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Abstract

The heavy rain event of July 2018 and Typhoon Hagibis in October 2019 caused severe flash flood disasters in
numerous parts of western and eastern Japan. Flash floods need to be predicted over a wide range with long
forecasting lead time for effective evacuation. The predictability of flash floods caused by the two extreme events is
investigated by using a high-resolution (~ 150 m) nationwide distributed rainfall-runoff model forced by ensemble
precipitation forecasts with 39 h lead time. Results of the deterministic simulation at nowcasting mode with radar
and gauge composite rainfall could reasonably simulate the storm runoff hydrographs at many dam reservoirs over
western Japan for the case of heavy rainfall in 2018 (F18) with the default parameter setting. For the case of
Typhoon Hagibis in 2019 (T19), a similar performance was obtained by incorporating unsaturated flow effect in the
model applied to Kanto Region. The performance of the ensemble forecast was evaluated based on the bias ratios
and the relative operating characteristic curves, which suggested the higher predictability in peak runoff for T19.
For the F18, the uncertainty arises due to the difficulty in accurately forecasting the storm positions by the frontal
zone; as a result, the actual distribution of the peak runoff could not be well forecasted. Overall, this study showed
that the predictability of flash floods was different between the two extreme events. The ensemble spreads contain
quantitative information of predictive uncertainty, which can be utilized for the decision making of emergency
responses against flash floods.
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1 Introduction

In the current decade (2006-2016), worldwide occur-
rences of floods and extreme rainfall become four times
that in the 1980s (EASAC 2018; UNESCO, UN-Water
2020). In Japan, flood disasters occur every year, causing
devastating damages (Udmale et al. 2019). In the last 2
years in particular, the Heavy Rain Event of July 2018
(hereafter F18) caused by an intensified Baiu frontal
zone killed or missed 245 people in the western part of
Japan (Cabinet Office 2018), and Typhoon Hagibis in
October 2019 (hereafter T19) killed or missed 114
people in the eastern part of Japan (Cabinet Office
2019). The two extreme events caused flood damages in
315 rivers including 37 levee breaching sections by F18
(MLIT 2018) and 325 rivers including 142 levee breach-
ing sections by T19 (MLIT 2019), mostly along small-to-
medium sized rivers. In countries like Japan, which have
a steep topography and upland catchments receiving
heavy torrential rain, flash floods occur frequently. Flash
floods are characterized by a rapid increase in flood
peaks after rainfall onset (Collier 2007; Georgakakos
1986), whose intervals are shorter than 12 to 24 hours
(Georgakakos 1986; Raynaud et al. 2015). During such
flash floods, safe evacuation is difficult to be performed
because floods occur rapidly and roads are submerged
(Terti et al. 2019; Vincendon et al. 2016). Thus, site-
specific flash flood mapping and forecasting are required
for safe evacuations (Collier 2007; Gourley et al. 2017;
Hapuarachchi et al. 2011).

Early warnings for flash flood cannot focus only on
well gauged main rivers. Many small-to-medium sized
rivers are typically poorly gauged and get damaged more
frequently. Therefore, selecting a single river basin for
flash flood prediction is not very useful, and instead a
large-scale distributed approach forecasting all river sec-
tions including ungauged rivers is required (Grimaldi
et al. 2013; Javelle et al. 2014; Reed et al. 2007). With the
recent advancements in quantitative precipitation esti-
mate (QPE) and quantitative precipitation forecast
(QPF) models, large-scale flood forecasting systems have
been developed (Emerton et al. 2016). Such systems have
been operated at the continental to nationwide scales;
for example, the European Flood Awareness System
(EFAS) (Bartholmes et al. 2009; Thielen et al. 2009) in
Europe, the Community Hydrologic Prediction System
(CHPS) in USA (Demargne et al. 2014), the Hydrological
Forecasting System (HyFS) in Australia (Hapuarachchi
et al. 2017), the Grid-to-grid Model (G2G) in England
and Wales (Anderson et al. 2019; Price et al. 2012) and
Scotland (Cranston et al. 2012), and AIGA (Adaptation
d’Information Géographique pour I'Alerte en Crue) in
France (Javelle et al. 2016). For site-specific flood predic-
tions at a fine scale, for example, EC-JRC (European
Commission — Joint Research Centre) provides a
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rainfall-driven flash flood indicator within the EFAS
framework called the European Precipitation Index
based on Climatology (EPIC) (Alfieri and Thielen 2015)
and a runoff-driven indicator called the European Runoff
Index based on Climatology (ERID) (Raynaud et al.
2015). The National Weather Service (NWS) has
adopted the Flash Flood Guidance (FFG), which is based
on the estimated amount of rainfall causing floods at a
specific site by running a hydrologic model in the back-
ward mode (Clark et al. 2014; Georgakakos 2006).

