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Abstract 

Hypervelocity impacts are among the fundamental phenomena occurring during the evolution of the solar system 
and are characterized by instantaneous ultrahigh pressure and temperature. Varied physicochemical changes have 
occurred in the building blocks of celestial bodies under such extreme conditions. The constituent material has trans-
formed into a denser form, a high-pressure polymorph. The high-pressure polymorph is also thought to be the con-
stituent of the deep Earth’s interior. Hence, experiments using a high-pressure and temperature generating apparatus 
have been conducted to clarify its crystal structure, pressure–temperature stability range, and transformation mecha-
nisms. A natural high-pressure polymorph (mineral) is found from terrestrial and extraterrestrial rocks that experienced 
a hypervelocity impact. Mineralogists and planetary scientists have investigated high-pressure minerals in meteorites 
and rocks near terrestrial craters over a half-century. Here, we report brief reviews about the experiments producing 
high-pressure polymorphs and then summarize the research histories of high-pressure minerals occurring in shocked 
meteorites and rocks near terrestrial craters. Finally, some implications of high-pressure minerals found in impact-
induced shocked rocks are also mentioned.
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1  Introduction
High-pressure minerals have considered the major con-
stituents of the Earth’s deep interior, and their physico-
chemical properties and transformation mechanisms are 
essential parameters to understand the structure and 
dynamics of the Earth’s depths. Therefore, mineral physi-
cists who work on high-pressure minerals have been 
making long-standing efforts to clarify the structural 
changes and phase equilibria using a multianvil apparatus 
and a laser-heated diamond anvil cell (LHDAC).

Mineralogists and planetary scientists have tried to 
find high-pressure minerals in meteorites (Fig.  1) and 
rocks near terrestrial impact craters because we cannot 

get high-pressure minerals directly from the Earth’s deep 
interior except for inclusions in diamond crystals (Moore 
and Gurney 1985; Walter et al. 2011; Pearson et al. 2014) 
and mantle xenoliths (Collerson et al. 2000). Indeed, the 
first high-pressure mineral was discovered in a terrestrial 
impact crater; Chao et  al. (1960) found a high-pressure 
polymorph of SiO2, then named coesite, from the Barrin-
ger crater in the USA, and Chao et al. (1962) then found 
a second SiO2 polymorph, named stishovite, from the 
same crater (Fig. 2). A. El Goresy (1934–2019), who was a 
world-leading mineral physicist/meteoriticist working on 
shock metamorphism, discovered a new allotropic form 
of carbon, named chaoite in memory of the contributions 
of E. C. T. Chao for his pioneer works, from the Rice cra-
ter in Germany (El Goresy and Donnay 1968).

The first discovery of a high-pressure mineral from a 
meteorite is the (Mg,Fe)2SiO4 ringwoodite (Binns et al. 
1969), and the second and third cases are the (Mg,Fe)
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SiO3 majorite (Smith and Mason 1970) and wadsley-
ite (Price et  al. 1983) (Fig.  2; Table  1). High-pressure 
minerals in shocked rocks are heterogeneously distrib-
uted on a micrometer scale, and their crystal sizes are 
nano–micrometers across. In most cases, the occur-
rence of high-pressure minerals in shocked meteorites 
is restricted in the vicinity of shock-induced melt veins 
(shock-melt veins) and melt pockets up to several mil-
limeters in width (Fig.  1). Technical difficulties on the 
characterization of such minute crystals shrunk further 
efforts to search for new high-pressure minerals and 
caused a long stagnation since the 1970s (Fig. 2).

The breakthrough was brought by the introduction 
of a transmission electron microscope equipped with 
an X-ray energy-dispersive spectrometer (TEM-EDS) 
(Fig. 2). TEM-EDS analysis enables textural observations, 
crystallographic scrutinies, and chemical composition 
analyses at nano–microscales. A. El Goresy, M. Chen, 
T. Sharp, and their colleagues showed a beautiful ring-
woodite grain having dense stacking faults in shock-melt 
veins of the Sixiangkou L6 ordinary chondrite by TEM 
(Chen et al. 1996). Subsequently, Sharp et al. (1997) and 
Tomioka and Fujino (1997) almost simultaneously found 
natural (Mg,Fe)SiO3 with the ilmenite structure (named 
akimotoite later) from the Tenham L6 ordinary chon-
drite by using TEM-EDS analysis. In the same contribu-
tion, these authors also reported an electron diffraction 
pattern of (Mg,Fe)SiO3 with the perovskite structure 
(named bridgmanite later by another set of authors) 
along with akimotoite (Tomioka and Fujino 1997). A. El 
Goresy and his colleagues also found a silica mineral with 
scrutinyite (α-PbO2)-type structure from the shergottite 
Shergotty by TEM-EDS analysis (Sharp et al. 1999). We 
cannot directly observe a high-pressure polymorph of 
(Mg,Fe)2SiO4, poirierite, without high-resolution TEM 
analysis because of its complex and ultrafine crystals 
within the host olivine (Tomioka et al. 2021).

The second breakthrough was caused by the introduc-
tion of in  situ analysis techniques: (i) micro-fabrication 
and -pickup technology, a focused ion beam (FIB) sys-
tem, (ii) focused synchrotron X-ray diffraction (sXRD) 
techniques, and iii) electron backscattered diffraction 
(EBSD) analysis. An ultrathin film (thickness: ~ 100 nm) 
had been prepared for TEM-EDS analysis and was pre-
pared conventionally by Ar-ion-milling and ultrami-
crotomy. However, a target containing high-pressure 
minerals for TEM-EDS analysis is submicron-sized. We 
must minimize the destruction of a valuable meteorite 
sample during the pickup process of such a small portion. 
The introduction of an FIB system overcame the difficulty 
(e.g., Miyahara et  al. 2008; Wirth 2009). sXRD analysis, 
which uses a high-power X-ray beam, is a powerful tool 

to identify the crystal structure of submicron-sized mate-
rial. SEM-EBSD analysis can identify minerals in mete-
orites on the surface of a polished petrographic section 
in a short time without sample destruction. The number 
of new high-pressure minerals exponentially increased 
since the introduction of these new analysis techniques 
(Fig.  2). Furthermore, the application of laser micro-
Raman spectroscopy makes the characterization of high-
pressure minerals in shocked rocks very rapid and easy. 
By the means of a 1-µm diameter laser beam, such a tech-
nique allows the identification of fine-grained minerals in 
polished petrographic thin sections within several 10  s, 
thus enabling systematic investigations of high-pressure 
minerals (e.g., Ohtani et al. 2004; Miyahara et al. 2020). 
However, meticulous interpretation of a Raman shift is 
necessary for identification because some high-pressure 
minerals have similar Raman shifts (e.g., Baziotis et  al. 
2018). Cross-check by another analysis technique should 
be carried out when necessary.

Here we review the syntheses of high-pressure minerals 
and their discoveries in natural samples in the last six dec-
ades. In this review, a high-pressure mineral is termed as 
a mineral that is stable only at the Earth’s mantle pressure 
conditions (above ~ 1 GPa) as listed in Table 1. Their for-
mation mechanisms, representative phase diagrams, and 
typical diagnostic Raman spectra are summarized in Gas-
parik (2003) and Tomioka and Miyahara (2017). Concise 
but comprehensive introductions of shock-produced high-
pressure minerals are also available in Sharp and DeCarli 
(2006), Morrison and Hazen (2021) and on our database 
website (https://​sites.​google.​com/​site/​highp​miner​al).

2 � High‑pressure minerals in meteorites
2.1 � High‑pressure polymorphs of (Mg,Fe)2SiO4
Olivine [(Mg,Fe)2SiO4] is one of the major constituents 
of meteorites, and its high-pressure polymorphs are 
found from ordinary chondrites, lunar meteorites, Mar-
tian meteorites, and carbonaceous chondrites (Tomioka 
and Miyahara 2017). High-pressure polymorphs for oli-
vine (α-phase), spinelloid-type (Mg,Fe)2SiO4 (β-phase), 
spinel-type (Mg,Fe)2SiO4 (γ-phase), spinelloid-type 
Mg2SiO4 (ε-phase), and orthosilicate Mg2SiO4 (ζ-olivine) 
are reported. The fayalite components of olivine for H, 
L, and LL group ordinary chondrites are 16–23, 23–26, 
and 27–32 mol%, respectively (Weisberg et al. 2006). The 
fayalite components of olivine in Martian meteorites and 
carbonaceous chondrites are widespread and higher than 
ordinary chondrites and lunar meteorites. Hence, Fe-rich 
high-pressure polymorphs of (Mg,Fe)2SiO4 dominate in 
Martian meteorites and carbonaceous chondrites com-
pared with other meteorites.

https://sites.google.com/site/highpmineral
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2.1.1 � β‑(Mg,Fe)2SiO4: Wadsleyite–asimowite
Ringwood and Major (1966a) conducted high-pressure 
experiments in the Mg2SiO4–Fe2SiO4 system using the 
early-stage Bridgman anvil apparatus at 12–20 GPa and 
900  °C to confirm an olivine-spinel transition. Mg2SiO4 
with a spinelloid structure was first reported as a dis-
torted spinel phase in their experimental samples based 
on X-ray diffraction (XRD) analysis (Ringwood and 

Major 1966a). The crystal structure of the distorted spi-
nel phase was better studied four years later and regarded 
as a new orthorhombic phase (β-Mg2SiO4) 8% denser 
than forsterite (Ringwood and Major 1970).

Natural β-Mg2SiO4 with a quench texture was discov-
ered in the black-colored shock-melt veins of the Tenham 
and Peace River L6 ordinary chondrites by TEM obser-
vations (Putnis and Price 1979). The mineral was named 
wadsleyite after A. D. Wadsley (Price et  al. 1983). Later 
systematic investigations revealed that, in most cases, 
wadsleyites in ordinary chondrites have crystallized from 
a shock-produced chondritic melt simultaneously trans-
formed by a solid-state reaction from olivine entrained 
in the chondritic melt (Miyahara et  al. 2020). The for-
mer always coexists with low-Ca pyroxene, and the latter 
occurs at the grain boundaries or fractures in the olivine 
grains (Fig. 3).

Although pure Fe2SiO4 with a spinelloid structure 
(β-Fe2SiO4) has not been synthesized, Finger et al. (1993) 
obtained single wadsleyite crystals with 40% of fayalite 
component at 15.2  GPa and 1973  K. A mineral with Fe 
dominance over Mg in the octahedral sites was found 
as inclusion in the shock-induced Fe–Ni droplets of the 
Suizhou L6 ordinary chondrite and the Quebrada Chim-
borazo 001 CB carbonaceous chondrite and was named 
asimowite after P. D. Asimow (Bindi et al. 2019).

