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Abstract

In order to determine whether truly pico-sized adult radiolarians exist, we compared spumellarian sequences from
individual adult samples collected in the central Pacific, with filtered sea water samples of juvenile (5-42 um) and
gamete (0.2-5 um) sized fractions to see whether the gene sequences are similar or different. Environmental
spumellarian-affiliated sequences we sampled were mostly concentrated in samples from 250 to 400 m depth and
only appeared in the RAD-IIl clade, which corresponds to the family Astrosphaeridae (including Arachnosphaera,
Astrosphaera, and Cladococcus). None of the same ITS (internal transcribed spacer) sequences were found in both
filter membranes of the same sea water samples. Pairwise distances among these environmental spumellarian-
affiliated sequences are within or slightly above the range of intra-morphospecific variations. We propose a model
to explain our observations based on the hypothesis that the “pico-sized radiolarians” represent gametes of
radiolarians of normal size, assuming different sinking speeds of parents and offspring.
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1 Introduction

1.1 What are radiolarians?

Radiolarians are marine protist zooplankton, belonging to
the classes Acantharea, Taxopodia, and Polycystinea (Adl
et al. 2019). Extant Polycystinea are further subdivided
into the orders Collodaria, Nassellaria, and Spumellaria
(Cavalier-Smith et al. 2018; Adl et al. 2019). Extant Entac-
tinaria of De Wever et al. (2001) are not regarded as an
established taxon in the currently accepted taxonomy, due
to the lack of a connection with true Devonian Entacti-
naria (Nakamura et al. 2020). Their sizes range from tens
to hundreds of micrometers (Suzuki and Not 2015). In
general, adult specimens are around 100-300 um. Life-
cycles of radiolarians are largely unknown. Small, flagel-
lated reproductive cells (swarmers) are the most
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commonly observed stages (Kimoto et al. 2011; Yuasa and
Takahashi 2014, 2016).

1.2 Why we focus on the pico-sized range?

DNA sequences identified with radiolarians have been
found in the pico-sized fraction of marine environmental
libraries sampled at the surface to thousands of meters
below (< 2 um) (Not et al. 2007) and from various geo-
graphic locales: Sargasso Sea (< 2 pm) (Not et al. 2007),
Arctic Ocean (3-0.22 um) (Lovejoy et al. 2006), and the
Antarctic Ocean (5-0.2 um) (Lopez-Garcia et al. 2001).
Do living pico-sized radiolarian cells really exist, as im-
plied by some published reports? The smallest polycys-
tines confirmed by molecular phylogenetic analysis are
reproductive swarmers 1.6-3um x 2.5-10pum long
(Kimoto et al. 2011; Yuasa and Takahashi 2014, 2016),
small enough that they can just pass through 2-5pum
membrane pores. These sequences may also have come
from unknown “new” species that are genuinely “pico-
sized” as adults. Focusing on “pico-sized plankton,”
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considerable percentages of environmental radiolarian
sequences have been found in the South China Sea
(SCS) and the Atlantic and Pacific Oceans in filtered
seawater samples: 15 to 20% at 75 m depth (locality Al)
near the basin of SCS, 5 to 10% at 75 m depth (South
East Asia Time-series Study station) (Wu et al. 2014b),
12 to 25% in clone libraries from depths of 60 m at five
sites along a south—north transect at 155° E (Wu et al.
2014a), and 14 to 15% in full-length 18S rDNA sequence
data from the North Atlantic and Pacific Oceans (Lie
et al. 2014). In those studies, large plankton were re-
moved by filtration, but plankton filtered at different
mesh diameters were not compared.

1.3 What are the environmental radiolarian groups?

By phylogenetic analyses of 18S rRNA gene clone librar-
ies, five environmental radiolarian clades, RAD-I to
RAD-V, have been identified in the Sargasso Sea (Not
et al. 2007). However, none of them completely matches
sequences of individually isolated specimens. We do not
know whether these environmental sequences represent
“unknown” species. RAD-I and RAD-II belong to the
Acantharea. It was suggested by Decelle et al. (2012) that
the clade, Acanth II, corresponding to RAD II, is repre-
sented by the family Acanthoplegmidae. The taxonomic
status of the environmental clade, Acanth I, correspond-
ing to RAD I, remains undetermined. RAD-IV and
RAD-V are composed of Taxopodida-like sequences.
The Taxopodida are very fragile, with easily dissolved
skeletons (Suzuki and Not 2015). A third environmental
clade, RAD III, is neighbor to the spumellarian family
Spongodiscidae and comprises deep Sargasso Sea se-
quences and sequences from the South China Sea (Yuan
et al. 2004; Li et al. 2011). Among these five clades, RAD
III most likely consists of spumellarians with siliceous
skeletons, which can be preserved as fossils. In a reclassi-
fication study of Spumellaria, 1165 environmental se-
quences affiliated with the Spumellaria were included in
a phylogenetic analysis (Sandin et al. 2020). Most envir-
onmental sequences analyzed by Sandin et al. (2020) are
related to the superfamily Liosphaeroidea (Matsuzaki
et al. 2015), a clade named EnV5 by Sandin et al. (2020).
Considering its phylogenetic position relative to others,
Env5 in Lineage II corresponds to RAD III, named by
Not et al. (2007).