Recent advances in high-performance computing and
geographic information systems have motivated the ap-
plication of large-scale distributed hydrologic models to
predict flash floods at any river sections including
ungauged sites. Gourley et al. (2017) reported the latest
research project called the Flooded Locations and Simu-
lated Hydrographs (FLASH) across the Conterminous
United States. One of their targets was to apply a distrib-
uted hydrologic model with 1 km resolution to estimate
flood peak discharge forced by the latest QPE. Such
model applications are important from the viewpoint of
hydrological science because physically sound parsimo-
nious distributed modes are necessary for the purpose as
well as finding the dominant runoff processes (Antonetti
et al. 2019), regionalizing parameters (Vergara et al.
2016) and assessing the impact of dataset resolution
(Lovat et al. 2019).

As noted by many previous studies, the largest uncer-
tainty is associated with the precipitation forecast
(Hapuarachchi et al. 2011). In particular, even with the
state-of-art NWPs, accurately predicting severe storms
with sufficient prediction lead time is challenging. In-
stead of deterministic forecasting, probabilistic forecast-
ing with Ensemble Prediction System (EPS) has
advanced in the last decade (Cloke and Pappenberger
2009; Wu et al. 2020). When the possibility of a severe
storm becomes high because a typhoon is approaching
or because a frontal line is stagnant, if we can predict
the occurrence probability of flash floods leading to local
damage, we could prepare for the extreme weather as a
society (Terti et al. 2019). For ensemble flood predic-
tions, global scale EPSs such as European Centre for
Medium-Range Weather Forecasts—Ensemble of forecast
(ECMWE-ENS) have been widely used (Alfieri et al
2014). Meanwhile, for ensemble flash flood predictions,
some case studies have demonstrate the importance of
meso-scale ensemble forecasting (Alfieri et al. 2012;
Hsiao et al. 2013; Roux et al. 2020; Ushiyama et al. 2014)
and their combinations by the Meteorological Ensemble
Forecast Processor (MEFP) approach adopted by Hydro-
logic Ensemble Forecast Service (HEFS) (Brown et al.
2014a; Brown et al. 2014b).

In Japan, the Japan Meteorological Agency (JMA) re-
cently started operation of the Meso-scale Ensemble
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Prediction System (MEPS) with a 39 h lead time with 21
ensemble members based on a meso-scale numerical
weather prediction model with a 5 km resolution. The
test operation began just before July 2018, and official
operation started since June 2019. Since heavy storm is
spatiotemporally concentrated in mountainous areas and
the flood concentration time is much shorter in Japan,
we believe it is important to use fine spatial resolution
forecasting. For hydrological modeling, we used the
Rainfall-Runoff-Inundation (RRI) model (Sayama et al.
2012; Sayama et al. 2015a; Sayama et al. 2015b) applied
recently to all over Japan by dividing the whole of Japan
into 14 regions with a 5 s (about 150 m) spatial reso-
lution. We suppose that the impact of complex rainfall-
runoff phenomena become comparatively less important
during such extreme flood events; then the simple model
structure and the default RRI model parameter setting,
which considers only saturated subsurface flow and
overland flow, may be able to reproduce the flash floods
over a wide range. Because the two extreme flood events
described above affected large areas over Japan, and be-
cause the latest ensemble forecasting product is now
available, it is important to investigate the performance
of the newly developed flash flood forecasting model by
taking the two extreme events as a case study.

The objective of this study is to evaluate the predict-
ability of flash floods caused by the two extreme events.
In particular, the specific questions addressed in this
study are described below.

1 Can the RRI model, representing lateral saturated
subsurface flow and surface flow, forced by radar
and gauge composite rainfall product reproduce the
observed storm runoff hydrographs at many
upstream dam reservoirs over wide ranges?

2 Do the spatial distributions of peak runoff (i.e., peak
discharge normalized by the upstream contributing
area) correspond to the actual damage by the flash
floods?

3 How well can we forecast the spatial distributions
of peak runoff with a 39 h lead time based on
ensemble precipitation forecasting?