2.1.2 � γ‑(Mg,Fe)2SiO4: Ringwoodite–ahrensite
The Mg2SiO4–Fe2SiO4 solid solution with a spinel 
structure (γ-phase) in the compositional range of Fe/
(Mg + Fe) = 0.15–0.75 was reported experimentally by 
Ringwood and Major (1966a). As for the end-member 
composition, γ-Fe2SiO4 was first synthesized at 3  GPa, 
660 °C by a squeezer apparatus (Ringwood 1958a), while 
the convincing evidence for γ-Mg2SiO4 was first reported 
later via synthesis at 25 GPa and 1000 °C by a Kawai-type 
multianvil apparatus (Ito et al. 1974). Mg2SiO4 with a spi-
nel structure (γ-Mg2SiO4) was also obtained first experi-
mentally by Ringwood and Major (1966a). Binns et  al. 
(1969) found purple/blue isotropic grains in the shock-
melt vein of the Tenham L6 ordinary chondrite by optical 
microscopic observations and obtained a powder XRD 
pattern from the grains. The latter could be assigned 
to γ-Mg2SiO4 and the mineral was named ringwoodite 
after A. E. Ringwood (Binns et  al. 1969). Jeanloz (1979) 
claimed that ringwoodite is merely a complex mineral 
aggregate, misidentified as a spinel phase. Against the 
criticism, Putnis and Price (1979) presented conclusive 
evidence for the existence of ringwoodite, as they provide 
a TEM image of a single ringwoodite crystal in the shock-
melt vein of the Tenham chondrite.

Most ringwoodite in shocked meteorites is a polycrys-
talline assemblage (across < 1–2 μm) (Xie and Sharp 2004; 

Fig. 1  A heavily shocked meteorite (The Monze L6 ordinary 
chondrite). Black-colored veins (white-colored arrows) are shock-melt 
veins

Fig. 2  The accumulated number of a new high-pressure mineral 
by year. The discovery of major minerals is shown in the figure. The 
introduction years of instruments are also shown. Coe: coesite, Sti: 
stishovite, Rwd: ringwoodite, Wds: wadsleyite, Maj: majorite, Aki: 
akimotoite, Bdg: bridgmanite, Sei: seifertite. cXRD: conventional 
X-ray diffraction, TEM: transmission electron microscopy, FIB: focused 
ion beam, sXRD: synchrotron X-ray diffraction, EBSD: electron 
backscattered diffraction
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Table 1  Inventory of high-pressure minerals

#  Year for new mineral-proposal (IMA No.) to the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical 
Association (IMA)
* High-pressure minerals occur only as inclusions in diamond but are not produced by shock metamorphism

Year# Mineral name Structure Chemistry References

– Diamond Diamond C Prior to 1960

1962 Coesite Unique monoclinic structure SiO2 Chao et al. (1960)

1966 Lonsdaleite Wurtzite C Frondel and Marvin (1967)

1967 Stishovite Rutile SiO2 Chao et al. (1962)

1968 Chaoite Carbyne C El Goresy and Donnay (1968)

1968 Ringwoodite Spinel Mg2SiO4 Binns et al. (1969)

1969 Majorite Garnet MgSiO3 Smith and Mason (1970)

1982 Wadsleyite β-spinelloid Mg2SiO4 Price et al. (1983)

1997 Akimotoite Ilmenite MgSiO3 Tomioka and Fujino (1999)

2000 Allabogdanite Co2Si (Fe,Ni)2P Britvin et al. (2002)

2001 Tuite Ba3(PO4)2 Ca3(PO4)2 Xie et al. (2004)

2001 Reidite Scheelite ZrSiO4 Glass et al. (2002)

2004 Lingunite Hollandite NaAlSi3O8 Liu and El Gorsey (2007)

2004 Seifertite Scrutinyite SiO2 El Goresy et al. (2008)

2006 Dmitryivanovite CaGa2O4-II CaAl2O4 Mikouchi et al. (2009)

2007 Xieite CaTi2O4 FeCr2O4 Chen et al. (2008)

2007 Akaogiite Baddeleyite TiO2 El Goresy et al. (2010)

2010 Icosahedrite Icosahedral quasicrystal Al63Cu24Fe13 Bindi et al. (2011)

2013 Ahrensite Spinel Fe2SiO4 Ma et al. (2016)

2013 Tissintite Clinopyroxene (Ca,Na,v)AlSi2O6 Ma et al. (2015)

2013 Liebermannite Hollandite KAlSi3O8 Ma et al. (2018)

2014 Bridgmanite Perovskite MgSiO3 Tschauner et al. (2014)

2014 Jeffbenite* Unique tetragonal structure Mg3Al2Si3O12 Nestola et al. (2016)

2015 Decagonite Decagonal quasicrystal Al71Ni24Fe5 Bindi et al. (2015a)

2015 Riesite Srilankite-like structure TiO2 Tschauner et al. (2020b)

2015 Zagamiite Hexagonal barium ferrite CaAl2Si3.5O11 Ma and Tschauner (2017)

2016 Hemleyite Ilmenite FeSiO3 Bindi et al. (2017)

2016 Wangdaodeite LiNbO3 FeTiO3 Xie et al. (2020)

2017 Stöfflerite Hollandite CaAl2Si2O8 Tschauner et al. (2021)

2017 Vestaite Schreyerite (Ti,Fe)Ti4O9 Pang et al. (2018)

2017 Ice-VII* Cuprite-like structure H2O Tschauner et al. (2018)

2017 Chenmingite Harmunite FeCr2O4 Ma et al. (2019b)

2017 Feiite Sr2Tl2O5 Fe2+
2(Fe2+Ti4+)O5 Ma et al. (2021b)

2017 Liuite GdFeO3 FeTiO3 Ma et al. (2021b)

2017 Maohokite Harmunite MgFe2O4 Chen et al. (2019)

2017 Tschaunerite CaTi2O4 (Fe2+)(Fe2+Ti4+)O4 Ma et al. (2021a)

2018 Asimowite β-spinelloid Fe2SiO4 Bindi et al. (2019)

2018 Proxidecagonite Decagonite approximant Al34Ni9Fe2 Bindi et al. (2018b)

2018 Donwilhelmsite Unique hexagonal structure CaAl4Si2O11 Fritz et al. (2020)

2018 Poirierite ε-spinelloid Mg2SiO4 Tomioka et al. (2021)

2018 Breyite* Walstromite CaSiO3 Brenker et al. (2021)

2019 Hiroseite Perovskite FeSiO3 Bindi et al. (2020c)

2020 Davemaoite* Perovskite CaSiO3 Tschauner et al. (2020a)

2020 Elgoresyite Unique monoclinic structure (Mg5Si2)O9 Bindi et al. (2021)
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Xie et  al. 2006; Chen et  al. 2007; Miyahara et  al. 2010; 
Sharp et al. 2015) (Fig. 4a). Some olivine-ringwoodite (or 
ahrensite) assemblage composed of a ringwoodite (Rwd) 
(or ahrensite (Ahr)) sheet with a specific crystallographic 
orientation to preserve the close-packed oxygen layers 
of both structures—(100)Ol//{111}Rwd/Ahr—is also found 
in an olivine (Ol) grain in contact with a shock-melt vein 
of the Yamato (Y)-791384 L6 ordinary chondrite (Miya-
hara et al. 2010) (Fig. 4b) or in the shock region of a grain 
of the Khatyrka CV3 carbonaceous chondrite (Hollister 
et al. 2014).

γ-Ni2GeO4 as an analog of Fe2SiO4 with a spinel struc-
ture (γ-Fe2SiO4) was synthesized by Ringwood (1958b). 
Natural γ-Fe2SiO4 was discovered in the shock-melt vein 
of the Umbarger L6 ordinary chondrite by TEM observa-
tions (Xie et al. 2002b). Later, it was also found from the 
melt-pocket of the olivine-phyric shergottite Tissint by a 
combined powder XRD and EBSD analysis and named 
ahrensite after T. Ahrens (Ma et al. 2016). Like ringwood-
ite, most ahrensite grains are also polycrystalline assem-
blages, and some olivine-ahrensite assemblages consist 
of an ahrensite sheet with a specific crystallographic 
orientation, namely (001)Ol//{111}Ahr (Miyahara et  al. 
2016). Unlike wadsleyite, most ringwoodite–ahrensite 
have formed through a solid–solid-state transformation 
in ordinary chondrites and Martian meteorites (Walton 
et  al. 2014; Ma et  al. 2016; Miyahara et  al. 2016, 2020; 
Tomioka and Miyahara 2017). In contrast, some ring-
woodites in ordinary chondrites have formed from oli-
vine melt or chondritic melt (Xie et al. 2002b; Miyahara 
et al. 2008, 2009, 2020). Ringwoodite crystallized from a 
chondritic melt has a dendritic texture (Fig. 4c).

An interesting point is that ringwoodite–ahrensite 
exhibits the normal spinel structure, with Mg(Fe) in 
the octahedral A site and Si in the tetrahedral B site. 
Through A and B site-disorder, the inverse spinel has 
four-coordinated A cations and the six-coordinated site 
hosts a mixture of A and B cations. This process affects 
the density and impedance contrast across the bounda-
ries in the transition zone and seismic-wave velocities in 
this portion of the Earth. Bindi et al. (2018a) reported the 
first synthesis at high pressure (20 GPa) and temperature 
(1600 °C) of a Cr-bearing ringwoodite with a completely 
inverse-spinel structure. The chemical, structural, and 
computational analysis confirmed the stability of inverse 
ringwoodite. The degree of inversion in these minerals is 
crucial, as discussed by Ma et al. (2019c), because it could 
influence the inferred conditions of the meteorite during 
shock-melt cooling.

When an oceanic plate subducts along a trench 
into the Earth’s deep interior, hydrous minerals such 
as clay minerals and hydroxides are transported into 
the Earth’s depths, resulting in the formation of dense 

hydrous minerals. Many kinds of hydrous high-pressure 
polymorphs such as δ-AlOOH have been synthesized 
through high-pressure and -temperature experiments 
(e.g., Ohira et al. 2014; Bindi et al. 2020d). High-pressure 
experiments prove that nominal anhydrous ringwoodite 
and wadsleyite can also contain a small amount of water 
in their structures (< 2–3 wt.% H2O) (e.g., Kohlstedt et al. 
1996; Inoue et al. 1998).

