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Abstract

Climate change will have a significant impact on the water cycle and will lead to severe environmental problems
and disasters in humid tropical river basins. Examples include river basins in Sumatra Island, Indonesia, where the
coastal lowland areas are mostly composed of peatland that is a wetland environment initially sustained by
flooding from rivers. Climate change may alter the frequency and magnitude of flood inundation in these lowland
areas, disturbing the peatland environment and its carbon dynamics and damaging agricultural plantations.
Consequently, projecting the extent of inundation due to future flooding events is considered important for river
basin management. Using dynamically downscaled climate data obtained by the Non-Hydrostatic Regional Climate
Model (NHRCM), the Rainfall-Runoff-Inundation (RRI) model was applied to the Batanghari River Basin (42,960 km?)
in Sumatra Island, Indonesia, to project the extent of flood inundation in the latter part of the twenty-first century.
In order to obtain reasonable estimates of the extent of future flood inundation, this study compared two bias
correction methods: a Quantile Mapping (QM) method and a combination of QM and Variance Scaling (VS)
methods. The results showed that the bias correction obtained by the QM method improved the simulated flow
duration curve (FDC) obtained from the RRI model, which facilitated comparison with the simulated FDC using
reference rainfall data. However, the high spatial variability observed in daily and 15-day rainfall data remained as
the spatial variation bias, and this could not be resolved by simple QM bias correction alone. Consequently, the
simulated extreme variables, such as annual maximum flood inundation volume, were overestimated compared to
the reference data. By introducing QM-VS bias correction, the cumulative density functions of annual maximum
discharge and inundation volumes were improved. The findings also showed that flooding will increase in this
region; for example, the flood inundation volume corresponding to a 20-year return period will increase by 3.3
times. River basin management measures, such as land use regulations for plantations and wetland conservation,
should therefore consider increases in flood depth and area, the extents of which under a future climate scenario
are presented in this study.
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1 Introduction

Climate change will have a significant impact on water-
related disasters and environmental problems in
Indonesia. The country is one of the regions in which
extreme monsoon-related rainfall is projected to increase
(Hijioka et al. 2014), and such increases are expected to
expose a larger proportion of the population to floods
(Hirabayashi et al. 2013). In Sumatra and the Kalimantan
Islands of Indonesia, coastal lowland areas are mostly
comprised of peatland. Peatland is a wetland environ-
ment that is initially maintained by flooding from rivers
and which has, in recent years, been extensively devel-
oped for oil palm and other plantations. Changes in the
frequency and magnitude of flood inundation due to cli-
mate change may disturb the peatland environment and
its carbon stores (Hirano et al. 2012), as well as cause
damage to the agricultural plantations in the region.

The use of General Circulation Models (GCMs) is in-
dispensable for projecting future climate change. How-
ever, GCMs have limitations in reproducing reasonable
rainfall patterns in humid tropics, especially in areas
with many islands such as those in the so-called Indo-
nesian Maritime Continent (MC) (Ramage et al. 1968),
which is surrounded by the Indian and Pacific oceans
(Neale and Slingo 2003). These limitations can be attrib-
uted to the imperfect parameterization of physical pro-
cesses (e.g., convection, cloud generation, local land sea
breeze circulation, and regional variations in the diurnal
cycle) (Gianotti et al. 2012; Ulate et al. 2014), as well as
the coarse resolution of topography (Neale and Slingo
2003; Schiemann et al. 2014; Hertwig et al. 2015). Given
the high levels of uncertainty associated with GCMs,
they are considered to be poorly suited for projecting fu-
ture climate signals in and around the MC (Hijioka et al.
2014). On the other hand, Regional Climate Models
(RCMs) are capable of representing local climate systems
and therefore have potential for realistically reproducing
rainfall events. Several studies have shown that RCMs
can successfully reproduce local rainfall patterns in
space and time in the MC (Juneng et al. 2016; Cruz and
Sasaki 2017; Rashid and Hirst 2017; Ratna et al. 2017;
Kang et al. 2018).

Despite an abundance of studies on rainfall projec-
tions, studies on the impact of rainfall projections on
river discharge are still limited in Indonesia (Emam et al.
2016; Marhaento et al. 2018). Moreover, very few studies
have focused on flood inundation due to climate change
at a river-basin scale, which is important for assessing
the impacts on flood damage (Iwami et al. 2017) and
wetland environmental conditions.