2 Methods

2.1 Nationwide application of the RRI model over Japan
In this study, the RRI model was applied to the whole of
Japan with a spatial resolution of approximately 150 m
(5 s). The RRI model is a two-dimensional model, which
can simulate both rainfall-runoff and flood inundation
simultaneously (see the details in the supplement). For
model application, we used the Japan Flow Direction
Map (J-FlwDir) developed by Yamazaki et al. (2018).
The dataset is based on a digital elevation model and
water map including water surface and stream lines
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provided by the Geospatial Information Authority of
Japan and prepared with a 30 m (1 s) spatial resolution.
The dataset contains elevation, flow direction and up-
stream contributing area, similar to HydroSHEDs
(Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales) available worldwide based
on satellite-based topographic data. To upscale the flow
direction of J-FlwDir, we used an upscaling algorithm
developed by Masutani et al. (2006), which maintains
the location of the main stream regardless of the upscal-
ing. The RRI regards grid-cells with the upstream con-
tributing area greater than 1.1 km? (ie., more than 50
grid-cells) as a river grid cell. Hence, all river channels
including small tributaries are explicitly modelled by the
RRI. The cross sections of the rivers are assumed to be
rectangular, whose widths (W) and depths (D) were esti-
mated using the following formulae.

W = CyASY (1)
D = CpA® (2)

where A is the upstream contributing area [km?] and
the values of Cy; Sw, Cp, and Sp were estimated from
our previous model application in Japan: Cy = 4.73, Sy
= 0.4, Cp = 1.57, and Sp = 0.3 (Sayama et al. 2017). The
depth parameters (Cp and Sp) were intentionally set to
be larger than many actual cases, so that the model had
enough river cross section capacity. With this setting,
the RRI model does not calculate the overtopping inun-
dation effect and focuses primarily on the rainfall-runoff
processes (i.e., river discharge). In terms of the model
parameter settings, we attempted to prepare a parsimo-
nious model to simulate extreme events. As described in
the supplement, by taking d,,, = 0 in Eq. (S1), the num-
ber of parameters becomes only four. The default pa-
rameters are shown in Table 1. The model parameters
were set to avoid strong non-linearity between storage
and discharge relationship to ensure the model repre-
sented quick runoff responses to storm events. With the
settings (i.e., d,, = 0), the model may overestimate the

Table 1 The default model parameters (Def) and the calibrated
ones (Cal). The default model parameters represent only
saturated subsurface and surface runoff, while the calibrated
ones used only in the Kanto Region for T19 represent also the
effect of unsaturated subsurface flow

Parameters Def Cal
n [m™"3s] 04 04
d, [m] 0471 0471
drp [m] - 0.05
k, [m/s] 0.1 0.03
B[ - 7.0
Miver [M™'7%s] 003
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discharge if catchments store large amount of rainfall in
soil layers.

2.2 Flood events in July 2018 and October 2019

This study focuses on two extreme flood events that oc-
curred in July 2018 (F18) and October 2019 (T19). F18
was caused by long-lasting Baiu frontal rain covering
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most of the western part of Japan. T19 was due to the
Typhoon Hagibis which mostly damaged the eastern
part of Japan. Detailed information regarding the me-
teorological conditions and analysis can be obtained
from recent studies (Enomoto 2019; Kotsuki et al. 2019;
Takemi and Unuma 2020; Tsuguti et al. 2018). The pe-
riods of the two simulations were 0:00 5 July 2018 to 0:
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Fig. 2 The box plot of verification metrics of simulated hydrographs evaluated at dam reservoirs. The verification metrics include the correlation
coefficient (1), the measure of the variability error (a) and bias (B), the Kling-Gupta efficiency (KGE), the Nash-Sutcliffe efficiency (NSE), and the

relative peak error (PE). “Def” denotes the default setting of the parameters for F18 and T19, and “Cal” stands for the calibrated case considering
unsaturated flow component only in the Kanto Region for T19

Table 2 Values of the verification metrics for the F18 simulation at each dam reservoir.

Dam name Region Peak runoff [mm/h] r a B KGE NSE PE

Kuzuryu Kinki 14.0 0.93 1.14 0.90 0.81 0.68 0.81
Hiyoshi Kinki 153 097 1.14 1.14 0.80 0.90 1.08
Hitokura Kinki 188 0.94 1.02 1.15 0.84 0.75 1.01
Tomata Chugoku 10.8 0.95 1.15 1.26 0.70 0.74 1.01
Hattabara Chugoku 124 0.96 1.06 1.30 0.69 0.74 091
Haizuka Chugoku 16.7 0.94 0.83 1.10 0.79 0.80 071
Nagayasuguchi Shikoku 209 0.98 1.02 0.74 0.74 0.79 0.89
Nomura Shikoku 344 0.90 0.70 0381 063 061 058
Shingu Shikoku 14.5 0.81 0.79 0.94 0.72 0.53 0.80
Tomisato Shikoku 19.5 0.95 1.01 0.84 0.83 0.76 0.68
Nakasujigawa Shikoku 222 0.95 145 1.26 048 0.56 113
Odo Shikoku 10.8 0.97 1.10 092 087 0.88 1.02
Samerura Shikoku 223 0.93 0.94 0.82 0.80 0.69 0.75
Terauchi Kyushu 243 097 1.08 099 091 084 0.95
Egawa Kyushu 25.2 0.97 0.95 0.84 0.83 0.84 0.79
Ryumon Kyushu 246 0.98 1.12 1.05 0.87 0.85 0.94
Shimouke Kyushu 235 0.98 1.00 0.99 0.97 0.87 0.86
Yabakei Kyushu 21.7 0.92 0.84 1.03 0.81 0.72 0.69
Mean 19.5 0.94 1.02 1.00 0.78 0.75 0.87
Median 20.2 0.95 1.02 0.99 081 0.75 0.87
Standard deviation 59 0.04 0.17 0.16 0.11 0.10 0.15
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00 9 July 2018 (JST) for F18 and 9:00 11 October 2019
to 9:00 14 October 2019 (JST) for T19. The input rain-
fall data are JMA’s radar and gauged composite prod-
ucts, whose spatial and temporal resolutions are 1 km
and 30 min, respectively.

