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Abstract

Climate change currently affects the resilience and aquatic ecosystem. Climate change alters rainfall patterns which
have a great impact on river flow. Annual flooding is an important hydrological characteristic of the Mekong River
Basin (MRB) and it drives the high productivity of the ecosystem and biodiversity in the Tonle Sap floodplain and
the Mekong Delta. This study aims to assess the impacts of climate change on river flow in the MRB and flood
inundation in the Lower Mekong Basin (LMB). The changing impacts were assessed by a two-dimensional rainfall-
runoff and inundation model (RRI model). The present climate (1979–2003) and future projected climate (2075–
2099) datasets from MRI-AGCM3.2H and MRI-AGCM3.2S models were applied with a linear scaling bias correction
method before input into the RRI model. The results of climate change suggested that flood magnitude in the LMB
will be severer than the present climate by the end of the twenty-first century. The increment of precipitation
between 6.6 and 14.2% could lead to increase extreme flow (Q5) 13–30%, peak inundation area 19–43%, and peak
inundation volume 24–55% in the LMB for ranging of Representative Concentration Pathways (RCP) and sea surface
temperature (SST) scenarios while there is no significant change on peak flood timing.

Keywords: Climate change, River discharge, Flood inundation, Lower Mekong Basin

Introduction
The impacts of climate change became one among the
global concerns threatening the environments and nat-
ural resources. The Intergovernmental Panel on Climate
Change (IPCC) AR5 reported the increase of global aver-
age temperature from 1.0 °C in the lowest emission sce-
nario to 3.7 °C in the highest emission scenario by 2100
(IPCC 2014). Climate change has an impact on the
hydrological system by altering the hydrological cycle
and precipitation patterns (Wang et al. 2013). The
spatial and temporal patterns of precipitation are the
main factors affecting flow regimes and climate condi-
tions (Beyene et al. 2010; Wu et al. 2016). The variation

of precipitation patterns would disturb the water system
in the entire catchment. In Southeast Asia, the precipita-
tion was projected to increase from 1 to 8% at the end
of the twenty-first century (Oeurng et al. 2019). The fu-
ture hydrologic system will be severely affected by cli-
mate change in the Mekong Rivere Basin (MRB) (Lauri
et al. 2012; Perera et al. 2017) and its sub-basins: the
Tonle Sap Lake (Oeurng et al. 2019) and the Sekong,
Sesan, and Srepok Rivers (Oeurng et al. 2016; Shrestha
et al. 2016). The increment of river discharge is expected
during flood season, while the severe droughts are plaus-
ible to happen in the dry season (Oeurng et al. 2019).
The seasonal inundation and water interchange between
the Mekong River and Tonle Sap Lake of Cambodia
produce high productive biodiversity, agriculture, and
fisheries (Arias et al. 2013; Uk et al. 2018). The Mekong
River supports about 70 million people from four coun-
tries (Cambodia, Laos PDR, Thailand, and Vietnam) in

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: trysophal001@gmail.com
1Graduate School of Engineering, Kyoto University, Gokasho, Uji 611-0011,
Japan
4Faculty of Hydrology and Water Resource Engineering, Institute of
Technology of Cambodia, Russian Conf. Blvd, Phnom Penh 12156, Cambodia
Full list of author information is available at the end of the article

Progress in Earth and
      Planetary Science

Try et al. Progress in Earth and Planetary Science            (2020) 7:34 
https://doi.org/10.1186/s40645-020-00353-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-020-00353-z&domain=pdf
http://orcid.org/0000-0003-4736-4568
http://creativecommons.org/licenses/by/4.0/
mailto:trysophal001@gmail.com


the Lower Mekong Basin (LMB) where most of the areas
are prone to flooding (Try et al. 2019). The ecosys-
tem of the lake and its floodplain are prone to be af-
fected by altering the hydrological cycle in the
Mekong River (Arias et al. 2012).
It is a challenge to predict the change of flow regime

(Bates et al. 2008). The IPCC AR5 published climate
change scenarios known as the Representative Concen-
tration Pathways (RCP) (IPCC 2014). The RCP scenarios
incorporate four emission scenarios of greenhouse gas: a
stringent mitigation scenario (RCP2.6), two intermediate
scenarios (RCP4.5 and RCP6.0) and one very high GHG
emission scenario (RCP8.5). The future projections given
by IPCC reports were based on general circulation
models (GCMs) outputs. GCMs are generally capable to
produce a coarse resolution that might consist of large
uncertainty. Generally, downscaling approaches were
taken: statistical downscaling and dynamical downscal-
ing to produce the regional climate condition. The un-
certainties of GCMs were dominantly caused by coarse
resolution (Li et al. 2012). To overcome this uncertainty,
this study used the outputs from two high-resolution at-
mospheric general circulation models (AGCMs), namely
as MRI-AGCM3.2S and MRI-AGCM3.2H with 20 km
and 60 km spatial resolution respectively. The model
performed a historical climate experiment using ob-
served sea surface temperature, and they showed the im-
provement in heavy monthly mean precipitation around
the tropical pacific region confirmed by numerical skill
score (Mizuta et al. 2012).
A hydrological model is an effective tool that can