A natural hydrous ringwoodite (> 1.4 wt.% of H2O) was 
found as an inclusion in terrestrial diamond (Pearson 
et al. 2014). A hydrous ringwoodite (< 1132 ppm H2O) is 
also found near the melt-pocket of the shergottite Tissint 
(Hallis et  al. 2017). Mars explorations by rovers and 
landers indicate that water has existed extensively on the 
subsurface of Mars (e.g., Bandfield 2007). Some impact 
events might occur under hydrous conditions. The sher-
gottites NWA 7397 and 10416 have evidence for both 
shock metamorphism and aqueous alteration (Herd et al. 
2016; Yoshida et al. 2021). Hydrous high-pressure miner-
als may have been overlooked in shocked meteorites.

2.1.3 � ε‑Mg2SiO4: Poirierite
Based on the topological analyses of the crystal struc-
tures of the olivine polymorphs in shocked meteorites, 
shear mechanisms without long-range ionic diffusion 
are posited to promote their polymorphic transforma-
tions. The transformation model also predicted the pos-
sible occurrence of an intermediate spinelloid structure 
(ε-phase) (Madon and Poirier 1983). After the predic-
tion over three decades, the ε-phase was found as met-
astable intergrowth within ringwoodite grains in the 
shock-melt vein of the Tenham L6 ordinary chondrite 
by meticulous high-resolution (HR)-TEM observa-
tions (Tomioka and Okuchi 2017). The ε-phase was also 
found within ringwoodite and wadsleyite grains from the 
Suizhou L6 and Miami H5 ordinary chondrites, respec-
tively. Single-crystal XRD analysis of the ε-phase in the 
Suizhou L6 ordinary chondrite, as well as results of first-
principles’ calculations, confirmed that the ε-phase has 
an orthorhombic unit cell with the smallest dimensions 
among the preexisting spinelloid structures, and this 
phase was named poirierite after J.-P. Poirier (Tomioka 
et al. 2021) (Fig. 5). The topotaxial intergrowths of poiri-
erite with wadsleyite/ringwoodite in shocked chondrites 
support the idea proposed by Madon and Poirier (1983) 
where poirierite is a way point in the shear transforma-
tions between olivine and wadsleyite/ringwoodite (e.g., 
olivine becomes ringwoodite via poirierite).

2.1.4 � ζ‑olivine
ζ-olivine was found in the black-colored shocked-oli-
vine in the chassignite Northwest Africa (NWA) 2737 
and lherzolitic shergottite NWA 1950 (Beck et  al. 2006; 
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van de Moortèle et  al. 2007). Based on HRTEM obser-
vations and first-principles’ calculations, the ζ-olivine 
consists of quasi ideally close-packed oxygen sublattice 
with disordered cation sites and is regarded as a meta-
stable high-pressure form of α-(Mg,Fe)2SiO4 produced 
at high-pressure and relatively low-temperature condi-
tions (Guyot and Reynard 1992; Beck et al. 2006; van de 
Moortèle et al. 2007). A mineral name has not been given 
to the ζ-olivine. Takenouchi et al. (2019) reproduced the 
black-colored shocked-olivine that potentially contains 
the ζ-phase by shock recovery experiments.

2.1.5 � High‑pressure dissociation of (Mg,Fe)2SiO4
Phase equilibrium diagram in the system 
Mg2SiO4-Fe2SiO4 predicts that olivine dissociates into 
bridgmanite + magnesiowüstite (+ stishovite) around 
23–25  GPa (Ito and Takahashi 1989), although the dis-
sociation reaction depends on temperature and chemi-
cal composition. Miyahara et al. (2011b) found evidence 
for the dissociation reaction in olivine grains in contact 
with the shock-melt vein of the olivine-phyric shergottite 
Dar al Gani (DaG) 735. Granular bridgmanite + magne-
siowüstite (Fig.  6a) and lamellar bridgmanite + magne-
siowüstite (Fig.  6b) are found in the dissociated olivine 
grains (with bridgmanite almost vitrified). In most cases, 
Martian meteorites are heavily shocked compared with 
ordinary chondrites (e.g., El Goresy et  al. 2013; Miya-
hara et  al. 2020). Hence, the high-pressure dissociation 
of olivine is found mainly in shocked Martian meteorites 
(Fritz and Greshake 2009; Walton et  al. 2014; Miyahara 
et al. 2019). On the other hand, Bindi et al. (2020c) found 

Fe-rich silicate perovskite (hiroseite) as the dissociation 
products of olivine in the Suizhou chondrite L6 ordinary 
chondrite. High-pressure experiments suggest that oli-
vine melts incongruently into magnesiowüstite and liquid 
above 8 GPa and 2100 °C (Kato et al. 1998; Ohtani et al. 
1998). Natural dissociation of olivine by incongruent 
melting is found from the Kamargaon L6 ordinary chon-
drite and Apollo 15 regolith breccia (Tiwari et  al. 2021; 
Satta 2021).

2.2 � High‑pressure polymorphs of (Mg,Fe,Ca)SiO3
2.2.1 � (Mg,Fe)SiO3‑Mg3Al2Si3O12: Majorite‑pyrope
The pyroxene is the second major constituent of chon-
dritic meteorites and the Earth’s upper mantle. Because 
of the four main end-member components of pyrox-
enes (enstatite: MgSiO3, ferrosilite: FeSiO3, diopside: 
CaMgSi2O6, and hedenbergite: CaFeSi2O6), the pres-
sure–temperature phase equilibria of pyroxene are more 
complicated than that of olivine. A natural high-pressure 
polymorph of the (Mg,Fe)SiO3 pyroxene was first dis-
covered in ordinary chondrites. Mason et al. (1968) dis-
covered aggregates with an olivine composition in the 
Coorara L6 ordinary chondrite using powder XRD and 
identified their crystal structure as a garnet structure. The 
garnet composition was initially misidentified because 
of overlaps of their neighboring ringwoodite grains. 
A more careful examination showed that their actual 
chemical composition is close to (Mg,Fe)SiO3 (Smith and 
Mason 1970). Two years before the discovery, the min-
eral was also synthesized from glass with an Al-bearing 
MgSiO3 composition at 20 GPa and ~ 900 °C (Ringwood 

Fig. 3  Backscattered electron (BSE) images of wadsleyite. a A chondritic fragment in the shock-melt vein of Yamato (Y) 000973 L5 ordinary 
chondrite. b A high-magnification image of a white-colored box in a. A part of olivine in the fragment has been replaced with polycrystalline 
wadsleyite. The matrix of the shock-melt vein consists of wadsleyite and low-Ca pyroxene. Ol: olivine, Pyx: Low-Ca pyroxene, Wds: wadsleyite, Jd: 
jadeite
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and Major 1966b). Generally, garnet has only aluminum 
in its oxygen 6-coordinated sites, while the newly found 
garnet has a unique characteristic when the structure has 
Si > 3 atoms per formula unit. Indeed, by the Tschermak 
substitution (2Al3+ ⇔ Mg2+  + Si4+) in the octahedral 
sites on the MgSiO3-Mg3Al2Si3O12 (pyrope) join, we can 
find octahedral silicon in this structure, which is symp-
tomatic of a very high-pressure regime. The new high-
pressure mineral found in Coorara was named majorite 
(Smith and Mason 1970) after A. Major. Al-rich majorite 
is one of the dominant phases in the matrices of shock-
melt veins (e.g., Chen et al. 1996; Miyahara et al. 2020). 
According to the phase diagram of the Allende CV3 car-
bonaceous chondrite, Al-rich majorite is thought to have 
crystallized as a liquidus phase from chondritic melt in 
the pressure range of 14–26 GPa (Agee et al. 1995; Chen 
et al. 1996).

Al-rich majorite has a cubic symmetry as usual for sili-
cate garnets, while almost Al-poor/free majorite in the 
system MgSiO3–FeSiO3 has a tetragonal distorted sym-
metry caused by the ordering of Mg and Si in the octa-
hedral sites (e.g., Kato and Kumazawa 1985; Angel et al. 
1989; Heinemann et  al. 1997; Nakatsuka et  al. 1999; 
Tomioka et  al. 2002). Natural Ca-rich tetragonal major-
ite as a dissociation product of subcalsic pyroxene was 
found in the host-rock fragments in shock-melt veins in 
the Tenham L6 ordinary chondrite (Xie and Sharp 2007; 
Tomioka et  al. 2016). Polycrystalline low-Ca tetragonal 
majorite was also found in the same chondrite (Fig.  7) 
(Tomioka et  al. 2016). Following a comparison between 
the degrees of cation ordering in synthetic and natural 
majorites, the cooling rate of shock-melt veins during 
shock metamorphism was constrained to be 103  °C/s 
(Tomioka et al. 2002, 2016).

Majorite, which was formed by melt crystallization 
and solid-state transformation, has been reported in 
many chondrites and Martian meteorites (shergottite) 
(Tomioka and Miyahara 2017). As for terrestrial impact 

Fig. 4  Bright-field (BF)-TEM images of ringwoodite. a A ringwoodite 
crystal with a dense stacking fault in the Y-790729 L6 ordinary 
chondrite. b An olivine grain replaced with ringwoodite in the 
Y-791384 L6 ordinary chondrite. A part of the olivine grain in contact 
with the shock-melt vein is replaced with polycrystalline ringwoodite. 
Also, thin layers of ringwoodite occur in the olivine grain. The (100) 
of olivine is parallel with the {111} of ringwoodite. c A ringwoodite 
crystal with a dendritic texture in the Y-74445 L6 ordinary chondrite. 
Ol: olivine, Rwd: ringwoodite
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structure, the Ries crater also yielded Al-rich majorites 
with various amounts of Na, Fe, K, Ca, and Fe in shocked 
amphibolite (Stähle et  al. 2010, 2017). Majorite was 
crystallized from amphibolite melt or chlorite-rich melt 
induced by an impact.