1.4 Why we are interested in spumellarians

Spumellaria and Nassellaria have morphologically com-
plex siliceous architectures, and the fossil record of the
former first appeared in the Cambrian (Ma et al. 2019;
Zhang and Feng 2019), while the record of the latter
dates to the late Devonian (Suzuki and Not 2015; Sandin
et al. 2019). These fossil records provide an opportunity
to understand how polycystines evolved, corresponding
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to the secular changes of the paleoenvironment (De
Wever et al. 2001).

1.5 Previous efforts to find tiny adult radiolarians and the
purpose of our study

Fossil radiolarians have been conventionally studied using
63 um sieves to concentrate larger specimens. Smaller
sieves (45 pm or even 38 um) are regularly used to collect
small species and small specimens (Matul et al. 2002; Itaki
et al. 2003). Considerable effort to find tiny adult radiolar-
ians (~ 5—45 um in diameter) has been expended since the
nineteenth century (Haeckel 1887; Frenguelli 1940, 1941;
Swanberg and Bjorklund 1987; Takahashi and Honjo
1991); however, they only illustrated juveniles of Spumel-
laria and Nassellaria. No papers reported pico-sized radio-
larians (< 5pm). Therefore, we set out to determine
whether pico-sized radiolarians exist, using a molecular
biological approach, by analyzing environmental DNA col-
lected by filtration of seawater.

Radiolarians are indicators of water masses having spe-
cific temperatures and salinities (Kamikuri et al. 2008;
Suzuki and Not 2015). RAD-III sequences have been re-
ported from warm, oligotrophic blue waters (Not et al.
2007; Li et al. 2011). Thus, we collected samples in the
Central Equatorial Pacific in this study. Primers specific
only for spumellarians were newly designed in this study.
In the same water column, single-cell samples were ob-
tained to compare their sequences with those of envir-
onmental DNA samples. We separated samples into
three different size classes: adult (> 42 um), juvenile (5—
42 pm), and gamete or pico-sized (0.2—5 um) samples.

2 Materials and methods

Seawater samples were collected during Cruise KH10-4 of
the R/V Hakuho-maru operated from September to Octo-
ber 2010. Five stations (A, C, D, E, F) were located in the
tropical Pacific (Fig. 1). Seawater was collected using a 10
L Niskin bottle, at 4 or 5 depth strata for each station.

In order to avoid contamination with free DNA from dis-
integrating organisms, a 42 pm mesh screen was used to re-
move adults, and subsequent filtrations were performed
under low pressure (< 1 kPa). Two different filters were used:
5 um ME-Millipore SMWP and 0.2 pm Whatman nuclepore
PC, allowing us to fractionate the samples into juvenile and
pico-sized subsamples, respectively. Total environmental
DNA was extracted using a Power Water DNA Kit (MO
BIO). Primers specific for spumellarians were newly designed
(SITSF 5'CAGCGACGTGTCATTCAAATTTC3' and SITS
R 5'GCAGTCCCAAGCAACACGACTC3’). The 25kb
rDNA cistron (18S-ITS1-5.85-1TS2-28S) regions of environ-
mental DNA were amplified. PCR products were cloned
using a Mighty TA cloning kit (TaKaRa). All clones were se-
quenced with the primers M13 RV and M13 M4.
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Fig. 1 Location of the 5 sampling sites in the Central Pacific Ocean

Preliminary taxonomic affiliations of the sequences
were assessed using BLASTN against GenBank database.
Phylogenetic relationships of the 18S rDNA part of se-
quences were inferred by ML analysis with IQ-Tree 2
(Minh et al. 2020) and Bayesian analysis with MrBayes
Version 3.2.7 (Huelsenbeck and Ronquist 2001; Zhang
et al. 2020). Genetic distances between 18S-ITS1-5.8S-
ITS2-28S sequences were calculated with the distance
module of Mega X (Kumar et al. 2018). Sequences pro-
vided in this paper have been submitted to the NCBI nu-
cleotide sequence database under accession numbers:
KP175029-KP175040.