Even though RCMs are potentially better for hydro-
logic impact assessment in the MC, there is still a need
to correct the bias associated with RCMs (Christensen
et al. 2008). Among the various bias correction methods
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(Teutschbein and Seibert 2012), the Quantile Mapping
(QM) method has been widely applied to correct rainfall
inputs for hydrologic models (Huang et al. 2014;
Marhaento et al. 2018; Lee et al. 2019). However, the ap-
plicability of the QM method to correct for bias in the
MC region, particularly to assess flood inundation at the
river-basin scale, has not been thoroughly investigated.
Our previous study showed that inundation is more sen-
sitive to rainfall than it is to runoff (Sayama et al. 2015).
Therefore, it is important to investigate appropriate bias
correction methods to assess the impact of flood inunda-
tion in a humid tropical river basin. Specifically, this
study focuses on the effects of spatial variations of rain-
fall on flood inundation. The Variance Scaling (VS)
method (Teutschbein and Seibert 2012) applied in this
study is one of the potential approaches that can be used
to match both the mean and the spatial variance of a
data series with observed data.

The objective of this study was to assess the impact of
climate change on flood inundation in a river basin on
Sumatra Island. This study applied dynamically down-
scaled RCM rainfall data as the input for the RRI model
and identified appropriate bias correction methods for
flood simulations. The specific objectives are:

— What is the impact of non-/bias-corrected rainfall
output of the RCM on river discharge and flood
inundation?

— What is the most suitable method to correct rainfall
bias when using the RCM to perform river discharge
and inundation simulations?

— What are the projected future changes in rainfall,
streamflow, and flood inundation in the studied
region on Sumatra Island?

2 Methods

2.1 Dataset

This study uses climate data produced by the Non-
Hydrostatic Regional Climate Model (NHRCM) that was
developed by the Japan Meteorological Research Insti-
tute (MRI). The NHRCM is based on the Non-
Hydrostatic Model (Saito et al. 2006), and the Kain and
Fritsch scheme is used to parameterize cumulus convec-
tion (Kain and Fritsch 1993). The MRI-JMA Simple Bio-
sphere Model is used to describe land surface processes
(Hirai et al. 2007). The NHRCM uses a boundary condi-
tion of the Atmospheric General Circulation Model
developed in ver. 3.2S (AGCM) at a 20km reso-
lution (Mizuta et al. 2012) for downscaling to a 5km
resolution (Sasaki et al. 2008; Cruz and Sasaki 2017).
The future boundary condition is based on changes of
the CMIP3 ensemble mean sea surface temperature
(SST) under the Representative Concentration Pathways
8.5 scenario (RCP8.5) (Endo et al. 2012). Downscaling
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was performed for our study area in Sumatra Island (-
3.32° S-0.41° S; 99.65° E-105.25° E). The model is run
for 21 years of present climate (1980-2000) and for 20
years of future climate (2079-2098) under the RCP8.5
scenario.

As reference rainfall data, this study uses Global Satel-
lite Mapping of Precipitation (GSMaP) Reanalysis ver. 6
(Shimada and Kazumasa 2017) from 2001 to 2013 (13
years) with a resolution of 0.1°. The GSMaP Reanalysis
product is satellite rainfall data that were calibrated
using Japanese 55-year Reanalysis (JRA-55) data. In
data-scarce regions such as the river basins of Sumatra
Island, rain gauge data are typically too limited to accur-
ately represent spatial patterns in rainfall data. Conse-
quently, the availability of GSMaP data with a temporal
resolution of 1 h on any grid is well suited for hydrologic
modeling. However, it should be noted that the refer-
ence data also contain uncertainty. For example, com-
pared with other reanalysis datasets, some issues have
been identified in JRA-55 data over tropical regions,
such as weaker equatorial waves and Madden-Julian os-
cillation due to the characteristics of the forecasting
model used for JRA-55 with a resolution of 60km
(Harada et al. 2016). In this study, the quality of the
GSMaP rainfall data is assessed based on gauged rainfall
at 23 locations in the Batanghari River Basin.

The climatic data used for estimating evapotranspir-
ation, such as wind speed, temperature, surface pressure,
specific humidity, and downward long- and shortwave
radiation fluxes, were obtained from WATCH Forcing
Data based on ERA-Interim (Weedon et al. 2014) with a
0.5-degree resolution. Land surface variables, such as the
Leaf Area Index, surface roughness, and albedo, were
obtained from ECOCLIMAP (Champeaux et al. 2005).
Based on the data, potential evapotranspiration was esti-
mated by using the Penman-Monteith equation to refer-
ence present climate conditions. The actual
evapotranspiration is estimated by the RRI model, and
the details are described in the “Rainfall-Runoff-Inunda-
tion Model” section.