2.2.2 � MgSiO3–FeSiO3: Akimotoite‑hemleyite
Trigonal MgSiO3 phase with the ilmenite structure phase 
was synthesized at 17.5–27.5 GPa and 1000–1400  °C by 
an LHDAC (Liu 1976) following the finding of hexago-
nal MgSiO3 by Kawai et al. (1974). About 20 years after 
the syntheses, the natural occurrence of the phase was 
reported in the shock-melt veins of the Acfer 040 L5–6 
and the Tenham L6 ordinary chondrites based on TEM 
observations (Sharp et  al. 1997; Tomioka and Fujino 
1997). The matrix of the shock-melt veins in Acfer 
040 consists mainly of MgSiO3-rich amorphous grains 
(~ 2 µm in size), ringwoodite, and MgSiO3-ilmenite. The 
MgSiO3-ilmenite occurs as plate-like grains and con-
tains considerable amounts of the Na2O, Al2O3, and FeO 
components (Sharp et  al. 1997), while the MgSiO3-rich 
amorphous material contains significant amounts of 
Na2O, Al2O3, CaO, and FeO. The assemblages and chemi-
cal compositions of high-pressure minerals suggest that 
they have crystallized from shock-induced melt over 
26 GPa (Sharp et  al. 1997). In Tenham, clinoenstatite 
[(Mg,Fe)SiO3], fragments of the host rock entrained in 
the shock-melt veins, is associated with aggregates of 

submicron-sized grains and no other minerals in their 
interstices. Their chemical composition is identical to 
that of the host clinoenstatite (Tomioka and Fujino 1997) 
(Fig.  8). The ilmenite phase is thought to have formed 
directly from the host clinoenstatite without melting. The 
MgSiO3-ilmenite was named akimotoite after S. Akimoto 
(Tomioka and Fujino 1999). Akimotoite has been found 
in chondrites and shergottites (Xie and Sharp 2004; Imae 
and Ikeda 2010; Tomioka and Miyahara 2017), whereas 
they have not been reported in impact craters.

Recently, the Fe-rich ilmenite with Fe/(Mg + Fe) = 0.56 
was also discovered in an unmelted portion of the heav-
ily shocked L6 ordinary chondrite Suizhou associated 
with olivine, clinoenstatite, and Fe-bearing pyroxene 
(Bindi et al. 2017). The occurrence suggests that the new 
phase formed by a Fe-rich clinoenstatite—formed by the 
thermal metamorphism in its parent body—was subse-
quently shock-transformed to Fe-rich akimotoite. The 
mineral was named hemleyite after R. J. Hemley (Bindi 
et al. 2017). So far, the FeSiO3 solubility into akimotoite 
increases up to ~ 10 mol% with increasing pressure from 
20 to 25  GPa at 1100  °C based on a phase equilibrium 
study (Ito and Yamada 1982), whereas at the FeSiO3 con-
tent above 10 mol%, bridgmanite and majorite are stable 
rather than akimotoite at a higher pressure and lower 
temperature, respectively (Ohtani et al. 1991). Therefore, 
hemleyite would be metastably formed during a short 
pressure and temperature excursion in the shock event.

Fig. 5  TEM images of poirierite in the Miami H5 ordinary chondrite. a BF-TEM image of a wadsleyite grain partly replaced by poirierite. b 
High-resolution (HR) TEM image of poirierite. Lattice fringes with 0.8 nm spacings correspond to d001. Wds: wadsleyite, Poi: poirierite
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2.2.3 � MgSiO3–FeSiO3: bridgmanite‑hiroseite
Silicate perovskite has been first synthesized from pyrope 
at 30 GPa and above 800  °C in the Al-bearing system 
by an LHDAC (Liu 1974). Subsequently, pure MgSiO3 
perovskite was synthesized at 30 GPa and ~ 1000  °C by 
an LHDAC (Liu 1975) and 28  GPa and ~ 1000  °C by a 
Kawai-type multianvil apparatus (Ito and Matsui 1978). 
These phases have an orthorhombic symmetry with the 
same structure as perovskite (CaTiO3). The mineral is 
of particular interest to geophysicists because the phase 
occupies ~ 77  vol% of the Earth’s lower mantle (Irifune 
1993).

In nature, (Mg,Fe)SiO3 grains (~ 0.3  µm in size) adja-
cent to a clinoenstatite grain were identified in the 
Tenham L6 ordinary chondrite to be crystalline as a per-
ovskite-structure phase using TEM (Tomioka and Fujino 
1997). The perovskite phase has the same chemical com-
position as clinoenstatite in the host rock, which is con-
sidered to have formed in a solid phase transition as well 
as akimotoite in the Tenham chondrite. Fine-scale inter-
growth of (Mg,Fe)SiO3-perovskite and magnesiowüstite, 
as post-ringwoodite dissociation products of olivine, 
were also found in the shergottite DaG 735 (Miyahara 
et al. 2011b). The presented TEM works did not give full 
crystallographic data on the perovskite phase because of 
its large susceptibility to electron beam radiation. How-
ever, synchrotron X-ray micro-diffraction finally gave 
data to determine the unit cell of (Mg,Fe)SiO3-perovskite 
in the Tenham chondrite. The mineral was named bridg-
manite after P. W. Bridgman (Tschauner et al. 2014).

Recently, a Fe-rich silicate perovskite phase with Fe/
(Mg + Fe) = 0.59 was discovered in a shock-melt vein 
in the Suizhou chondrite L6 ordinary chondrite based 
on XRD, TEM, and micro-Raman spectroscopy (Bindi 

et  al. 2020c). Interestingly, Fe nanoparticles less than 
100  nm in size were found embedded in the host per-
ovskite phase that has both ferric and ferrous iron. That 
is the first evidence for a subsolidus charge dispropor-
tionation reaction in natural high-pressure minerals: 
3Fe2+  → Fe0 + 2Fe3+. The mineral was named hiroseite 
after K. Hirose (Bindi et  al. 2020c). So far, bridgmanite 
has not been found in terrestrial impact craters.

It is noteworthy that a bridgmanite-like mineral was 
discovered in the Acfer 094 carbonaceous chondrite 
(ungrouped C2). The mineral is ~ 300 nm in size and has 
an oxygen isotope anomaly (Vollmer et al. 2007). Electron 

Fig. 6  BF-TEM images of dissociated olivine in the shergottite DaG 735. a Granular bridgmanite + magnesiowüstite, b lamellar 
bridgmanite + magnesiowüstite. Most bridgmanite have been vitrified. Bdg: bridgmanite, Mw: magnesiowüstite

Fig. 7  BF-TEM image of a monomineralic aggregate of tetragonal 
majorite in the Tenham L6 ordinary chondrite. The majorite grains 
formed in a solid-state transformation of low-Ca pyroxene entrapped 
into a shock-melt vein
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diffraction patterns of the mineral indicate a superstruc-
ture of the orthorhombic perovskite structure. A possible 
explanation of the formation process of the novel mineral 
is that presolar MgSiO3-pyroxene particles floating in 
interstellar space have transformed into the perovskite-
like phase by interstellar shock waves before incorpora-
tion into its parent body.

CaSiO3 with the perovskite structure was also con-
firmed at 16 GPa and 1500  °C by an LHDAC (Liu and 
Ringwood 1975). It is not an atmospheric pressure 
quenchable phase but vitrified during decompression. 
As for shocked meteorites, CaSiO3-rich amorphous 
phase coexisting with Ca-rich majorite was reported 
in a shock-melt vein of the Y-75100 H6 ordinary chon-
drite (Tomioka and Kimura 2003). The diopside in the 
host rock would have initially dissociated into CaSiO3 
with the perovskite structure plus Ca-rich majorite dur-
ing prograde shock metamorphism, and then, the per-
ovskite phase became amorphous during the subsequent 
retrograde stage. Crystalline CaSiO3 perovskite with an 
orthorhombic cell was found in a terrestrial environment 
as inclusion in a super-deep diamond from South African 
Cullinan kimberlite (Nestola et al. 2018). More recently, 
cubic CaSiO3 perovskite was also reported in a diamond 
from Botswanan Orapa kimberlite, and then named dav-
emaoite after H.-K. Mao (Tschauner et al. 2020a).

2.2.4 � Other high‑pressure minerals with the pyroxene 
compositions

The MgSiO3 component has various pyroxene-structure 
polymorphs with different crystal symmetries caused by 
configurational changes of the SiO4 tetrahedral chains at 
high pressures and temperatures: low-temperature cli-
noenstatite (space group P21/c), orthoenstatite (Pbca), 
protoenstatite (Pbcn), high-temperature clinoenstatite 
(C2/c), and high-pressure clinoenstatite (C2/c) (Gasparik 
1990). High-pressure clinoenstatite was found by in situ 
XRD study at pressures above ~ 7 GPa (Angel et al. 1992; 
Shinmei et al. 1999); however, it cannot be recovered to 
the ambient condition as it inverts to low-temperature 
clinoenstatite during decompression. Recently, evidence 
for high-pressure clinoenstatite was found in the shock-
melt vein of the Grove Mountains 022,115 L6 ordinary 
chondrite by HRTEM (Guo et al. 2020). The occurrence 
of high-pressure clinoenstatite embedded in amorphous 
silicate and associated with majorite and ringwoodite 
suggests that the assemblage was initially crystallized as 
majorite at 20–23 GPa and over 1800 °C and was subse-
quently back-transformed to high-pressure clinoenstatite 
during retrograde shock metamorphism. High-pres-
sure clinoenstatite would have been metastably frozen 
because of extremely rapid cooling (Guo et al. 2020).

A novel Fe, Al-bearing MgSiO3-rich phase was 
reported in the silicate glass matrix of shock-melt veins 
in Tenham L6 ordinary chondrite by TEM (Xie et  al. 
2011). The mineral has an acicular morphology (≤ 0.5 µm 
in length) and its electron diffraction pattern indicates an 
olivine structure. A possible explanation to reconcile the 
discrepancy between the olivine structure and the pyrox-
ene stoichiometry of the phase is the presence of cation 
vacancies at the M site in the olivine structure. The esti-
mated density of 3.32 g/cm3 is slightly larger than those 
of olivine and pyroxenes; therefore, the mineral would 
have metastably crystallized from chondritic melt under 
high pressure during rapid cooling (Xie et al. 2011).