3 Results and discussion
Results of our search for “pico-sized” spumellarians are
summarized in Table 1. The tree in Fig. 2 shows phylo-
genetic positions of DNA sequences isolated from
single-cell samples (Fig. 3) and membrane-filtered sea-
water samples. Figure 4 illustrates more detailed rela-
tionships between the DNA sequences from the
membrane-filtered seawater samples and those available
in public databases.

We found environmental spumellarian-affiliated se-
quences in the filter membranes at only two sites: a

subsample in the size range between 42 and 5pm (ju-
venile size) from 400 m at site C, and subsamples of both
juvenile and gamete sizes from 250 m depth at site D
(Table 1).

The 18S rDNA phylogenetic tree is shown in Fig. 2.
Environmental spumellarian-affiliated sequences from
Pacific seawater samples only appeared in the RAD-III
clade named by Not et al. (2007) for environmental se-
quences from size-fractionated samples (< 2 um) from
the Sargasso Sea. Our spumellarian-specific primers
yielded positive results from spumellarians collected at
site D, but those species do not belong to RAD IIL:
Heliodiscus asteriscus D397, Spongotrochus? aff. Glacialis
D188, Pylonioidea gen. et sp. indet. D401 and D382
(Figs. 2 and 3), in contrast to PCR products amplified
from total environmental DNA, which yielded sequences
that belong only to RAD IIIL

Using more RAD III sequences stored in public data-
bases to cover a broader range of different localities, a
phylogenetic tree was constructed by focusing on RAD
III (Fig. 4). RAD III sequences can be clearly divided into
several subclades, three of which are represented by a
named taxon (Ar. myriacantha-like clade, As. hexagona-
lis-like clade, and C. viminalis-like clade). The fourth
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Table 1 Results of molecular cloning for the environmental DNA from five sites

Site Depth (m) CTD information  Volume of filtered seawater (L) DNA (ng/pl) PCR  Clone number Spumellarian clones
A 1000 5 A 26 -
5 B 1834 -
A 400 5 A 470 -
5 B 56.5 -
A 120 Chlorophyll max 5 A 779 + 0
5 B 483 -
C 750 5 A 94.0 -
5 B 197.0 -
@ 400 5 A 1138 + 5 3
5 B 96.1 -
C 150 5 A 79.7 + 0
5 B 570 -
C 100 Chlorophyll max 5 A 643 + 0
5 B 100.8 -
D 400 5 A 50.8 -
5 B 22 -
D 250 5 A 586 + 1 2
5 B 15.8 + 18 1
D 120 5 A 784 + 0
5 B 23.7 -
D 90 Chlorophyll max 5 A 399 + 7 0
5 B 33 + 8 0
E 400 5 A 74.0 -
5 B 315 -
E 150 5 A 62.8 -
5 B 180 -
E 105 5 A 470 + 0
5 B 304 -
E 70 Chlorophyll max 5 A 53.1 -
5 B 395 -
F 400 5 A 56 -
5 B 156 -
F 200 5 A 89.1 -
5 B 60.6 -
F 130 Chlorophyll max 5 A 939 -
5 B 234 -

Site A: Sep 20, 2010, 10:30 PM, N 14' 00", W 162’ 05", depth 5662 m; site C: Sep 22, 2010, 10:30 PM, N 07’ 09", W 166" 33", depth 4933 m; site D: Sep 23, 2010, 9:00
PM, N 2" 42", W 165’ 33", Depth 5346 m; site E: Sep 29, 2010, 8:14 PM, N 05’ 40", W 164’ 13", Depth 4874 m; site F: Oct 9, 2010, 9:00 PM, N 16" 492", W 172’ 30";

Depth 5299 m

CTD is an oceanography instrument used to determine the conductivity, temperature, and depth of the ocean; A and B represent the following fractions: 42 um >
A >5pum, 5um > B > 0.2 um. The value “+” in PCR column means a positive result with spumellarian-specific primers. Clone column means the number of M13-
primer, PCR-positive white colonies. The value in spumellarian clones means the number of spumellarian clones that were confirmed by sequencing

major clade includes no identified species (denoted here
as clade A). The phylogenetic position of Cladococcus
viminalis within the C. viminalis-like clade has not been
well resolved, showing a polychotomous relationship

together with a cluster of sequences from 100 m depths
of SCS (Fig. 4). The deep-sea sequences seem to be clus-
tered mainly in clade A and in the C. viminalis-like
clade. Five of our environmental sequences (C400A3,
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Fig. 3 Scanning electron microscope photos of a D1