2.2 Bias correction and validation

This study compares two methods to correct for bias in
NHRCM rainfall data, i.e., the QM method and a com-
bination of QM and VS methods (hereafter, the QM-VS
method). The QM method used in this study employs
equiratio cumulative distribution function (CDF) match-
ing developed by Wang and Chen (2014). The method
assumes that a ratio between the observed and modeled
values at the same percentile is preserved in the projec-
tion period. Specifically, the bias between modeled and
observed values in the reference period is quantified by
the ratio of the observed quantile value (F, ',) to the

(2021) 8:5

Page 3 of 15

modeled quantile value (F,, 1 .) at the same percentile in
a future projection period (F,, - ,(X, - ,)). The statistical
transformation of bias correction is shown in Eq. (1),

xi :xi Foi—lc(Fm_p(xm_p))
m - p.QM. m-p Fy;l}c(Fm_p(xm—p))

(1)

where F,,_, is a CDF of RCM outputs in a future pro-
jection, F 0‘716 is an inverse CDF corresponding to the
observations, F_! is an inverse CDF of RCM variables

m-c
in the reference period, and «' is a quantile of a vari-

m-p
able in a future projection at a grid i. X,,_, represents
the spatial average over the basin of x/ _ - In this study,
a CDF is constructed based on basin-averaged daily rain-
fall of observations and NHRCM data. The quantiles of
the observation or model during the reference period at
a given percentile of future rainfall are estimated by lin-
ear interpolation to compensate for differences in the
size of the model and observation datasets.

The second method is a combination of the QM
method and the VS method, which was described by
Teutschbein and Seibert (2012). After calculating the dif-
ferences in x', p.om. from the spatial mean %, ~, qu. as
shown in Eq. (2) on a daily basis, the VS method calcu-
lates the standard deviations of the spatial pattern o, _ .
ou. | j depending on the average rainfall categories repre-
sented as j (j = 1, ..., 21). Specifically, the categories in-

clude basin-averaged rainfall at a percentile ()" , 5y )
in an interval of five percentiles between 2.3 and 99.
Note that when j equals 21, the category includes rainfall
exceeding x;, , o, - The spatial standard deviation is
then adjusted according to Eq. (3), based on the spatial
standard deviation of the observed rainfall (o,_. ;) for
each category. Finally, the corrected quantiles x;, _, 513
are shifted back to estimate the bias-corrected results

X pour - vs. using Eq. (4).

X, —pQM2 = X, — p.QM. ~¥m - p.QM. (2)
i i 0, -clj .

Xon—poM3 = Xm-pom2——— —(=1,..,21) (3)
m — p.QM. m - p.QM. O QM) [Raas}

X, —p.QM - VS. = Xy —p.om3 T Xm - p.QM. (4)

2.3 Rainfall-runoff-inundation model

The RRI model is a two-dimensional, distributed hydraulic
and hydrological model that is capable of simulating
rainfall-runoff and flood inundation simultaneously. The
river channel is expressed as a single vector on a single grid
cell, which also has a slope. Interaction between a river and
the slope is calculated based on different overflowing
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formulae that vary according to levee height, river, and
slope water depth. On a slope grid cell, the model can deal
flexibly with rainfall-runoff processes and runoff-generation
mechanisms, subsurface flow and saturated excess overland
flow, vertical infiltration and excess overland flow, and
complete surface flow. In addition, groundwater flow can
be combined with subsurface flow and vertical infiltration
processes (Sayama et al. 2012). In the RRI model, actual
evapotranspiration is calculated by first subtracting surface
water, before subtracting additional water from a cumula-
tive infiltration amount estimated by the Green-Ampt
model until it meets the potential evapotranspiration.
When the value approaches 0, there is no water to evapor-
ate and actual evapotranspiration at that time is less than
the potential evapotranspiration.
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2.4 Study area and application of the RRI model

The Batanghari River Basin is the second largest river
basin in Indonesia (42,960 km?) (Fig. 1a). The river origi-
nates in the Barisan Mountains before merging with the
Tembesi River as it runs eastward towards the coast.
Downstream, the river is diverted into the Kumpeh River
and merged again. At Simpang, the river is diverged into
the Berbak River (Fig. 1b).

The climate is classified as humid tropical, and
monthly rainfall typically exceeds 100 mm (Chang and
Lau 1993). The average air temperature is within the
range of 222 + 0.2°C (upstream) and 26.8 + 0.2°C
(downstream) based on climate stations maintained by
the Indonesian Agency for Meteorological, Climato-
logical and Geophysics (BMKG) from 2001 to 2013
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(Yamamoto et al. 2020). Despite high monthly rainfall,
there is a distinct wet season and dry season that is
strongly influenced by two monsoons. The wet monsoon
originates in the northern hemisphere and causes rainfall
to increase from November to March, and the dry mon-
soon originates in the southern hemisphere and causes a
decrease in rainfall from May to September. The wet
monsoon has two clear peaks: one in December and an-
other in April (bimodal rainfall). In the wet season, flu-
vial flooding can occur in the Batanghari River Basin. In
some extreme cases, these floods can affect Jambi city
located in the downstream river reaches.