2.3 � High‑pressure polymorphs of feldspar
2.3.1 � Jadeite + silica
Albitic plagioclase is one of the major constituents of 
equilibrated ordinary chondrites. Albite (NaAlSi3O8) 
dissociates into jadeite (NaAlSi2O6) + quartz (SiO2), 
jadeite + coesite (SiO2), and jadeite + stishovite with 
increasing pressure and temperature (Liu 1978). How-
ever, these dissociation products do not occur in the 
shock-melt veins of equilibrated ordinary chondrites. 
In most cases, jadeite solely occurs in originally plagio-
clase grains (e.g., Ohtani et  al. 2004; Ozawa et  al. 2009; 

Fig. 8  BF-TEM image of akimotoite (Aki) in the Tenham L6 
ordinary chondrite. The akimotoite grains formed in a solid-state 
transformation from low-Ca pyroxene (clinoenstatite: Cen) with (100) 
twin lamellae in the host rock entrapped into a shock-melt vein
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Miyahara et  al. 2013b). Jadeite shows several kinds of 
crystal habits, namely, dendritic, granular, stringlike, and 
polycrystalline (Ozawa et al. 2009; Miyahara et al. 2020), 
which depend on the formation processes. Even in the 
large-scale shock metamorphism, pressure duration is 
not long enough (< several seconds) to form coesite or 
stishovite along with jadeite because of its sluggish nucle-
ation (Kubo et  al. 2010). However, the jadeite + coesite 
assemblage has replaced an albitic plagioclase grain in 
some ordinary chondrites (Miyahara et  al. 2017, 2020). 
On the other hand, Ma et al. (2020) propose that highly 
defective jadeite (Na,Ca,v)(Al,Si)Si2O6 (v = vacancy) with 
excess silicon has formed in an albitic plagioclase grain of 
some ordinary chondrites.

2.3.2 � Tissintite
Plagioclase in Martian and lunar meteorites is richer in 
anorthite components compared with equilibrated ordi-
nary chondrites (Papike 2018). Tissintite is clinopyrox-
ene-type (Ca,Na,v)AlSi2O6 and found in an anorthite 
grain in contact with the melt-pocket of the shergottite 
Tissint (Ma et al. 2015). Tissintite was synthesized from 
amorphous plagioclase under 6–8 GPa and 1273–1623 K 
(Rucks et  al. 2018). Most tissintite grains in shocked 
meteorites show a dendritic or spherulitic texture, sug-
gesting rapid crystallization from anorthitic melt (Fig. 9).

2.3.3 � Lingunite–Stöfflerite–Liebermannite
Hollandite-type KAlSi3O8 was synthesized first at 12 GPa 
and 900  °C by Ringwood et  al. (1967). Also, Liu (1978) 
synthesized hollandite-type NaAlSi3O8 above 20 GPa 
at ~ 1000  °C using an LHDAC. In contrast, subsequent 
experimental works in the system NaAlSi3O8-KAlSi3O8 
reported that the hollandite phase is stable only in K-rich 
composition (Na/(Na + K): <  ~ 0.4), while calcium ferrite 
(CaFe2O4)-type NaAlSiO4 + stishovite appears at Na-rich 
composition (Na/(Na + K): >  ~ 0.4) above ~ 20 GPa and 
1000 °C (Yagi et al. 1994; Liu 2006). This discrepancy was 
reconciled by a recent transformation kinetics study that 
clarified that hollandite-type NaAlSi3O8 is a metasta-
ble phase crystallized from amorphous plagioclase glass 
(Kubo et al. 2017).

Hollandite-type NaAlSi3O8 replacing albitic feld-
spar was found in the shock-melt veins of the Sixiang-
kou and Tenham L6 ordinary chondrites (Gillet et  al. 
2000; Tomioka et al. 2000; Xie and Sharp 2004). A small 
amount of K-feldspar has also been found in some Mar-
tian and lunar meteorites. Hollandite-type KAlSi3O8 
was found in the melt-pocket of the basaltic shergottite 
Zagami (Langenhorst and Poirier 2000). Hollandite-type 
NaAlSi3O8 and KAlSi3O8 were named lingunite after L. 

G. Liu (Liu and El Gorsey 2007) and libermannite after 
R. C. Liebermann (Ma et  al. 2018), respectively. Lingu-
nite was also found from the doleritic rocks of Lockne 
impact structure (Agarwal et  al. 2016). Hollandite-type 
CaAl2Si2O8 has yet to be synthesized but was recently 
found in a melt-pocket of the basaltic shergottite NWA 
856 and named stöfflerite after D. Stöffler (Tschauner 
et al. 2021).

2.3.4 � Donwilhelmsite–zagamiite
A calcium aluminum silicate phase (CaAl4Si2O11) was 
synthesized by Irifune et al. (1994) and tentatively named 
the Ca–Al–Si-rich (CAS) phase. Its crystal structure 
with the CaAl4Si2O11 composition was determined to be 
of the hexagonal BaFe2O4-type based on single-crystal 
XRD (Gautron et  al. 1999). A mineral with (Cax,Na1–x)
Al3+xSi3-xO11 composition was discovered in some sher-
gottites such as Zagami and NWA 856 by micro-Raman 
spectroscopy (Beck et  al. 2004; El Goresy et  al. 2013). 
The mineral is intergrown with acicular stishovite grains 
in melt pockets. A natural CAS phase was also found 
from the feldspathic lunar meteorite Oued Awlitis 001 
and was well characterized by three-dimensional elec-
tron diffraction pattern analysis (Fritz et  al. 2020). This 
mineral was named donwilhelmsite after D. E. Wilhelms 
(Fritz et  al. 2020). Ma et  al. (2019a) also found a hex-
agonal BaFe2O4-type CaAl2Si3.5O11 in the melt-pocket 
of Zagami and NWA 856 and named it zagamiite. Zag-
amiite is expected to be a crystallization product from a 
plagioclase-rich melt with some clinopyroxene compo-
nents because it has small amounts of Fe and Mg and a 
substantial deficit of Na (Ma et al. 2019a).

2.3.5 � Dense plagioclase glass
Experimentally shocked plagioclase becomes an amor-
phous phase with a high refractive index without loss 
of short-range ordering in its structure (Milton and de 
Carli 1963; Kitamura et al. 1977). The first identification 
of such a dense plagioclase glass is from the shergottite 
Shergotty and has been called maskelynite after N. S. 
Maskelyne (Tschermak 1872). Similar dense plagioclase 
glass has been then commonly found in strongly shocked 
chondrites and achondrites (e.g., Stöffler et  al. 1986, 
1991). The glass almost retains the morphology of the 
original plagioclase but loses its crystallinity. Therefore, 
it is easy to be identified by its optical isotropy under a 
polarizing microscope.

One of the big debates about maskelynite is its forma-
tion process. Some maskelynite shows a flowing texture 
or mixing texture with other melts (schlieren), suggest-
ing that the maskelynite has formed by the quenching of 
plagioclase shock-induced melt (El Goresy et  al. 2013). 
By contrast, some maskelynite has retained original 
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compositional zoning, suggesting that the maskelynite 
has formed through a solid–solid-state phase transfor-
mation (Jaret et al. 2015).

Tschermak (1883) originally described that maskelynite 
has a non-vesicular flow texture resulting from melting 
and liquid migration followed by solidification. Based on 
the historical background, only material with evidence 
for melting like schlieren should be called maskelynite, 
whereas material without evidence of melting should 
be called diaplectic plagioclase glass. Normal glass is 
quenched from a melt which is still liquid after pressure 
release (Stöffler 1984). In case that the formation pro-
cess (solid-state amorphization or melting) is not clear, 
but its high density can be assumed by its higher refrac-
tive index than normal plagioclase glass under an opti-
cal microscope (Stöffler et al. 1986, 1991), we suggest the 
term “dense plagioclase glass” instead of “maskelynite” 
and “diaplectic plagioclase glass” to avoid confusion.

2.4 � High‑pressure polymorphs of silica
The synthesis and naming histories of high-pressure pol-
ymorphs of silica, except for seifertite, are mentioned in 
a later section because their first discoveries are from a 
terrestrial impact crater. Coesite, stishovite, and seifer-
tite are high-pressure polymorphs of silica. Quartz is rare 
but cristobalite and tridymite are abundant in meteorites 
(Papike 2018). Hence, most high-pressure polymorphs 
of silica have occurred as replacements of cristobalite or 
tridymite.

As a discovery from a meteorite, Weisberg and Kimura 
(2010) found coesite in the Gujba CB carbonaceous 
chondrite for the first time by Raman spectroscopy. 
Coesite is mainly found in basaltic lunar meteorites and 
eucrites (Miyahara et  al. 2014; Tomioka and Miyahara 
2017; Kayama et al. 2018) but very rarely from enstatite 
chondrite and Martian meteorite (Kimura et al. 2017; Hu 
et al. 2020). TEM observations revealed that these coesite 
crystals are granular and always coexist with silica glass 
or quartz (Miyahara et al. 2013a, 2014) (Fig. 10). Coesite 
is also found as one of the decomposition products of 
albitic plagioclase in shocked ordinary chondrites (Miya-
hara et al. 2017, 2020).

As for stishovite replacing silica minerals, it was dis-
covered from the lunar meteorite Asuka-881757 for the 
first time (Ohtani et  al. 2011). Stishovite crystals are 
acicular and always coexist with silica glass, the same as 
coesite (Ohtani et al. 2011; Miyahara et al. 2013a, 2014; 
Kayama et al. 2018). Stishovite is mainly found in basal-
tic lunar meteorites, eucrites, and shergottites (Tomioka 
and Miyahara 2017) and very rarely from carbonaceous 
chondrite (Bindi et  al. 2012) and iron meteorite (Holts-
tam et  al. 2003). Some stishovites have formed through 
the high-pressure decomposition of plagioclase in some 
shocked shergottites (Langenhorst and Poirier 2000; 
Beck et  al. 2004; El Goresy et  al. 2013). Kaneko et  al. 
(2015) discovered stishovite from regolith breccia Apollo 
15,299. This is the first case of a high-pressure min-
eral being discovered in extraterrestrial rocks by sample 
return missions.

Scrutinyite (α-PbO2)-type silica was synthesized in 
shock recovery experiments of quartz up to 90 GPa (Ger-
man et  al. 1973). Its natural analog was found from the 
basaltic shergottite Shergotty (Sharp et  al. 1999; Dera 
et al. 2002) and named seifertite after F. Seifert by El Gor-
esy et al. (2008). Seifertite is also found from other sher-
gottites and basaltic lunar meteorites (El Goresy et  al. 
2013; Miyahara et  al. 2013a). In  situ XRD studies show 
that seifertite is stable in the pressure range of 120–260 
GPa (Murakami et al. 2003; Kuwayama et al. 2005), while 
Kubo et al. (2015) clarified that seifertite has metastably 
formed from cristobalite even above ~ 11  GPa. There-
fore, seifertite is unlikely an indicator of megabar shock 
pressures in shergottites and lunar meteorites. Seifertite 
in backscattered electron images always shows a tweed-
like texture, which is one of the diagnostic features for its 
identification (El Goresy et al. 2008). Like stishovite, seif-
ertite crystals exhibit an acicular morphology and always 
coexist with silica glass (Miyahara et al. 2013a) (Fig. 11). 
El Goresy et al. (2000) also found an unnamed post-sti-
shovite phase with the baddeleyite (ZrO2)-like structure 
from one shergottite.