88 and b D397. The scale bar in the bottom of photo represents 100 um
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C. viminalis
like

C400A31, C400A171, D250A6, and D250B1) clustered
in the C. viminalis-like clade and two (C400A27 and
D250A8) somewhat separately in clade A and the Ar.
myriacantha-like clade (Fig. 4).

We did not find the same ITS (internal transcribed
spacer) sequences in juveniles and pico-sized subsam-
ples. The largest of the 18S-ITS1-5.8S-ITS2-28S dis-
tances in those environmental spumellarian-affiliated
sequences is in the range of 0.070 (between D250A6 and
C400A31), no different than the interspecific distance
observed within a family (Ando et al. 2009; Krabberad
et al. 2011). The lowest is 0.008, between C400A3 and
C400A31, which might have come from two different
“juvenile”-filtered subsamples smaller than 42 pm. The
distance between D250B1 and D250A6 is 0.062, being
close to the distance between D250B1 and D250A8

(0.064). This value is close to interspecific distances
among spumellarians isolated in site D in this study:
0.083, 0.084, and 0.010 in Hexalonchidae; 0.096 in
Pyloniidae.

No identical rDNA sequences were found in both filter
membranes used for the same sea water samples. Radio-
larian skeletons are quite fragile; however, for three rea-
sons, we think it is unlikely that the pico-sized
sequences could have come from broken cells. First, a
couple of previous studies (Diez et al. 2001; Not et al.
2007) indicated that the sequences of known multicellu-
lar or larger single-celled organisms constitute very small
percentages of the pico-sized environmental samples
(2.5% and 1.7%, respectively). Second, astrosphaerid cells
are not as fragile as their skeletons. Radiolarian DNA se-
quences we obtained from the membranes are mainly
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concentrated in the RAD-III clade of Not et al. (2007) or
Lineage II of Sandin et al. (2020). Thus, those sequences
could have originated from broken cells of astrosphaer-
ids. However, the central capsule of astrosphaerids is so
large (80-250 um in diameter), robust, and rigid that it
cannot be broken easily (Hollande and Enjumet 1960;
Suzuki and Sugiyama 2001). Besides, astrosphaerids are
generally tangled with organic matter to form aggregates
or “meat balls” up to 1cm in diameter when collected
(Zhang et al. 2018), so the material inside the capsular
membrane basically cannot trickle out. Therefore, we
consider it unlikely that the sequences we obtained are
contaminants from broken adult astrosphaerid cells.
Third, we carefully treated the samples to avoid dam-
aging the cells, eliminating the possibility, as far as pos-
sible, that DNA could be released from radiolarian cells
broken during filtering. As a consequence of doing filtra-
tion at low pressure to prevent crushing the radiolarians,
the amount of sample we collected was very limited.
That might be the reason why we obtained only several
clones from the filtered samples, making it difficult to
fully assess the genetic diversity of sequences in the
RAD-III clade, which now embraces a considerable
number of environmental sequences stored in public da-
tabases (Fig. 4).

Pairwise distances among these environmental
spumellarian-affiliated sequences (0.008—0.060) are within
or slightly above the range of intra-morphospecific vari-
ation. For example, Dictyocoryne truncata (Ando et al.
2009; Krabbergd et al. 2011) and Actinomma boreale
(Krabbered et al. 2011) have been sequenced to estimate
intraspecific distances (0.017 and 0.005, respectively).
These juvenile sequences from site C may have originated
from different individuals of an unidentified small (5—
42 pm) spumellarian species.