The topography of the area is comprised of mountains
that range in height from 1000 to 3700 m in the up-
stream river reaches, and wetlands in the low-lying flat
areas. Forest soils are thick, typically deeper than 1.5m
on mountainous slopes, and have high infiltration rates.
Tropical peatlands occur along the eastern coast of Su-
matra Island.

For the application of the RRI model, Manning’s
roughness for river and land were set to 0.03 m™*s and
0.3m™ '3, respectively, based on a previous study
(Sayama et al. 2012). The soil depth and parameters of
the groundwater model, which affect discharge, were ad-
justed for the calibration period (2001-2006) and used
for the validation period (2007-2013). The details of the
model parameters and model set up were the same as
those of Yamamoto et al. (2019). The performance of
the RRI model with GSMaP Reanalysis rainfall input was
evaluated based on observed river discharge for the cali-
bration period and the validation period. In addition, the
maximum inundation distribution was estimated for 4
months (December 2016 to March 2017) using the RRI
model. The estimates were compared with sentinel satel-
lite images from four flood events (December 6, 2016,
and January 23, February 27, and March 24, 2017). The
sentinel images were developed using the radar reflec-
tion intensity before and after flooding, and the max-
imum extent of flood inundation during these periods
was estimated for comparison with our simulations.
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3 Results

3.1 Comparison of annual and 15-day rainfall patterns
and basin-averaged values estimated using the NHRCM
with GSMaP data and gauged data

We compared the spatial distribution patterns of annual
rainfall (Fig. 2) and annual maximum 15-day rainfall
(Fig. 3) estimated using the NHRCM with reference
rainfall data (i.e., GSMaP and gauged data). Figure 2a
shows that the GSMaP data indicate high annual rainfall
in the northern mountainous ranges of the basin, which
corresponds with the gauged rainfall data. The detailed
values for the gauged rainfall data and the gridded GSMaP
rainfall data are shown in Figure S1 and Table S1. Figure
2a also shows that the rainfall patterns in the basin have a
diagonal pattern that is parallel with the mountain ranges
in the western part of the basin. We can visually distin-
guish that the rainfall in the basin is divided into several
parts, i.e., the mountainous region, the central region, the
area next to Jambi city (the narrowest part of the basin),
and the coastal region. The NHRCM data shown in Fig.
2b, in general, also show a similar division of rainfall pat-
terns. Based on the reference rainfall data, rainfall was
high in the northern part of the mountain ranges and low
in the central part of the mountain ranges. The NHRCM
data show consistently lower rainfall in the mountainous
areas. The rainfall of the reference data is relatively high in
the center of the basin, decreasing towards the west. The
rainfall decreases near Jambi city before increasing to-
wards the coastal region. These rainfall patterns can also
be observed in the NHRCM data, although the rainfall is
higher in the central and eastern parts of the basin (ap-
proximately 3500 to 7500 mm) compared to the reference
data, as shown by the dark gray areas in Fig. 2b. Moreover,
the NHRCM data show higher spatial variability in annual
rainfall compared to the reference data. Figure 3a
shows a comparison of the annual maximum 15-day
rainfall GSMaP data with gauged data. On the one
hand, the GSMaP data have a similar 15-day rainfall
pattern as the gauged data in the mountainous re-
gions, the southwestern part of the basin, and
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Fig. 2 Comparison of average annual rainfall maps. a GSMaP with gauged rainfall (2001-2013) and b NHRCM (1980-2000)
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downstream areas, such as the area around Jambi city
and the coastal area. On the other hand, the GSMaP
data tend to show higher rainfall in some parts of
mountainous regions in the western part of the basin.
The detailed values of gauged rainfall and the gridded
rainfall of the GSMaP are shown in Figure S2 and
Table S2. Figure 3b shows that NHRCM data also
have higher spatial variability in terms of annual max-
imum 15-day rainfall compared to reference data (Fig. 3a),
and it also has higher rainfall amounts (about 350 to 552
mm) in areas such as the lowland areas.

We also compared basin-averaged values of the
NHRCM and the reference rainfall data with the
gauged data. The average annual rainfall over the
basin was estimated to be 2321 mm by GSMaP and
2021 mm by the rain gauges (Yamamoto et al. 2019).
The basin-averaged annual rainfall values of the
NHRCM are higher than those of the reference rain-
fall data, which was 2913 mm. Figure 4 shows a com-
parison of the CDFs of annual maximum daily and
15-day rainfall of raw and QM bias-corrected NHRC
M and GSMaP data. The annual maximum basin-
averaged daily rainfall of NHRCM data (average 29
mm) is lower than that of GSMaP data (average 51
mm) (Fig. 4a). Figure 4b also compares the annual
maximum 15-day rainfall (basin average)—cumulative
rainfall which is strongly correlated with peak dis-
charge. NHRCM data generally have a lower annual
maximum 15-day rainfall (average 206 mm) compared
to GSMaP data (average 242 mm).