Fig. 9  BF-TEM image of tissintite in the shergottite Tissint. Spherulitic 
tissintites have occurred in an original plagioclase grain in contact 
with the melt-pocket of Tissint. The interstices are filled with 
amorphized plagioclase (probably because of melting). Tis: Tissintite, 
Mas: maskelynite



Page 13 of 26Miyahara et al. Prog Earth Planet Sci            (2021) 8:59 	

2.5 � Others
2.5.1 � High‑pressure polymorphs of phosphate minerals
A Ca3(PO4)2 mineral with a Ba3(PO4)2-structure 
[γ-Ca3(PO4)2] was synthesized by Murayama et  al. 
(1986). Xie et  al. (2002a) reported that merrillite 
[Ca9NaMg(PO4)7] has transformed into the γ-Ca3(PO4)2 
phase in the shock-melt vein of the Suizhou L6 ordinary 
chondrite. The γ-Ca3(PO4)2 phase was named tuite after 
G. Tu (Xie et al. 2004).

2.5.2 � High‑pressure polymorphs of chromite
CaTi2O4-type FeCr2O4 phase was synthesized by 
Chen et al. (2003a), and a natural one was found in the 
Suizhou L6 ordinary chondrite (Chen et al. 2003b). The 
CaTi2O4-type FeCr2O4 phase was named xieite after 
X. Xie (Chen et  al. 2008). Harmunite (CaFe2O4)-type 
FeCr2O4 phase was synthesized by Chen et  al. (2003a), 
and a natural one was found in the Suizhou L6 ordinary 
chondrite (Chen et  al. 2003b). The mineral was named 
chenmingite after M. Chen (Ma et al. 2019b).

2.5.3 � High‑pressure polymorphs of other oxides
LiNbO3-type FeTiO3 phase was first reported in the Ries 
crater (Dubrovinsky et  al. 2009). The phase was also 
found in the Suizhou L6 ordinary chondrite and named 
wangdaodeite after D. Wang (Xie et al. 2020). Schreyer-
ite-type (Ti4+Fe2+)Ti3

4+O9 phase was found in the melt-
pocket of the eucrite NWA 8003 and named vestaite after 
the name of its parental asteroid Vesta (Pang et al. 2018). 
Sr2Tl2O5-type Fe2+

2(Fe2+Ti4+)O5 phase and GdFeO3-type 
FeTiO3 have been recently reported from the Martian 
meteorite Shergotty and named feiite after Y. Fei and 
liuite after L.-G. Liu, respectively (Ma et al. 2021b). In the 
same meteorite, CaTi2O4-type (Fe2+)(Fe2+Ti4+)O4 (sim-
ply Fe2TiO4) with a post-spinel structure was also discov-
ered (Ma et al. 2021a) and was named tschaunerite after 
O. Tschauner. CaGa2O4-type CaAl2O4 was discovered in 
a Ca–Al-rich inclusion (CAI) of the NWA 470 CH3 car-
bonaceous chondrite and named domitryivanovite after 
D. A. Ivanov (Mikouchi et  al. 2009). The mineral was 
also reported in an unusual Ca–Al–Fe rich inclusion in 
the Vigarano CV3 carbonaceous chondrite (Maruyama 
and Tomioka 2011). Previous high-pressure experiments 
suggest that domitryivanovite is stable above ~ 2 GPa (Ito 
et al. 1980).

2.5.4 � High‑pressure polymorphs of other high‑pressure 
(Mg,Fe)‑silicates

Interestingly, a new phase found as a unique grain in a 
shock-melt vein of the Suizhou L6 ordinary chondrite 
has the composition of (Mg,Fe)5Si2O9 and was named 

elgoresyite after A. El Goresy (Bindi et al. 2021). The crys-
tal structure of this new iron–magnesium silicate, never 
obtained in laboratory experiments so far, is the same as 
the iron oxide Fe7O9, strongly suggesting that silicates 
also form the ((Mg,Fe)O)m+n(SiO2)n series that are iso-
structural to iron oxides via (Mg2+,Fe2+) + Si4+  = 2Fe3+ 
substitution. The newly found iron–magnesium silicate is 
a potential constituent mineral in rocky planets with rela-
tively high MgO + FeO content.

2.5.5 � High‑pressure polymorph of phosphide
Co2Si-type (Fe,Ni)2P was discovered in the Onello iron 
meteorite and named allabogdanite after A. N. Bogda-
nova (Britvin et al. 2002). The mineral was regarded to be 
a high-pressure polymorph of barringerite that is stable 
above 6 GPa and 900 °C based on previous high-pressure 
experiments (Dera et  al. 2008) and natural occurrences 
in several other iron meteorites (Britvin et  al. 2019). 
However, further detailed experimental and theoretical 
studies clarified that the mineral is also stable at ambi-
ent pressure below 500  °C (Litasov et  al. 2020). Hence, 
the results suggest a possibility that the formation of 
allabogranite in iron meteorites does not require shock 
metamorphism.

2.5.6 � High‑pressure polymorphs of carbon
The first natural occurrence of diamond in shocked mate-
rials was reported, as in the Novo-Urei ureilite, in the 
late nineteenth century (Kunz 1888) and have currently 
been found in more than 10 ureilites (e.g., Goodrich et al. 

Fig. 10  BF-TEM image of coesite in the eucrite Béréba. Spherical 
coesite crystals have formed in cristobalite or tridymite grains in 
contact with the shock-melt veins of Béréba. A part of the original 
silica has become amorphous. Coe: coesite, Si-Gla: silica-glass
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2004; Miyahara et  al. 2015; Nestola et  al. 2020; Barbaro 
et al. 2021). Experimental works on the synthesis of dia-
mond for industrial purposes succeeded by static com-
pression of graphite over 3  GPa by Bundy et  al. (1955) 
and shock-synthesized at 30 GPa by DeCarli and Jamie-
son (1961). Diamonds in ureilites are also expected to be 
formed under transient high-pressure condition shock 
metamorphism (e.g., Berkley et  al. 1976; Nakamuta and 
Aoki 2000; Nakamuta and Toh 2013; Nestola et al. 2020). 
On the other hand, some diamonds might form under 
static high-pressure conditions in the deep interior of 
an ureilite parent body (Urey 1956; Miyahara et al. 2015; 
Nabiei et  al. 2018) or at low pressure through chemical 
vapor deposition (Fukunaga et al. 1987).

2.6 � Natural quasicrystals
One of the most remarkable findings of exotic extra-
terrestrial materials has been the discovery of natural 
quasicrystals (QCs) (Bindi et  al. 2009, 2012). They have 
been detected as rare materials in the Khatyrka meteor-
ite, a peculiar CV3 carbonaceous chondrite (MacPher-
son et  al. 2013) containing Cu, Al-metallic compounds. 
QCs, short for quasiperiodic crystals, are solids that are 
able to violate the conventional rules of crystallography 
because their structure is quasiperiodic rather than peri-
odic (Bindi et al. 2020b). The first quasicrystalline phase 
found in nature, icosahedrite Al63Cu24Fe13 (Fig. 12) (Bindi 
et al. 2009, 2011), displayed a five-fold symmetry in two 
dimensions and icosahedral symmetry in three dimen-
sions. Then, a second QC, decagonite Al71Ni24Fe5 (Bindi 

et al. 2015a, 2015b), was found in the same meteorite and 
it was the first mineral to exhibit crystallographically for-
bidden decagonal symmetry. Both icosahedrite and deca-
gonite, however, showed compositions matching those of 
synthetic quasicrystalline phases found earlier (Tsai et al. 
1987, 1989) in the laboratory at standard pressure.

The origin of these unusual metallic alloys is enigmatic 
as they contain metallic aluminum that forms under 
highly reducing conditions not normally found in nature. 
Furthermore, the puzzling combination of metallic alu-
minum, a refractory lithophile element, and copper, a 
moderately volatile siderophile or chalcophile element, 
makes these alloys even more mysterious. When first 
reported, a plausible explanation was that the samples 
were byproducts of some laboratory or industrial pro-
cess. Previous and successive studies, however, provided 
compelling evidence that the quasicrystals are natural 
and from a common meteoritic source: (i) 14C-dating of 
materials from undisturbed clay layers where some of the 
samples were collected yielded 6.7–8.0 ka BP, (ii) the Cu–
Al metallic alloys were found to be intimately intermixed 
with oxides/silicates with nonterrestrial oxygen isotope 
composition (Hollister et  al. 2014; Lin et  al. 2017), (iii) 
clear evidence was found of high-pressure-induced phase 
transitions requiring transient conditions consistent with 
an asteroidal collision event, at least 5 GPa and 1200 °C, 
sufficient to melt and rapidly quench the Al–Cu bearing 
alloys (Asimow et al. 2016), (iv) noble gas measurements 
confirmed that the shock event reached pressure above 
5 GPa and occurred at least hundreds of million years 
ago (Meier et al. 2018), and (v) robust petrographic and 
chemical evidence established that some metallic alloy 
grains (including QCs) found in the samples predated 
the shocks. Moreover, the recent discovery of a CO-
type chondritic spherule from the Nubian desert, Sudan 
(Suttle et  al. 2019), containing the same assemblage of 
aluminum, iron, and copper and with a morphology 
remarkably similar to Khatyrka provided further sup-
port and independent evidence that these samples were 
formed in outer space.

By means of laser ablation inductively coupled 
plasma mass spectrometry measurements of the 
trace element contents of the two naturally occurring 
quasicrystalline minerals, Al63Cu24Fe13 icosahedrite 
and Al71Ni24Fe5 decagonite, Tommasini et  al. (2021) 
hypothesized a three-stage model for the formation 
of the quasicrystals and their inclusions: a high-tem-
perature condensation stage and a low-temperature 
vapor-fractionation stage to make nanoparticles, fol-
lowed by a third stage that leads to the formation of 
quasicrystals incorporating the two different types 
of nanoparticles and their incorporation into the CV 
chondrite parent body of the Khatyrka meteorite.

Fig. 11  BF-TEM image of seifertite in the basaltic lunar meteorite 
Northwest Africa (NWA) 4734. Lath-like seifertite crystals have formed 
in cristobalite grains in contact with the shock-melt veins of NWA 
4734. Most parts of the original cristobalite grains have become 
amorphous. Sei: seifertite, Si-Gla: silica-glass
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In a recent speculative essay, Bindi et  al. (2020a) 
reported that although the only known examples of nat-
ural quasicrystals are from the Khatyrka meteorite, this 
does not necessarily mean that quasicrystals must be 
extremely rare in the universe. The authors present sev-
eral reasons why quasicrystals may prove to be among 
the most ubiquitous minerals found in the universe.

