difficulty of interpreting the models. It is also important 
to prioritize single models with high accuracy to obtain 
meteorological knowledge from feature maps in trained 
models. The second- and third-ranked models are refined 
as single models and are superior in interpretability to 
other ensemble models.

During classifications, cross-entropy is often used as 
a function to evaluate the error between the inference 
result and true value (Hinton et  al. 1995). In the sec-
ond-ranked model, focal loss (Lin et al. 2020) was used, 
which provided a large weighting for the loss of minority 
classes. Loss functions for imbalanced image classifica-
tions include weighted cross entropy loss (Hinton et  al. 
1995), Hamming loss (Frank and Hall 2001), and other 
classical functions such as ranking loss (Li et al. 2017) and 
sparseMax loss (Martins and Astudillo 2016). A rand-
omized leaky rectified unit (RRELU) (Xu et al. 2015) was 
used in the third-place model as the activation function 
for transmitting the output of each layer to the next layer. 

Table 1  Typical methods and elapsed times for each of the top models in the competition

1st place model 2nd place model 3rd place model 4th place model Matsuoka et al. (2018)

CNN architecture PyramidNet WideResNet Shake-shake ResNet26 MobileNetV2 LeNet

Number of parameters 7.6 M 4.3 M 3.0 M 11.6 M 0.60 M

Preprocessing Binarization – Downsampling (32 × 32) Upsampling (96 × 96) –

Oversampling (Data 
augmentation)

Vertical flip
Horizontal flip
Cutout
Random shift

Cropping
Random rotation
Random erasing

Random crop + Padding
Horizontal flip

Random rotation
Mixup

–

Undersampling Hard negative mining Random sampling Random sampling Random sampling Random sampling

Ensemble learning 5 models (Different 
hard negative ratio)

– – 5 models (Different 
learning rate/preproc-
cesing)

10 models (Different 
negative samples)

TTA​ Same as training phase 5 Crop × 4 Rotation 10 Crop + Padding – –

Others – Focal loss RReLU – –

Time for training 10 days 1 day 4 days 5 days 15 h

Time for test 10 h 1 h 1 h 5 h 4 h
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ReLU (Nair and Hinton 2010; Sun et al. 2014), which is 
widely used as the most common activation function, 
becomes zero when the input is negative and is constant 
otherwise. In RRELU, the function has a random slope 
when it is negative, which prevents overlearning. Other 
activation functions such as Leaky ReLU (Maas et  al. 
2013), parametric ReLU (He et al. 2015), and exponential 
linear units (Clevert et al. 2015) are also known.

For reference, the transition of the performance 
improvement and the key methods with the large contri-
bution of the three top winners are shown in Additional 
file 1: Fig. S4 (no data for the fourth-place winner). Com-
mon to all three, the basic architecture of the CNN was 
chosen first and data augmentation was applied in the 
early to middle stages. In addition, the TTA and minor 
modifications such as parameter tuning and loss func-
tion selection were performed at the end of the event 
period. However, these would strongly depend on each 
individual’s available computer resources, time resources, 
and experience. The universality in model improvement 
needs further discussion.

5 � Conclusions
This paper proposes deep learning approaches to effec-
tively classify imbalanced cloud image data with its dif-
ferences of more than 20 times. To design a highly 
sophisticated classification model, a data science com-
petition was held in which labeled images of tropi-
cal cyclones and other categories were made public. 
The results showed that the Precision of the top model 
exceeded 0.6 when the Recall was fixed at approximate 
0.8. This successfully improved the performance by 
approximately 60% compared to that of Matsuoka et  al. 
(2018) (Precision was approximately 0.4).

The higher-level models among the 209 submissions 
used deep-layered networks, as well as positive exam-
ple data augmentation, negative example sampling, and 
ensemble learning as particularly effective methods. It 
is also important to select a loss and an activation func-
tion that considers the balance between classes. On the 
other hand, some of the data augmentation methods 
(rotation and flipping left/right) were considered unnatu-
ral in meteorology. However, not all of the methods were 
incorrect, and in fact, they contributed to an improve-
ment in the classification performance, which can be 
considered to have had some meaning. It can be said that 
the empirical knowledge and knowledge accumulated in 
image recognition in fields other than atmospheric sci-
ence is beneficial and can be used in atmospheric science 
as well.

One of the reasons for the success of the competition 
is the interesting informatics problems, classifying imbal-
anced data with more than a 20-fold imbalance using real 
data. In the future, publishing data in a machine-learning 
ready format for data science competitions and bench-
marking could be a new form of collaboration between 
computer science and geoscience research, such as 
WeatherBench (Rasp et  al. 2020) and the S2S AI Chal-
lenge (https://​s2s-​ai-​chall​enge.​github.​io/). Therefore, it 
is particularly important to select a problem set that is 
applicable to both disciplines.

Abbreviations
NICAM: Nonhydrostatic ICosahedral Atmospheric Model; CNN: Convolutional 
neural network.
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