3.2 Effects of bias corrections (QM and QM-VS) on rainfall
In this study, we compared two bias correction methods,
i.e., the QM method and the QM-VS method. The an-
nual basin average rainfall was improved from 2913 to
2316 mm by using the QM method and to 2328 mm by
using the QM-VS method, which is closer to the GSMaP
value (2321 mm). The findings of this study also show
that both methods result in similar CDFs for the annual
maximum daily and 15-day rainfall, as shown in Fig. 4.
Despite the similar results in the corrected basin aver-
age values, the application of both methods gives differ-
ent results in the spatial variability of annual rainfall and
annual maximum 15-day rainfall. The application of the
QM method lowers the spatial variability of annual rain-
fall, but does not improve the variability for the annual
maximum 15-day rainfall. Figure 3c shows the results of
the QM method after it was applied to the spatial vari-
ability observed in the annual maximum 15-day rainfall
data. Some areas, including the central parts of the basin
and the mountainous areas, showed that rainfall is cor-
rected within the range of 250 to 400 mm, which more
closely reflects the reference data (about 150 to 333
mm). However, the rainfall values obtained in the low-
land areas showed much higher values, ranging from
350 to 600 mm compared with the reference data (about
140 to 250 mm). On the other hand, the application of
the QM-VS method results in a lower spatial variability
for both annual rainfall and annual maximum 15-day
rainfall. Figure 3d shows the bias correction results ob-
tained using the QM-VS method, which typically has
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lower spatial variability than the corrections obtained
using the QM method. Unlike the results obtained using
the QM method, the rainfall values observed in the low-
land areas are closer to those of GSMaP. The improve-
ment in spatial variability due to bias correction is
confirmed by Fig. 5, which shows the relationship be-
tween spatially averaged daily rainfall and the corre-
sponding spatial standard deviations over the basin. The
original NHRCM data have higher spatial standard devi-
ations compared with the GSMaP data (Fig. 5al). The
application of the QM method results in higher standard
deviations, particularly at high rainfall rates (Fig. 5a2);
conversely, the application of the QM-VS method suc-
cessfully improved the standard deviations, making them
comparable with the standard deviations obtained using
GSMaP (Fig. 5a3).

3.3 Effects of bias corrections on the RRI simulation
The calibration and validation results of the RRI model
are shown in Fig. 6, which shows a comparison of the

20 40 60 80 100 120 140 160
Basin averaged rainfall (mm/day)

o

Fig. 5 Scatter diagram of basin-averaged daily rainfall and corresponding
standard deviations in space of a1 raw NHRCM data, OM bias-corrected

a2 NHRCM data, and QM and VS bias-corrected a3 NHRCM data
J

simulated and observed monthly river discharges. The
model performance is considered satisfactory (Moriasi
et al. 2007) in that the Nash-Sutcliffe efficiency (NSE) is
0.57 in the calibration period (2001-2006) and 0.51 in
the validation period (2007—-2013). To validate the simu-
lated inundation patterns, we compared the maximum
inundation distribution from December 2016 to March
2017 using the maximum flood extent inferred by senti-
nel satellite imagery (Fig. 7a). The simulated inundation
pattern (Fig. 7b) agrees well with the satellite image of
the Batanghari River and its tributaries.

Figure 8 shows the simulated flow duration curves
(FDCs), annual maximum discharge, and inundation vol-
ume estimated using the original NHRCM, GSMaP, and
bias-corrected rainfall data. For the reference discharge
and inundation volume (referred to as observed (Obs) in
Fig. 8), we use the GSMaP rainfall data as the input for
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the simulation. The simulated FDC obtained using the
original NHRCM data shows that medium flows (Q, to
Qo) and low flows (Q,o to Qgo) are overestimated, and
high flows (Qq; to Qo) are underestimated (Fig. 8a); the
ranges of high, medium, and low flows are defined based
on Mohamoud (2008).

Table 1 summarizes the evaluation scores obtained for
the annual maximum discharge (Fig. 8b) and inundation

volume (Fig. 8c) simulated by raw/bias-corrected NHRC
M rainfall data based on relative root mean square error
(RRMSE) and relative mean error (RME). For annual
maximum discharges, Table 1 shows that the QM
method had nearly the same accuracy, in terms of the
RRMSE (0.11), as the original NHRCM. However, com-
pared to the raw data, the accuracy of the QM method
was lower for estimating annual maximum inundation
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volumes. We confirmed that the application of the QM
and VS bias correction method improved the RRMSE
(0.39) and RME (0.37) compared to the RRMSE (1.06)
and RME (1.13) obtained using the QM method alone.