2.7 � Significance of high‑pressure minerals from meteorites
Ringwoodite can be identified easily by an optical micro-
scope because it shows purple/blue color in transmitted 
light. Hence, in the classic shock classification criterion 
(S1–S6), the identification of ringwoodite in ordinary 
chondrites became a criterion for very strongly shocked 
(S6) (Stöffler et  al. 1991). Many kinds of high-pressure 
minerals were found from ordinary chondrites after the 
shock classification criterion was proposed. The criterion 
was revised, Stöffler et  al. (2018) defining that not only 
ringwoodite but also wadsleyite, ahrensite, majorite, aki-
motoite, bridgmanite, and lingunite may be present in 
ordinary chondrite that satisfies shock stages S5–S6.

High-pressure melting experiments of the Allende CV3 
carbonaceous chondrite and peridotite were conducted, 
and their phase equilibrium diagrams were obtained 
using their run products (Zhang and Herzberg 1994; 
Agee et  al. 1995). There are similarities in the species, 
assemblages, chemical compositions, and grain sizes of 
high-pressure minerals between the recovered samples 
and constituents in shock-melt veins. Based on the simi-
larities, Chen et al. (1996) estimated the shock pressure 
and temperature recorded in a shock-melt vein using the 
phase equilibria diagrams. This scheme was applied to 
several ordinary chondrites, eucrites, Martian, and lunar 
meteorites to estimate the shock pressure and tempera-
ture (e.g., Xie et al. 2003, 2006; Ohtani et al. 2004; El Gor-
esy et al. 2013; Pang et al. 2016; Zhang et al. 2021).

The major disruption that occurred on the early par-
ent body of ordinary chondrites was deduced by the 
systematic investigations of high-pressure minerals 
(Miyahara et  al. 2020). Most ordinary chondrites have 
experienced thermal metamorphism after accumula-
tion into the early parent body. Based on the maximum 
metamorphic temperature and cooling rate recorded in 
each ordinary chondrite, the early parent body of ordi-
nary chondrites had an onion shell structure before its 
major disruption (e.g., Trieloff et al. 2003). Assuming the 
onion shell model, shock pressure should be the highest 

at the surface (least thermally metamorphosed one: pet-
rographic type 3) of the parent body. However, unex-
pectedly, the shock pressure estimated by high-pressure 
minerals increases with increasing petrographic type 
from 3 to 6 (petrographic type 6 is the highest ther-
mally metamorphosed one corresponding to the deepest 
interior of the parent body) (Miyahara et  al. 2020). The 
results suggest that the apparent lower shock pressure on 
the surface would be explained by spallation at the oppo-
site side of the parent body to the impact point.

Recent studies point out that shock metamorphism 
recorded in shocked meteorites is not simple. Some ordi-
nary chondrites seem to record a dual impact because (i) 
a shock-melt vein is penetrated by another shock-melt 
vein (Hu and Sharp 2016) and (ii) a high-pressure poly-
morph includes another high-pressure polymorph indi-
cating different shock pressures (Miyahara et al. 2011a). 
The dual impact (or dual heating event) record is also 
deduced from radioisotope ages in some shocked mete-
orites (e.g., Treiman et al. 2007).

The formation of a high-pressure mineral and resetting 
of a radioisotope’s age depend on the thermal history. 
However, the thermal history recorded in a shock-melt 
vein or melt-pocket is also complex. Pressure decreases 
drastically (several microseconds’ order) but temperature 
decreases gradually (several seconds’ order) during an 
adiabatic decompression stage, resulting in low-pressure 
and high-temperature conditions. If the low-pressure 
and high-temperature conditions are prolonged, the back 
transformation of a high-pressure mineral occurs, which 
underestimates the shock pressure (Kimura et  al. 2004; 
Hu and Sharp 2017; Miyahara et  al. 2019). However, 
a back-transformation mechanism of a high-pressure 
mineral and its kinetics have not been deeply investi-
gated except for a few works (Ming et  al. 1991; Fuki-
moto et al. 2020; Miyahara et al. 2021). We must work on 
these issues to trace a pressure–temperature-time path 
recorded in a shock-melt vein or melt-pocket as future 
work.

Phase transformation is kinetically controlled. Ohtani 
et  al. (2004) suggested estimating the magnitude of an 
impact event recorded in an ordinary chondrite using 
the grain-growth kinetics of ringwoodite. The grain sizes 
of ringwoodite crystals in shocked ordinary chondrites 
are similar to each other (across < 1–2 μm) (Ohtani et al. 
2004; Miyahara et al. 2010; Kato et al. 2017). Hence, the 
estimated duration of shock pressure is almost the same 

(See figure on next page.)
Fig. 12  BSE images of icosahedrite in the Khatyrka CV3 carbonaceous chondrite. a Grain 126A of Khatyrka CV3 carbonaceous chondrite. A 
red dashed box indicates the region to be enlarged in b. b The area where there is the metal assemblage containing the icosahedral phase 
(icosahedrite). c The enlarged image of the region indicated by a red dashed box in the panel b. d Electron backscatter diffraction pattern of the 
icosahedral phase obtained from the region marked with a cross in the inset. The pattern matches that predicted for a face-centered icosahedral 
quasicrystal
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Fig. 12  (See legend on previous page.)
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(< several seconds) (Ohtani et  al. 2004; Xie et  al. 2006; 
Sharp et al. 2015). Also, the phase transition rates of pla-
gioclase and silica are applied to estimate the duration of 
shock pressure (< ~ 5 s) in some ordinary chondrites and 
lunar meteorites (Kubo et al. 2010; Miyahara et al. 2013a, 
2017; Ozawa et al. 2014). On the other hand, recent time-
resolved femtosecond diffractometry using an X-ray free-
electron laser revealed that ringwoodite can form from 
laser shock compressed olivine through ultrafast lattice 
shearing in nanoseconds (Okuchi et al. 2021).

3 � High‑pressure minerals in impact craters
3.1 � High‑pressure polymorphs of carbon
In terrestrial impact structures, diamond was found 
in the Barringer (Ksanda and Henderson 1939), Ries 
(Hough et al. 1995), Zapadnaya (Gurov et al. 1995), and 
Popigai (Koeberl et  al. 1997) craters. A previous high-
pressure experiment succeeded in synthesizing nano-
polycrystalline diamond (NPD) with grain sizes less than 
100  nm by direct conversion from pure polycrystalline 
graphite at 12–25  GPa and 2300–2500  °C (Irifune et  al. 
2003). The NPD was brought to material scientists’ atten-
tion because it has a larger stiffness than a single-crystal 
diamond. Its natural analog was also discovered from the 
Popigai impact crater (Ohfuji et al. 2015).

A modified diamond structure with a hexagonal cell 
was synthesized by a high-pressure experiment (Bundy 
and Kasper 1967). The natural hexagonal diamond was 
first found in the Barringer crater and was named lons-
daleite after K. Lonsdale (Frondel and Marvin 1967). It 
is a very enigmatic mineral. It was also discussed that it 
should not exist as a discrete mineral because it could 
correspond to a faulted and twinned cubic diamond 
(Németh et  al. 2014). In the Popigai crater, both dia-
mond and lonsdaleite were found in impact melt rock 
and breccia. These high-pressure phases of carbon have 
been formed from graphite in the target gneissic rocks by 
lattice-shear (martensitic) transformation mechanisms 
of the graphite structure by shock metamorphism (Koe-
berl et al. 1997; Nakamuta and Toh 2013). The formation 
of diamond and lonsdaleite was estimated at 35–60 GPa 
based on shock effects on the host-rock minerals.

A novel carbon crystal was reported in the Ries cra-
ter. The crystal shows a diffraction pattern different 
from those of preexisting crystalline carbon polymorphs 
(graphite, diamond, or lonsdaleite) and named chaoite, 
as mentioned previously (El Goresy and Donnay 1968). 
A similar allotropic form of carbon was synthesized dur-
ing the sublimation of pyrolytic graphite (Whittaker and 
Kintner 1969). The mineral is thought to have a crystal 
structure comprising chains with alternating single and 
triple bonds (–C≡C–), which is called the carbyne struc-
ture. Five variations of carbynes were also found from 

the Allende and Murchison carbonaceous chondrites 
(Whittaker et al. 1980). The finding was once questioned 
and claimed as misidentified phases by powder XRD as 
a mixture of quartz and Fe-smectite (Smith and Buseck 
1982). However, subsequent experimental studies ensure 
the existence of carbynes (e.g., Chalifoux and Tykwin-
ski 2010; Pan et  al. 2015). First-principles’ calculations 
clarified that carbyne is about twice as stiff as the stiffest 
known materials under tension (Liu et  al. 2013); there-
fore, chaoite is also a potentially important mineral for 
material science.

Another novel allotropic carbon was discovered in a 
shocked gneiss from the Popigai impact crater (El Gor-
esy et  al. 2003). Carbon platelets, embedded in quartz 
and cristobalite, consist of graphite and lonsdaleite 
and an unknown carbon phase. The unknown phase 
has considerably high polishing hardness overcoming 
diamond powder. Synchrotron XRD clarified that the 
phase has a cubic cell with the space group Pm-3m, 
although its density and the detailed crystal structure 
have not yet been obtained. Its origin and formation 
conditions are also unknown because of a lack of exper-
imental and theoretical studies.

Finally, Németh and Garvie (2020) have recently 
reported the discovery of cage-like nanostructured car-
bonaceous materials, including carbon nano-onions 
and bucky-diamonds, formed through extraterrestrial 
impacts in the Gujba CBa carbonaceous chondrite.

3.2 � High‑pressure polymorphs of silica
Dense SiO2 crystals are the first synthesized miner-
als among silicates and oxides related to the Earth and 
planetary materials. Coesite and stishovite were first 
synthesized by static compression by Coes (1953) and 
Stishov and Popova (1961), respectively, and stisho-
vite was also shock-synthesized by DeCarli and Milton 
(1965). Phase equilibria studies based on static high-
pressure experiments clarified that coesite and stisho-
vite are stable above ~ 2 GPa and ~ 8 GPa, respectively. 
Stishovite was shock-synthesized at pressure over 12 
GPa, while there is no convincing report that coesite 
can be formed by shock recovery experiments. Smaller 
shock pressure duration (10–6  s) in laboratory shock 
experiments than that in terrestrial impact cratering 
(> 10–3  s) (Kieffer 1971) and sluggish kinetics in the 
quartz to coesite transformation would cause difficulty 
in the artificial production of the mineral (e.g., Nagai 
et al. 1997; Perrillat et al. 2003).