In the ensemble flood forecasting experiments, we
used the MEPS dataset provided by JMA. The forecast-
ing lead time of this product was 39 h with a spatial
resolution of approximately 5 km. The JMA non-
hydrostatic model (NHM) was used for forecasting with
21 members by perturbating initial conditions. Although
the forecasting is updated every 6 h, we decided to focus
only on a single initial time for each event to cover the
whole event except for an additional analysis with differ-
ent initial conditions demonstrated in the discussion.
The period of the MEPS forecasting rainfall is 21:00 5
July 2018 to 12:00 7 July 2018 (JST) for F18, and 9:00 12
October 2019 to 0:00 13 October 2019 (JST) for T19.
Prior to the period of the MEPS forecasting rainfall, this
study uses the JMA’s radar and gauged composite prod-
ucts supposing the data is available to set the initial con-
ditions of the RRI, while for posterior to the MEPS
forecasting period, it assumes no rainfall up to the end
of the simulation periods.

After the model was run with the nowcasting and fore-
casting modes, model performance was evaluated by
comparing the observed and simulated discharge at dam
reservoirs. The reasons for evaluating the model per-
formance at dam reservoirs are threefold: (1) the quality
of discharge data, especially in terms of total volume, is
better than water level gauging stations, which require
additional stage-discharge relationship curve, (2) the dis-
charges at the downstream of the reservoirs are affected
by upstream dam operations, (3) the official records of
the dam inflow and outflow are available online, while
those at water level gauging stations for T19 have not
been released as of June 2020. Note that in this
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nationwide RRI model application, so far any dam reser-
voir operation model has not been incorporated. Fur-
thermore, to visualize the spatial distribution of flood
discharge, we compute peak discharge at all river grid-
cells and normalized it by the upstream contributing
area (peak runoff). The evaluations were conducted fo-
cusing on all the river grid-cells over the target areas.
The simulation of F18 was conducted in Kansai, Chu-
goku, Shikoku, and Kyushu regions. The total area of
these regions is 125,864 km? which is composed of 6,
364,492 grid-cells including 674,291 river grid-cells. The
simulation of T19 was conducted in Kanto, Tohoku, and
part of Hokuriku Regions. The total area of these regions
is 121,129 km? which is composed of 6,435,707 grid-
cells including 751,102 river grid-cells. For the computa-
tion, we used a workstation (Intel Xeon Gold 6134 CPU,
3.20 GHz, 192 GB Memory), which required maximum
around 15 h for a single region for the whole simulation
period. Multiple ensembles at multiple regions can be
computed parallelly.

2.3 Verification metrics of simulated hydrographs

The performance of the hydrologic model was evaluated
by the following three measures: the Kling-Gupta effi-
ciency (KGE) (Gupta et al. 2009), the Nash-Sutcliffe effi-
ciency (NSE), and the relative peak error (PE) defined as
(3), (7), and (8).

KGE:I—\/(r—1)2+([)’—1)2+(a—1)2 (3)

;= ZtT:I (Qé - 60) (Q§ B as) (4)

\/ (Ch(@-2)) (2hi(@-Q))

Table 3 Values of the verification metrics for the T19 simulation at each dam reservoir