3.4 Projection of rainfall, discharge, and inundation under
future climate conditions

Figure 9 shows the change in annual rainfall patterns be-
tween the present and future climate conditions. In gen-
eral, annual rainfall will increase throughout the basin.
In some areas, including the central or lower parts of
the basin, the projected increase in annual rainfall is
more than 650 mm. Figure 10 shows that the annual
maximum daily and 15-day rainfall will also increase for
all return periods. For example, annual maximum daily
rainfall corresponding to a 20-year return period (ie.,
non-exceedance probability equals 0.05) will increase
from 84 to 276 mm (Fig. 10a), and the corresponding in-
crease in annual maximum 15-day rainfall will be from
350 to 666 mm (Fig. 10b).

Figure 11 shows the FDC and basin-averaged annual
maximum inundation volume under present and future
climate conditions. The range of the FDC will increase
under future climate conditions (Fig. 11a). In particular,
the medium flow in the future climate is 2035 m?/s,
which is a 42% increase compared to the present cli-
mate. Future flood inundation volume will increase for
all return periods (Fig. 11b). For example, flood inunda-
tion volume in the future climate corresponding to a 20-
year return period is 14.2 mm, which is an increase of
3.3 times compared to the present (4.3 mm). Annual
maximum inundation distributions under future climate
conditions (Fig. 12b) show that flood depth reaches a
maximum of 4.8 m, and the total inundated area in-
creases by 2.3 times, compared to that of the present cli-
mate (Fig. 12a). Most of the lowland areas are exposed
to flooding and flood depth ranges within 0.4 m and 4.8
m.

4 Discussion

4.1 Effects of bias corrections on precipitation, river
discharge, and inundation volume

In terms of annual rainfall, the NHRCM rainfall data for
the Batanghari River Basin are higher than the reference
rainfall data (GSMaP and gauged data). In the same

Table 1 Evaluation of annual peak discharges and annual maximum inundation volume with a raw/bias-corrected NHRCM against

those with GSMaP

Bias correction method Annual peak discharge Annual maximum inundation volume

Raw RRMSE 0.11, RME —0.094 RRMSE 0.35, RME 0.048
QM RRMSE 0.11, RME 0.093 RRMSE 1.06, RME 1.13
QM-VS RRMSE 0.079, RME 0.047 RRMSE 0.39, RME 0.37

The notations of bias corrections are “Raw” for non-bias correction, “QM” for Quantile Mapping, and “QM-VS” for Quantile Mapping and Variance Scaling. The
shows relative root mean square error (RMSE) and relative mean error (RME)
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Fig. 9 Change of past (1980-2000) and future (2079-2098) bias-corrected NHRCM annual rainfall data
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target river basin, three RCMs from BMKG also overes-
timated annual rainfall (Handoko et al. 2019). This wet
bias may be caused by the boundary conditions associ-
ated with dynamical downscaling (Gianotti et al. 2012;
Cruz et al. 2016).

As in the reference data, the NHRCM (Fig. 2b) shows
similar differences in the rainfall patterns that developed
parallel to the mountain range (Fig. 2a). We find that
this is also true for the annual maximum 15-day rainfall
of the NHRCM (Fig. 3b). However, differences between
the NHRCM and reference rainfall data were also ob-
served. In the reference rainfall data, rainfall was high
only in the northern parts of the mountain ranges, but it
was low in the central parts of the mountains. On the
other hand, the NHRCM rainfall data showed that rain-
fall was consistently lower in the mountainous areas. In
addition, the NHRCM rainfall data showed that rainfall
in the central and eastern parts of the basin was higher
than that measured using the reference data. Compared

to early GCM outputs, the representation of topography
and dynamical downscaling have improved the spatial
and temporal resolution of rainfall maps in recent years
(Schiemann et al. 2014; Johnson et al. 2015). However,
our analysis shows that NHRCM exhibits high spatial
variability in both annual rainfall and extreme rainfall
data. This variability may be attributed to the rain-
shadow effect, i.e., rainfall is reduced on the leeward side
of a mountain and increased on the windward side
(Chang et al. 2005). Previous studies on the NHRCM
also reported that this effect may explain some of the
rainfall variability observed in the NHRCM data (Kieu-
Thi et al. 2016; Cruz and Sasaki 2017). The high variabil-
ity of NHRCM data may also be one of the reasons for
the slightly higher annual maximum inundation volume,
which can be affected by spatially and temporally con-
centrated rainfall (Sayama et al. 2015).