The first finding of natural dense silica was performed 
in the early 1960s. E. C. T. Chao and his colleagues 
applied hydrofluoric acid leaching to a large amount of 
the Coconino sandstone of the Barringer crater, which 



Page 18 of 26Miyahara et al. Prog Earth Planet Sci            (2021) 8:59 

was produced by the impact of the Canyon Diablo iron 
meteorite ~ 49,000  years ago. Coesite and stishovite, 
the high-pressure polymorphs of SiO2, were identi-
fied in the residues by powder XRD (Chao et al. 1960, 
1962). In particular, coesite is one of robust evidence 
for impact origin and found in over 20 impact craters. 
Stishovite has been found in three more impact craters, 
namely Popigai (Vishnevsky et  al. 1975), Ries (Stöffler 
1971; Stähle et al. 2007), and Vredefort (Martini 1978, 
1991; Spray and Boonsue 2018), in addition to the Bar-
ringer crater.

3.3 � High‑pressure polymorphs of TiO2
Rutile transforms into scrutinyite (α-PbO2, TiO2-II), bad-
deleyite (ZrO2), orthorhombic-I, and cotunnite struc-
tures with increasing pressure (Nishio-Hamane et  al. 
2010). Scrutinyite-type TiO2 with an orthorhombic cell 
was first synthesized by a static compression experi-
ment (Bendeliany et  al. 1966). In nature, almost pure 
scrutinyite-type TiO2 was first discovered in shocked 
garnet gneisses from the Ries crater (El Goresy et  al. 
2001). The phase was also found from suevite in a drill-
ing core of granitic basement rock from the Chicxulub 
crater (Kring et  al. 2020), which was estimated to have 
been shocked at ~ 20 GPa in the Cretaceous–Paleogene 
boundary (Timms et al. 2019). The TiO2-rich scrutinyite-
phase had been known as mineral srilankite [(Ti,Zr)O2], 
where Ti and Zr ions are disordered at the cation sites. 
The Ries crater also yielded almost pure TiO2 with the 
scrutinyite-like structure that was named riesite after 
the name of the location (Tschauner et al. 2020b). Riesite 
occurs in shock-melt veins within xenoliths of bedrock in 
suevite. Srilankite has one cation site for Ti and Zr ions 
and one oxygen site, while there are two cation and oxy-
gen sites each in the riesite structure, causing the mono-
clinic distortion. Riesite has not been synthesized, but its 
higher density (4.37 g/cm3) than rutile (4.25 g/cm3) sug-
gests riesite is a high-pressure mineral. Thus, riesite has 
formed through the back transformation from the bad-
deleyite phase upon pressure release.

Baddeleyite-type TiO2, which has 7-coordinated Ti ions, 
was first observed at 20 GPa, 770 °C by in situ XRD using 
a Kawai-type high-pressure apparatus (Sato et  al. 1991) 
but could not be recovered at ambient condition. In con-
trast, in nature, baddeleyite-type TiO2 was first found in 
the suevite breccia from the Ries crater and named aka-
ogiite after M. Akaogi (El Goresy et al. 2001, 2010).

3.4 � High‑pressure polymorphs of MgFe2O4
A high-pressure phase of magnesioferrite (MgFe2O4) was 
discovered in a drill core of shocked diamond-bearing 
gneiss from the Xiuyan crater (Chen et al. 2019). Powder 

XRD and TEM clarified that the mineral has the har-
munite (CaFe2O4) structure as same as chenmingite 
(FeCr2O4) discovered in the Suizhou L6 ordinary chon-
drite (Chen et al. 2003b) and the shergottite Tissint (Chen 
et  al. 2019). The mineral was named maohokite after 
H.-K. Mao (Chen et  al. 2019). Maohokite coexists with 
magnesioferrite embedded in calcite and is thought to 
be a decomposed product of ankerite. The high-pressure 
phase equilibria of MgFe2O4 have not been established 
by experimental studies. However, based on pressure and 
temperature conditions for the post-spinel transforma-
tion (e.g., Andrault et al. 2001), maohokite is thought to 
have formed at 25–45 GPa and 800–900 °C (Chen et al. 
2019).

3.5 � High‑pressure polymorphs of ZrSiO4
The high-pressure phase of zircon is an important key 
mineral to understanding the shock metamorphism in 
impact craters because of its robustness against weath-
ering. The scheelite (CaWO4)–type ZrSiO4 was discov-
ered in the upper Eocene impact ejecta layer in marine 
sediments by powder XRD and named reidite after A. 
F. Reid who first synthesized this phase (Glass and Liu 
2001; Glass et al. 2002). Subsequently, reidite was found 
in five impact craters: Chesapeake Bay (Malone et  al. 
2010), Xiuyan (Chen et al. 2013), Rock Elm (Cavosie et al. 
2015), Ries (Erickson et  al. 2017), and Woodleigh (Cox 
et al. 2018) craters. Shock recovery experiments of zircon 
indicate that the transition to reidite is above ~ 30  GPa 
(Kusaba et  al. 1985), while static high-pressure experi-
ments demonstrated that the stability field of the phase 
is in the pressure range of ~ 8–25 GPa (Ono et al. 2004; 
Tange and Takahashi 2004). The discrepancy between 
two shock pressure estimations would be caused by 
different high-pressure timescale and/or differential 
stress between the static and dynamic high-pressure 
experiments.

3.6 � Significance of high‑pressure minerals from impact 
crater rocks

High-pressure minerals do not occur as commonly in 
terrestrial impact craters when compared with those 
in shocked meteorites. One of the possible reasons 
is the different cooling histories after shock pressure 
release between the surface materials of asteroids and 
the Earth’s crust. Shocked surface rocks in the par-
ent bodies of meteorites are excavated and released to 
space, resulting in rapid cooling. In terrestrial impact 
craters, part of the surface and near-surface materials 
are ejected and also rapidly cooled to preserve high-
pressure minerals, which are mostly inclusions in lithic 
impact breccia (suevite). Nevertheless, the materials 
in larger burial depths of the craters such as those in 



Page 19 of 26Miyahara et al. Prog Earth Planet Sci            (2021) 8:59 	

thick sediments and basement rocks should experience 
longer residual shock heating because the temperature 
decreased mainly by thermal conduction within the 
rocks. In such a case, high-pressure minerals would 
have been back-transformed to low-pressure minerals 
even if they were once formed during shock metamor-
phism. Another reason for the weak preservation of 
high-pressure minerals is aqueous alterations after the 
crater formation. Abundant shock-induced fractures 
play a role in fluid pathways, and fine-grain size and 
glassy materials containing high-pressure minerals are 
susceptible to alterations by weathering and impact-
induced hydrothermal activities (Grieve et  al. 1996; 
Kring et al. 2020).

Nevertheless, technical developments on microanaly-
ses and constant efforts by impact petrologists ena-
bled the findings of many high-pressure minerals from 
impact craters. Since the discovery of coesite in the Bar-
ringer crater, over 10 new high-pressure minerals have 
been found from terrestrial impact craters (Table  1). 
These dense minerals are direct and robust evidence 
for the impact origin (but not a volcanic origin) of the 
craters. Thus far, shock microstructures of quartz and, 
in particular, crystallographic orientations of planar 
deformation features are commonly used to evaluate 
shock pressures in the pressure range of ~ 10–35 GPa of 
sedimentary and granitic rocks in impact craters (Lan-
genhorst 2002; Stöffler et  al. 2018). Also, phase trans-
formations of quartz such as formations of diaplectic 
(dense) glass, lechatelierite (normal glass), coesite, and 
stishovite further provide pressure constraints in a 
wider pressure range. A recently found superstructure 
of quartz from the basement rock of the Chicxulub cra-
ter (Tani et al. 2018) is another possible shock pressure 
indicator. The previously described high-pressure phases 
of carbon, oxides, and silicates would also contribute to 
elucidate spatial shock pressure distribution in impact 
structures considering the results of static and dynamic 
high-pressure experiments.

The attenuation of shock pressure in impact crater-
ing is expressed by the following equation, P = P0(R/
Lp)–b, where pressure P at the distance R from the iso-
baric core is a function of initial peak pressure P0, R, 
the radius of impactor Lp, and attenuation coefficient 
of shock wave b (Mizutani et  al. 1990). When we can 
obtain a shock pressure gradient based on pressures of 
different locations within an impact crater, the size of 
the impactor can be constrained. For this purpose, the 
occurrences of high-pressure minerals can be useful 
anchor points of shock pressures.

Shock pressure distribution during impact crater-
ing is one of the most fundamental parameters to 

understand shock temperature distribution, rock defor-
mation, and impactor’s size and velocities. The infor-
mation is closely related to impact-induced phenomena 
such as the size and morphologies of the impact cra-
ters (Morgan et al. 2016; Riller et al. 2018), post-impact 
hydrothermal activities (Kring et al. 2020), atmospheric 
conditional changes (Artemieva et  al. 2017), and bio-
logical mass extinctions (Lowery et  al. 2018). There-
fore, future research of high-pressure minerals will play 
important roles to elucidate how the impacts of extra-
terrestrial materials affect Earth’s environments.

4 � Summary
Pioneer works in the 1960s by R. A. Binns, E. C. T. Chao, 
A. El Goresy, and their colleagues clarified the presence 
of high-pressure minerals in shocked meteorites and 
rocks around terrestrial craters. After their discoveries, 
mineralogists and planetary scientists have continued to 
find high-pressure minerals from natural shocked mate-
rials. The identification of new high-pressure miner-
als has increased drastically in the twenty-first century 
because of the introduction of nanoanalysis technolo-
gies. The search for high-pressure minerals in shocked 
materials was initiated by finding the analog materials of 
the deep Earth’s interior. This initial purpose is almost 
achieved at present. However, the crystal structures and 
formation mechanisms of high-pressure minerals in 
naturally shocked materials are more complicated than 
those expected based on experiments and theoretical 
simulations. As the next step, we aim for better quanti-
fication of P–T histories of the shocked metamorphism 
based on the high-pressure and high-temperature trans-
formation kinetics and of impact histories in the solar 
system by combining shock petrography and radioiso-
tope ages.
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