Dam name Region Peak runoff [mm/h] r a B KGE NSE PE

Aimata Kanto 114 091 113 1.28 0.68 073 0.82
Kusaki Kanto 230 0.95 1.07 1.21 0.77 0.86 1.09
Shimokubo Kanto 20.5 0.99 1.09 1.09 087 0.97 1.09
Kawamata Kanto 219 091 0.90 1.07 0.85 0.82 0.85
Urayama Kanto 293 0.98 1.25 1.14 0.71 0.88 1.21
Takizawa Kanto 23.1 0.99 0.99 1.03 097 0.98 0.99
Ninose Kanto 19.8 0.97 0.89 0.93 0.86 0.93 071
Yunishikawa Kanto 16.1 097 1.38 147 040 0.67 1.26
Kawafusa Tohoku 183 0.98 1.20 1.22 0.70 0.88 1.1
Mean 203 0.96 1.10 1.16 0.76 0.86 1.01
Median 205 097 1.09 1.14 0.77 0.88 1.09
Standard deviation 4.7 0.03 0.15 0.15 0.16 0.10 0.17
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Fig. 3 Observed and simulated hydrographs at dam reservoirs for T19 (calibrated case). The “radar” shows the simulated hydrographs, and “MEPS"
shows the forecasted results initialized at 9:00 on 11 October 2019 by 21 ensemble members. These dams are positioned in the Kanto Region

(5)

_ Qs
Qo

PE (8)

where Q’ is the observed discharge at time # Q' is
the simulated discharge at time ¢ 60 is the mean ob-
served discharge in an event; 65 is the mean simu-
lated discharge in an event; S is a measure of bias; a
is a measure of the variability error; r is the correl-
ation coefficient between Q) and Q% Q,, s is the sim-
ulated peak discharge; and Q,, , is the observed peak
discharge. NSE has been widely used for hydrologic
modeling, while KGE is being increasingly used as an
alternative. KGE was developed to decompose the
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members in descending order of forecasted peak runoff shown on the y-axis. Note that the flood peaks were evaluated after 16:00 6 July 2018 to
exclude the effects of first flood peaks, which occurred at some dam reservoirs nearly at the same time as the MEPS initial time for F18

normalized mean squared error represented by the
NSE and addressed a shortcoming of the NSE, which
is maximized when o =r (Gupta et al. 2009).

2.4 Verification metrics of ensemble forecasting

To evaluate ensemble forecasting, this study uses the fol-
lowing the bias ratios (BI) defined as (9) and the relative
operating characteristic (ROC) curve.

Q)
Z;(\[:l Qp,s (k)

where Q,, (k) is the ensemble mean of the forecasted
peak discharge at each river grid cell k; and N is the
number of river grid cells. The BI is evaluated depending

BI 9)

on the ranges of Q,,  (k), which is the simulated peak
discharge by the nowcasting mode used as a reference.
The ROC curve is obtained by plotting the false alarm
rate F(p,) on the x-axis and the hit rate H(p;) on the y-
axis. Here, we plot the ROC curves based on the simu-
lated peak runoff at all river grid-cells. We first convert
the continuous peak runoff variables into the binary data
using a threshold. In this case study, we adopted 20
mm/h as the threshold. If the peak runoff exceeds 20
mm/h, it becomes 1 otherwise 0 for both nowcasting
and forecasting modes (Toth et al. 2003). After reorgan-
izing the forecasted peak runoff based on the descending
order at each grid cells, we can prepare 21 maps of the
binary data from the 21 ensemble forecasting. By com-
paring them with the simulated peak runoff at the
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Fig. 5 The same plot as shown in Fig. 4 but for T19
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nowcasting mode, we can evaluate 21 different combina-
tions of F(p,) and H(p,). By plotting the 21 combinations,
we show the ROC curves. Note that both F(p;) and H(p,)
depend on the decision probability p, within the range
of ensemble members. F(p;) and H(p,) decrease from 1
to 0 as the decision probability p, increases from 0 to 1.
The ROC curve is close to the perfect forecast H(p,) = 1
and F(p,) = 0 for better performance.