Another possible origin of pico-sized radiolarian se-
quences could be the pico-sized swarmers or gametes of
radiolarians. But the ITS region sequences of rDNA se-
quences we found in juveniles and pico-sized subsam-
ples are different. One possibility for this difference
between juvenile and pico-sized subsample sequences is
that spumellarians have intragenomic ITS sequence vari-
ation. Intraspecific variations in the ITS region of radio-
larians were analyzed and quantified by Ando et al.
(2009), Krabbergd et al. (2011), and Ishitani and
Takishita (2015), but no intra-individual differences have
been studied in radiolarians. ITS sequences evolve faster
than 18S or 28S rRNA gene sequences and are most
commonly used as markers to discriminate species. Mul-
tigenic family members of ITS regions are subject to
concerted evolution, which homogenizes their sequences
(Dover 1982). However, exceptions have been observed,
and intragenomic polymorphism of ITS has been de-
tected in many species (Wang et al. 2017; Matthias et al.
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2018; Itskovich 2020), including even the Foraminifera
(Pillet et al. 2012), which, together with the Radiolaria,
belongs to the Retaria. If spumellarians produce gametes
showing intragenomic polymorphism, the ITS sequences
from each reproductive cell and juvenile could differ.
This would even apply to ITS sequences of the same 18S
rDNA sequences, but in radiolarians, such intracellular
variability is very limited (Decelle et al. 2014). In con-
trast, even the 18S rDNA sequences in our samples dif-
fer between juvenile and pico-sized subsamples. Thus, it
appears likely that the different ITS sequences represent
different species. Since no molecular data are available
for any of the 23 known species belonging to the Astro-
sphaeridae, these different 185 rDNA sequences from
membrane samples could conceivably be pico-sized
swarmers or gametes of different astrosphaerid species.

The observation that no identical sequences were
found among adult, juvenile, and pico-sized subsamples
can be explained by the “gametes hypothesis,” assuming
different sinking speeds of parents and offspring (Fig. 4).
According to the results of our phylogenetic analysis
(Figs. 2 and 3), only three identified species fell into the
RAD III clade. They are Astrosphaera hexagonalis, Ara-
chnosphaera myriacantha, and Cladococcus viminalis, in
the size range 80-150 um. They were recorded by
Haeckel in the nineteenth century from warm surface
waters (Boltovskoy et al. 2010). Living astrosphaerids
have been collected even at depths of 500-1000 m from
February to May in the Mediterranean (Hollande and
Enjumet 1960). Obviously, they are not pico-sized radio-
larians, but they could be the mother cells of “pico-sized
radiolarians.” Due to differences in size and structure,
the forces that mother cells and swarmer cells experi-
ence in seawater would be different. Radiolarians float
passively in convection currents of the mixed layer by
hydrodynamic drag, due to their elongated pseudopodia
(Ichinohe et al. 2019). Swarmers with celestine crystals
inside quickly sink (Anderson 1983; Yuasa and Takaha-
shi 2014).

In general, plankton exhibit three kinds of movement
in the ocean that need to be considered to infer the
whereabouts of radiolarians: (1) movement driven by the
daily migration of nektons between 0 and 500 m, which
swim to deeper waters in the daytime, presumably to
seek refuge from large predators, and return to the sur-
face at night to feed (Bianchi et al. 2013). Mother cells
would be affected by this kind of process, but skeletons
of dead cells would not. Swarmers that do not have
enough buoyancy would not be able to return to the sea
surface. We collected all our samples at night. Thus,
mother cells should have been near the surface. (2) Ver-
tical movement of water masses with cold or warm ed-
dies that occur everywhere at bi-weekly to seasonal
scales. This is a passive, but very powerful movement.
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Eddy diffusivities for the east Pacific sector range from —
0.2 to 0.1 ms™" (Klocker and Abernathey 2014). Mother
cells, skeletons, and swarmers of radiolarians would be
equally subject to this kind of movement. This might be
the reason why astrosphaerids can be collected at water
depths from 500 to 1000 m. (3) Pacific circulation, which
forms vertical profiles of equatorial zonal velocity, with
the peak appearing at 100 to 200 m above 0.50 ms™* at a
longitude of 170° W (Johnson et al. 2001). Mother cells
in the surface water (0—500 m) would be greatly affected
by this circulation, while it would have no effect on
swarmers and skeletons that have sunk to more than
500 m. Some observations in an experimental study
(Yang et al. 2020) concluded that cyclonic eddies en-
hance the looping path, but anticyclonic eddies decrease
it. If cyclonic eddies occur in a sampling site, the separ-
ation of mother cells and swarmers would increase.
Combining the effects of those forces, Fig. 5 shows situa-
tions that would occur under our “gametes hypothesis.”
When the research vessel stopped at site A2 and sam-
pled swarmers at B2, the skeletons of the dead mother
cells would have arrived at point B1. At this time, imma-
ture cells in this population would have floated along
with the current and have arrived at site A3. Therefore,
in the sample at point B2 of site A2, it would be difficult
to find gametes together with adults or juveniles of the
same species. This model would also explain high
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percentages (ca. 20%) of radiolarian DNA recorded in
some deep water (500-3000 m) environmental samples
(Not et al. 2007) (B3 in Fig. 5).