Both of the bias correction methods resulted in similar
improvements for basin-averaged rainfall values (annual,
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annual maximum daily, and annual maximum 15 days),
which is expected because the additional VS method
does not change the average values, only the variance
over space. While the two methods reduced the spatial
variability of annual rainfall, they differed in the spatial
variability of the annual maximum 15-day rainfall; the
QM method increased the spatial variability, while the
QM-VS method decreased it. The use of equiratio cu-
mulative distribution function matching, as described in
the “Methods” section, may explain why the spatial vari-
ability increases after the application of the QM method.
Unlike the typical use case of the QM method, which
matches the CDF at a grid scale, this study matches the
CDF of basin-averaged rainfall values to preserve the
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spatial pattern of the NHRCM. Nevertheless, the vari-
ability observed in the raw NHRCM data changes after
multiplying the ratio uniformly by all rainfall values in
the basin; when the ratio < 1, the variability is reduced,
and when it is > 1, the variability is increased. When the
basin-averaged value is more than about 12 mm, the ra-
tio is more than 1. The annual 15-day rainfall data are
mostly a series of high rainfall values with a ratio > 1,
which causes the high variability. The additional
variance-scaling step in the QM-VS method matches the
variance with the reference data, reducing the high vari-
ability through application of the equiratio CDF
matching.

We also investigated the impact of the bias correction
methods on hydrologic simulations. The simulation using
the QM bias-corrected rainfall data improved the FDC, as
has been demonstrated by several hydrological impact
studies that used QM bias-corrected GCM or RCM rain-
fall as an input for their hydrologic models (Teutschbein
and Seibert 2012; Huang et al. 2014; Lee et al. 2019). How-
ever, the simulation using QM bias-corrected rainfall leads
to overestimation of extreme variables (annual maximum
discharge and annual maximum inundation volume). This
may be caused by the higher variability of rainfall. On the
other hand, QM-VS bias correction improved basin aver-
age and spatial variabilities of the annual maximum 15-
day rainfall, producing reasonable extreme variables over
the target river basin.

Although correction of basin-averaged rainfall is not
typical, it is considered rational for river discharge simu-
lations. According to Beven and Hornberger (1982),
assessing the correct volume of rainfall input from a
highly spatially variable pattern is considerably more im-
portant than a rainfall spatial pattern in predicting storm
flow hydrographs. However, bias correction methods
that match the CDF of basin-averaged rainfall with
equiratio CDF matching may lead to higher spatial vari-
ability, particularly for extreme values; therefore, correct-
ing the variance over the space improves the results.

4.2 Projection of rainfall, discharge, and inundation under
future climate conditions

The strongest and most consistent increase in sea-
sonal rainfall broadly follows the Inter Tropical Con-
vergence Zone, which lies above southern Indonesia
in December, January, and February and northern
Indonesia in June, July, and August (Christensen et al.
2007). A recent study showed that RCMs, dynamically
downscaled from three GCMs over the Western
Maritime Continent, consistently projected an in-
crease in rainfall in December, January, and February
under RCP4.5 and RCP8.5 scenarios in parts of Su-
matra Island, and a significant decrease in rainfall
during inter-monsoon seasons (Kang et al. 2018).



Yamamoto et al. Progress in Earth and Planetary Science

(2021) 8:5

Page 12 of 15

Fig. 12 Projection of NHRCM annual maximum inundation depth distribution a under present and b in future climate conditions
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In this study, the annual maximum 15-day rainfall in-
tensity was projected to increase in the Batanghari River
Basin under RCP8.5 in the late twenty-first century. This
agrees with IPCC AR5, which reports that the frequency
and intensity of extreme rainfall will likely increase over
wet tropical regions in the late twenty-first century
(Stocker et al. 2013). Collins et al. (2013) also showed that
in most parts of Sumatra Island, the annual maximum 5-
day rainfall increased by more than 20% in the late
twenty-first century under RCP8.5 scenarios. In addition,
extreme events, such as 100-year annual maximum daily
rainfall, will occur more frequently in the late twenty-first
century under RCP8.5 scenarios (Stocker et al. 2013). The
findings of this and previous study (Muis et al. 2015) show
that the annual maximum inundation volume is projected
to increase in the Batanghari River Basin under RCP8.5 in
the late twenty-first century. Based on Muis et al. (2015),
using the global flood model combined with scenarios of 5
GCMs with 4 RCPs also projects an increase in inundation

volumes with a 100-year return period in parts of Sumatra
Island; however, there is considerable uncertainty across
the projections for the Indonesian region. Our results sug-
gested that frequent expansion of the flood inundation
area in the downstream area of the basin will damage agri-
cultural crops. According to a global data projection by
Fujimori et al. (2018), in one of the Shared Socioeconomic
Pathways (SSP) (Popp et al. 2017), particularly SSP3, crop-
land area in the Batanghari River Basin will increase con-
tinuously wuntil 2100. Without implementing any
adaptation measures, the lowland areas of Sumatra Island
are likely to become more agriculturally developed due to
the large potential of unused areas, such as peatlands. The
findings suggest that the river basin should be managed
by implementing adaptation measures, such as land use
regulation of plantations, promoting wetland conservation
in order to prevent damage due to flooding under future
climate conditions, and protecting the unique environ-
ments of tropical peatland areas.
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4.3 Limitations of the research