3 Results

3.1 Simulation results with radar rainfall

We run the RRI model using the observed radar rainfall
data during the F18 event with the default parameter
setting (hereafter F18-Def). Figure 1 compares the ob-
served and simulated hydrographs at 10 dam reservoirs.
The results suggest that the default RRI model simulates
the flood inflows generally well for the F18 event regard-
less of the geographic locations. Fig. 2, Table 2, and
Table 3 summarize the quantitative evaluations of the
simulations. The average and standard deviations of
KGE and NSE for F18-Def are 0.78 + 0.11 and 0.75 +
0.10, respectively. The boxplot of Fig. 2 further suggests
that among the three components of KGE, the correl-
ation coefficients are approximately one (r = 0.94 +
0.04), suggesting that the shapes of the hydrographs are
well represented. In contrast, the standard deviations of
a and S are relatively high (¢ = 1.02 + 0.17, f = 1.00 *
0.16). Since the averages of a and f are close to one,
there is no consistent overestimation or underestima-
tion. In terms of simulated peak discharge, the result of
PE = 0.87 + 0.15 indicates 87% of underestimations of
the peak discharge by the simulation.
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The same experiment was conducted for T19 in
Kanto, Tohoku, and Hokuriku regions. The default par-
ameter setting (T19-Def) could not represent the ob-
served hydrographs in this case. Figure S1 shows that at
the eight catchments, the simulation generally overesti-
mated the observed hydrographs. The values of «, 5, and
PE were higher than 1 (@ = 1.45 + 0.29, § = 1.36 + 0.22,
PE = 1.31 £ 0.29) indicating hydrograph variance, total
volumes, and peak discharges were all overestimated by
30 to 40%. The shapes of the hydrographs represent the
observed patterns, which are quantified as » = 0.96 +
0.02. As a result, both KGE and NSE are much lower
(0.42 + 0.36 and 0.50 + 0.46) for T19-Def compared with
those for F18-Def even for the same model settings. For
the case of T19 in the Kanto Region, we changed the
model parameter setting by introducing unsaturated
flow component (see Table 1). By introducing the unsat-
urated flow component, the model performance im-
proved (Fig. 3) with KGE = 0.76 + 0.16 and NSE = 0.86
+ 0.10, and the performance was almost equivalent to
that for the F18-Def case, as shown in Fig. 2.

3.2 Ensemble forecasting results at dam reservoirs
Hydrographs in Figs. 1 and 3 show forecasted dam in-
flows by the RRI model with MEPS rainfall. The two sets
of graphs indicate higher convergence among the 21 en-
semble members for T19 compared to F18. For the F18
case, different members showed different hydrograph
patterns with larger spreads in the forecasted peak run-
off. On the other hand, for the T19 case, the flood peaks
were well estimated about half day before the peak
arrivals.
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To analyze the characteristics of the forecasted peak
runoff, Figs. 4 and 5 show plots of the descending orders
of the forecasted peak runoff by 21 ensemble members
and the simulated peak runoff estimated with the ob-
served radar rainfall. The figures can show how the peak
runoff is spread (a steeper line shows higher variation
compared to a flatter line which represents a smaller
variation among the members). Furthermore, if the
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simulated peak runoff points are within the range and
are positioned close to the center, the median of ensem-
ble forecast is suggested to cover what actually hap-
pened. The results support the above described point
between F18 and T19; the former case has higher en-
semble variations than the latter case. The implications
of the difference between the events are discussed in the
next section.
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3.3 Evaluations over the regions including tributaries
Figures 6 and 7 compare the forecasted and simulated
peak runoff over the entire simulation domains. Figure 7

Page 12 of 18

shows that the simulated peak runoff for T19 shows the
areas of flash flood tributaries such as the tributaries in
Tochigi Prefecture with white cross marks representing
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region), whose bank-full discharges are typically smaller
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Fig. 10 Simulated peak runoff at levee breaching points in small to medium sized rivers in Tochigi Prefecture (and Saitama Prefecture for the
Oppe River). The red points are rivers that originated from mountains, while the blue points are rivers that originated from plains (< 400 m in this

levee breaching points along the tributaries. Further-
more, it shows the higher peak runoff in west Kanto in-
cluding the upstream of the Arakawa River. Figure 7
shows the forecasted result based on MEPS rainfall at 9:
00 on 12 October. The spatial variability such as high
peak runoff in Tochigi Prefecture and the upstream of
the Arakawa River is well represented.

The performance of the F18 shown in Fig. 6 is not as
clear as that of T19. First, the simulated peak runoff and
actual flood damages did not agree very well. According
to our simulation, the rivers in eastern Kochi and north-
ern Kyushu islands show comparatively higher peak run-
off. However, flash flood damages were concentrated
mostly in the Chugoku Region and western Shikoku Is-
land during F18.

To quantify the patterns, we used the Bl and the ROC
curve. The evaluations were conducted focusing on all
river grid-cells over the target areas. Note that due to
the non-availability of the observation data at all the
river grid-cells including tributaries, these evaluations
were conducted based on the model results by nowcast-
ing and forecasting modes. In case of the BI shown in
Fig. 8, the x-axis shows the peak runoff based on the
simulation mode and the y-axis depicts the mean and
the standard deviations of BI corresponding to the peak
runoff for each region. For F18, the computed biases
were 0.5—0.7 at the high peak runoff ranges (10-25 mm/
h), suggesting underestimation by the ensemble forecast-
ing. Smaller biases (i.e., BI closer to 1.0) were confirmed
for T19. Especially for the case of Kanto, for example,
the biases were nearly one for almost the entire range,

which indicates the high predictability of peak runoff.
The ROC curves in Fig. 9 show also higher accuracy in
T19. Moreover, the ROC curves from the three regions
for T19 almost overlap each other. All the above evalua-
tions are normally performed not for a single event but
should be performed with many flood events or for
long-terms. The present evaluation does not indicate the
overall model performance, but the figures are used to
quantify the results of the ensemble forecasting of the
case studies.