Still another possibility, especially for those specimens
that did not cluster with known shallow water species
(such as C400A27), is that the sequences we found in
the pico-sized samples indeed represent pico-sized adult
radiolarians.

A peculiarity of RAD III is that the three identified
species in it belong to the family Astrosphaeridae, the
only family among extant spumellarians with no struc-
ture inside the cortical shell (De Wever et al. 2001; San-
din et al. 2020). Other groups of Spumellaria have
various internal structures. Further studies on unidenti-
fied astrosphaerid species may help to reveal evolution-
ary relationships among radiolarians with and without
internal structures and to understand how the initial
spicular system developed and evolved. The existence of
so many potential astrosphaerid environmental se-
quences indicates that a number of undescribed astro-
sphaerid species await morphological studies. It would
be ideal to observe directly the morphogenesis of sili-
ceous skeletons in those radiolarians by capturing the
mother cells of RAD III in surface waters of deep-sea
sites with rich environmental sequences.

Our results (Table 1) indicate that juvenile (5-
42 pm)-, and gamete (0.2—5 pm)-sized spumellarians are

Fig. 5 Diagram showing a model based on the hypothesis that “pico-sized radiolarians” represent radiolarian gametes. Three kinds of movement
in the ocean should be considered: ® the daily migration of nektons between 0 and 500 m; @ vertical movement of water masses with cyclonic
eddies; ® pacific circulation. We show a case in which cyclonic eddies occurred at a sampling site (night in the Northern Hemisphere), with
cyclonic eddies enhancing the looping path, and increasing the distance between mother cells and swarmers
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not restricted to particular water depths. Still, some dis-
cernible patterns exist. They are often found 100 to 300 m
below the highest chlorophyll zone. Although the PCR re-
sults for samples with the highest chlorophyll peak were
positive, cloning and sequencing showed that they were
not spumellarian sequences but false positives caused by
mismatches to other plankton sequences. The greatest
depth of chlorophyll at site D was shallower than that at
site C, and the spumellarian sequences also appeared at a
shallower depth. But the two phenomena are not parallel.
Swarmers continually sink in the sea, so they do not con-
centrate at a certain depth. For the three reasons discussed
above, juvenile cells can also migrate up or down. The
deep sea below 1000 m is a blank that we have not ex-
plored. The presence of RAD III in the deep sea can be
seen from clade A (Fig. 4), or from records in the Sargasso
Sea (Not et al. 2007). Their distributions and morpholo-
gies are also worthy of further study.

One possible way to clarify the origin of “pico-sized”
sequences would be to do hybridization in situ. Studies
have been done (Gilg et al. 2010) by hybridization to see
whether they can catch unidentified acantharian cells.
Samples collected at 500 m successfully hybridized to
the UC1 (corresponding to RAD I) CARD-FISH probe.
But the difficulty of studying living radiolarians is that
until now, no lab has been able to culture radiolarians
from swarmers to next generation adults. Thus, whether
or how their genomes change during reproduction,
when their skeletons first form, is very hard to know.
Combinations of whole-cell in situ hybridization and
flow cytometry may be the solution. For in situ
hybridization, fluorescent oligonucleotides derived from
the 18S rRNA sequences may be used as probes. For
bacteria, a combination of 16S rRNA-targeted oligo-
nucleotide probes with flow cytometry has been
employed by Fuchs et al. (1998) and Ferndndez-Lago
et al. (2000). Therefore, we think it is theoretically prac-
tical to carry out similar assays with plankton. Our se-
quences offer some help to design the probes. The
combination of these technologies will not only allow us
to solve the problem of “pico-sized” radiolarians, but
also to recover all “the fish that miss the net” (Biard
et al. 2016). Even though use of fine sieves will help col-
lect more living and fossil radiolarians, true radiolarian
diversity would still be underestimated.

4 Conclusions

Considering the phylogenetic positions of the environ-
mental sequences, as well as the genetic distances to
known species, the most plausible explanation for “pico-
sized radiolarians” is that they represent gametes of radi-
olarians of a normal size. The existence of a large num-
ber of environmental sequences in warm deep-sea water
indicates that our understanding of life cycles and
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morphological diversity of Spumellaria is inadequate.
Most of these unknown sequences can be attributed to
the family Astrosphaeridae, which is of great significance
for understanding evolution of radiolarian skeletons.
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