In some regions of Asia, shallow orographic rainfall oc-
curs by low-level orographic lifting of maritime air lead-
ing to heavy rainfall (Shige et al. 2013; Shige and
Kummerow 2016). In humid areas that experience trop-
ical rainfall caused by these shallow orographic rain sys-
tems, original satellite rainfall products tend to perform
poorly because they employ microwave radar algorithms
(Kubota et al. 2007; Shige et al. 2013). To overcome the
issue, the ability to distinguish between orographic and
non-orographic rainfall systems has been developed and
implemented in the GSMaP algorithm ver. 6 (Shige et al.
2013; Yamamoto and Shige 2015). Furthermore, for the
GSMaP Reanalysis data, the wind dataset from JRA-55 is
used to detect orographic rainfall. Nevertheless, accord-
ing to Nodzu et al. (2019), who assessed rainfall in areas
with very complex topography (including several moun-
tainous ranges) in northern Vietnam, some bias remains
in GSMaP Reanalysis ver. 6; specifically, they observed
higher (lower) rainfall on the leeward (windward) side of
mountains in their case study. In our study, the coverage
of the gauged data is still not sufficient to accurately as-
sess the characteristics and potential biases of the
GSMaP product. With the limited data, the annual rain-
fall and 15-day rainfall were overestimated, particularly
in the leeward side of the Barisan Mountains. These un-
certainties in the reference data may affect the model
calibration and other parts of our study.

It is essential that climate change impact studies
evaluate the uncertainty of future climate change im-
pacts by comparing results with/without dynamical
downscaling using different RCP/SST scenarios and
GCMs/RCMs. In this study, a dynamically downscaled
product of AGCM under one SST scenario was used
due to limitations imposed by computational re-
sources and to retain the focus of this paper on bias
correction methods. As for the effects of different
SST scenarios, we ran the RRI model based on the
original AGCM outputs without dynamical downscal-
ing. Figure S3 shows that the increasing rates of flood
inundation volume range from 1.9 to 4.8 times with-
out downscaling. Although the result of 3.3 times
based on the downscaling was within the range, we
realize that there are large uncertainties and that
these are dependent upon SST patterns. In a future
study, it will be necessary to conduct more downscal-
ing experiments with different SST patterns.

To focus on the flood analysis, this study did not con-
sider future temperature changes in the Batanghari River
Basin. However, changes in temperature can increase
evapotranspiration, which can dry the land and promote
fires (Takahashi et al. 2003). According to the NHRCM,
the average monthly surface temperature (basin average)
increases by 3°C in any season in the Batanghari River
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Basin (see Figure S4 showing the basin-averaged
monthly temperature for present and future simulations
using the original NHRCM). In order to assess the im-
pact on the tropical peatland environment, it is neces-
sary to use future temperature as an input for the
hydrologic model.

5 Conclusions

This study compared the two bias correction methods,
i.e.,, the QM method and a combination of the QM and
VS methods, to examine how each method improves es-
timates of rainfall patterns and subsequently the simu-
lated flood inundation by the RRI model in the
Batanghari River Basin, Indonesia. Originally, the dy-
namically downscaled NHRCM rainfall data showed
higher spatial variation in the 15-day rainfall and annual
rainfall compared to the reference data. While this does
not markedly influence the simulated FDC, it largely
overestimated the extreme values, such as the annual
maximum flood inundation volume. The combination of
QM and VS methods successfully decreased the rainfall
spatial variability and improved the estimations of the
EDCs and the extreme values.

Our analysis showed that the projected change of flood
inundation is significant, particularly in the lowland
areas of Sumatra Island. Annual maximum flood inun-
dation volume corresponding to a 20-year return period
would increase by 3.3 times. The annual maximum in-
undation map under a future climate scenario showed
that the inundation depths would increase and the inun-
dated area would expand in tropical peatland areas.
These results suggest the need to consider future climate
change scenarios for river basin management, particu-
larly to reduce the risk of flood damage and to sustain-
ably maintain the unique ecosystem of tropical
peatlands.
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