4 Discussions
4.1 Can the default RRI model reproduce the observed
storm events?
For a regional flash flood prediction system, since it is
impossible to calibrate hydrologic model parameters at
individual river basins, limited sets of parameters should
be applied over a wide range and to produce reliable re-
sults (Collier 2007). The simulation results for F18
showed that the default parameter representing lateral
subsurface flow and surface flow perform fairly well to
reproduce the observed hydrographs in many dam reser-
voirs. In case of T19, the same model with the same de-
fault parameter overestimated the flood peaks and the
performance of T19-Def was unacceptable. Introducing
the unsaturated soil layer into the model was necessary
to reproduce the patterns observed hydrographs of the
Kanto Region.

Here, we discuss the possible reason of the differ-
ence is related to the geologic settings in different re-
gions. Large parts of the Chugoku and Shikoku
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regions affected by F18 belong to Granite rocks,
Mesozoic or Paleozoic formations. The volcanic land-
scapes formed in Paleogene and Cretaceous are
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mostly distributed in central and western Japan. In
contrast, mountainous area in northeastern Japan, in-
cluding Kanto and Tohoku regions affected by T19, is
dominated mostly by the volcanic rocks formed in
the Quaternary and Neogene. The geologically youn-
ger catchments typically exhibit stable groundwater
while the geologically older catchments show more
flashy runoff patterns (Yoshida and Troch 2016; Shi-
mizu 1980; Mushiake et al. 1981). These previous
studies follow data driven approach focusing more on
flow duration curves and baseflow. This study indi-
cated the effect of geology on storm runoff, previously
evaluated at small catchments in comparative studies
(e.g., Onda et al. 2001; Onda et al. 2006) or modeling
studies focusing on a selected river basin (Sayama
et al. 2017).

4.2 Do the spatial distributions of peak runoff correspond
to flash flood damages?
The simulated peak runoff distribution in Fig. 7 can help
to visualize severely flood areas. The results of T19
showed that Tochigi Prefecture and the upper Arakawa
River basin reached about 30 mm/h in the peak runoff.
Furthermore, it shows that the peak runoff exceeded 40
mm/h in Marumori Township in Miyagi Prefecture in
Tohoku Region, where severe damage was reported due
to flash floods with many slope failures and debris flow.
To quantify the peak runoff where actual flood dam-
ages occurred, we collected location information of levee
breaching points in Tochigi Prefecture by T19. Figure 10
plots the relationship between upstream contributing
areas and the corresponding peak runoff simulated by
the nowcasting mode at the levee breaching points. Al-
though the plot does not indicate the levee breaches
occur when the peak runoff exceeds the regression
line, we can roughly understand that the estimated
peak runoff exceeded approximately 30 mm/h along
the tributaries where the levee breaches occurred with
the upstream contributing areas less than 300 km?
The figure also indicates that the peak runoff becomes
smaller for larger catchments at these points. This pat-
tern is common; the peak runoff tends to be smaller
due to the normalization by the upstream contributing
area (Amponsah et al. 2018). Meanwhile, the bank-full
discharge (i.e., the threshold) also varies depending on
climatic and other geographic conditions as well as the
status of river management works such as construc-
tions of flood defiance structures. In fact, for the case
of T18, the spatial pattern of high peak runoff did not
represent the actual distribution of the flash flood
damage over western Japan (Fig. 6). To advance the
system, evaluating the peak runoff relative to the actual
local bank-full capacity or converting the peak runoff
to stream water levels are necessary. The other
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approach is to evaluate the frequency of the peak run-
off at each location compared with the climatology as
presented by previous studies (Alfieri et al. 2012;
Yoshimura et al. 2008).

4.3 How well can we forecast the peak runoff
distributions?

Operational flood forecasting in Japan typically fo-
cuses on stream water levels at important cross sec-
tions, where the water levels are monitored. The lead
time of flood forecasting is normally 3 to 6 h. Re-
cently, the JMA released a new type of flood forecast-
ing information based on hydrologic simulation with
a spatial resolution of 1 km covering all over Japan.
The predicted streamflow is converted to a flood risk
index and its lead time is set to be 6 h. Although our
approach is similar to the JMA’s new product, the
demonstrated flash flood predictions for the two ex-
treme cases with total of 21 ensemble members with
39 h lead time could provide different type of infor-
mation that could be useful for the better prepared-
ness, especially having more direct physical outputs
including water levels and discharges. The estimated
uncertainty bands by the two events were contrasting:
smaller spreads for T19 and larger spreads for F18.
The high predictability of the T19 event in particular
is discussed from meteorological viewpoint. Takemi
and Unuma (2020) reported that the moist absolutely
unstable status under very humid conditions and a
sufficient precipitable water were responsible for the
heavy rainfall. For the F18 case, Kotsuki et al. (2019)
indicated high predictability of intense rainfall at the
synoptic-scale with long lead time (3 days) using their
data assimilation system. However, forecasting accur-
ate locations of the rain band causing heavy rainfall
still has a high uncertainty (Matsunobu and Matsueda
2019). For this particular case, in addition to focus on
the ensemble mean, we should pay attention to the
worse cases (e.g., the runoff map of the fifth order).

4.4 What are the effects of different initial times of the
forecasting?

Unlike many previous flood forecasting studies with
shorter forecasting lead time such as three to 6 h, the
demonstrated approach tries to cover the entire flood
events prior to the beginning of the flood events. Due to
the long-lasting characteristics of F18 event by the stag-
nant frontal line, it was not possible to select different
initial times of MEPS for the evaluation of F18. For the
case of T19, we selected the initial time of forecasting as
9:00 12 October 2019. Supposing that the forecasting
can be updated every six hours with 39 h lead time, it is
still possible to select earlier initial times. To understand
the characteristics of the flood forecasting with the
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different initial times, we performed the same experi-
ment with initial forecasting times including 15:00, 21:00
11 October 2019 and 3:00 12 October 2019 for T19 over
the Kanto Region. Figure 11 show the results forecasted
at different initial times, suggesting the larger spread of
forecasted peak discharges. As the initial time becomes
later, the ensemble spread becomes smaller with more
distinct overestimation pattern for Ninose dam case.
The improvement of the performance with later initial
times can be confirmed also by the BI and ROC curve
shown in Figs. 12 and 13. Among the investigated four
initial times, the larger error is clearer for the earliest
initial time (15:00 11 October) while the other three
cases show fairly similar model performance, especially
when they are evaluated by the ROC curve.

5 Conclusions

This study examined the predictability of flash floods on
a nationwide scale in Japan using the new operational
meso scale ensemble precipitation forecast and a high-
resolution distributed rainfall-runoff model. Two ex-
treme events were selected as a case study, since both of
them caused levee breaching and overtopping in various
regions with different rainfall mechanisms; i.e., frontal
rain in 2018 and the typhoon in 2019. Based on the nu-
merical experiment at the nowcasting and forecasting
modes, we addressed three research questions raised in
the introduction.

For the first question, the nationwide RRI model could
reasonably reproduce extreme floods at many dam reser-
voirs over the wide range in the nowcasting mode with-
out individual parameter tuning. However, in certain
areas, such as the Kanto Region, remarkable basin stor-
age effects were observed even under extreme events.
The model parameters had to be tuned to reflect these
effects in these areas. For the second question, the
spatial distributions of peak runoff corresponded gener-
ally well the areas of flash flood tributaries especially for
T19, while the performance of F18 covering western part
of Japan was not as clear as that of T19. In case of F18,
our target area contains wider ranges of climatic and
geographic conditions in western part of Japan. It is
likely the bank-full discharge (i.e., the threshold causing
flooding) may vary more significantly within the region.
To advance the system, evaluating the actual local bank-
full capacity or converting the peak runoff into appropri-
ate index representing the occurrence frequencies is re-
quired. For the third question, in terms of the
forecasting with lead time, the predictability was differ-
ent between the two event cases. In case of the T19, the
prediction accuracy was high, and the spatial distribution
of peak runoff estimated by the ensemble mean corre-
sponded well with the results of the nowcasting mode.
For the frontal heavy rain in July 2018, the detailed
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locations of high peak runoff could not be forecasted by
the ensemble mean. Instead, the spread of 21 ensemble
members showed the flash flood potential areas and
their possible magnitudes. The large spread quantifies
the higher uncertainty in the predictions.

The model presented in this study has not been oper-
ated on a real-time basis. The real-time system and its
continuous verification should be performed in future
studies. If such a system can be developed, stochastic,
high-resolution, and long lead time flash flood predic-
tions can be realized. Such a system can be useful for
pre-imaging the situations of flash flood disasters, espe-
cially before a typhoon strikes or when a frontal rain
stagnates, to realize early and safe evacuation and other
preparations.

6 Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/540645-020-00391-7.

Additional file 1: Figure S1. Observed and simulated/hindcasted
hydrographs at dam reservoirs for T19 (uncalibrated case). The “Radar”
shows the simulated hydrographs, and "“MEPS” denotes the hindcasted
results at 9:00 on October 11, 2019.

Additional file 2. Supplement.
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