simulate hydrological characteristics under different sce-
narios. Various hydrological models were developed and
applied to investigate the hydrological processes in the
MRB and its tributaries: Soil and Water Assessment
Tool (SWAT) model (Arnold et al. 1998), Vmod model
(Koponen et al. 2010), 2-D Local Inertial Equation (2-D
LIE) model (Tanaka et al. 2018), and Rainfall-Runoff-
Inundation (RRI) model (Sayama et al. 2015). Try et al.
(2020) used the RRI model for comparison of gridded
precipitation products for flood inundation modeling in
the MRB. Perera et al. (2017) applied the same model to
assess the climate change impacts on hydrological ana-
lysis in the MRB using outputs from atmospheric gen-
eral circulation models (AGCM) based on RCP8.5
scenario considering different sea surface temperature
(SST) boundary condition; however, their study did not
consider different emission of greenhouse gas scenarios.
To further understand hydrological study of climate

change impacts in the MRB, this study aims to predict
the changes of extreme river discharge in the MRB and
aspects of extreme flood inundation such as inundation
area, inundation volume, peak inundation duration and
time, and inundation probability in the LMB by using

present climate (1979–2003) and future projected cli-
mate (2075–2099) from high and super high-resolution
AGCM models.

Materials and methods
Study area
The MRB is the largest river in Southeast Asia traveling
across China, Myanmar, Laos PDR, Thailand, Cambodia,
and Vietnam (Fig. 1). Annual flooding is an important
hydrological characteristic of the MRB where it drives
the high productivity of ecosystems and biodiversity
(Lamberts and Koponen, 2008), particularly the Tonle
Sap floodplain and the Mekong Delta (Kummu et al.
2006). The total basin area of the MRB is 795,000 km2,
and its average discharge is 14,500 m3/s (MRC 2005).
The MRB is located in the tropical monsoon climate
with two seasons: rainy season (May–October) and dry
season (November–April) (MRC 2005). The flood sea-
son, accounting 80–90% of annual flow, is exclusively
important for maintaining the aquatic ecosystem in the
basin (MRC 2010). The Tonle Sap Lake in the LMB has
a unique hydrologic system of two-directional flows. In
the dry season, the water flows from the Tonle Sap Lake
to the Mekong River, while the water level of the river is
higher than the water level in the lake causing the water
flowing backward to the Tonle Sap Lake in the rainy
season. The surface area of the lake expands from 2600
km2 in the dry season to 12,000km2 in the wet season
resulting in the inundation from the floodplain (Oeurng
et al. 2019).

Climate change datasets
The Meteorological Research Institute (MRI) developed
a high-resolution (MRI-AGCM3.2H, 60 km) (Mizuta
et al. 2012) and a super high-resolution atmospheric cli-
mate models (MRI-AGCM3.2S, 20 km) (Kitoh and
Endo, 2016; Mizuta et al. 2014) with hourly temporal
scale. The climate parameters (precipitation and evapo-
transpiration) were used as input for the RRI model for
two 25-year periods: present climate covering of 1979–
2003 and the future climate (2075–2099). The MRI-
AGCM3.2H model was projected from present (HPA_
m01) to future climate based on degree of GHG emis-
sion ranking from low emission (RCP2.6) to high emis-
sion (RCP8.5), namely as HFA_rcp26, HFA_rcp45,
HFA_rcp60, and HFA_rcp85, respectively. The MRI-
AGCM3.2S model was simulated for the present climate
(1979–2003) using observed boundary condition of SST
(SPA_m01). The different SST patterns for future pro-
jection under RCP8.5 scenario were characterized by
using SST as output from 28 GCMs in Coupled Model
Inter-comparison Project Phase 5 (CMIP5) (Taylor et al.
2012). The future climate experiments (2075–2099) were
grouped with SST distributions into four clusters: 8-
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model average (uniform warming in the northern and
southern hemispheres), 14-model average (El Nino-
like pattern with a larger warming belt in the central
equatorial Pacific), 6-model average (a larger warming
in the northern hemisphere than in the southern
hemisphere), and total 28-model average labeled as
SFA_rcp85_c1, SFA_rcp85_c2, SFA_rcp85_c3, and
SFA_rcp85, respectively. GPCC was determined to be
an accurate precipitation product in the MRB region
(Try et al. 2020). Therefore, this precipitation was

used as a reference for bias correction as the follow-
ing linear scaling method:

PBChr ¼ Pobsmon

Pagcm
mon

� Pagcm
hr ð1Þ

where Pobs
mon: average monthly GPCC precipitation, Pagcm

mon :
average monthly AGCM precipitation, Pagcmhr : hourly
AGCM precipitation, and PBC

hr : hourly bias-corrected

Fig. 1 Location of the Mekong River Basin
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AGCM precipitation. The correction factor calculated
from the present climate was applied to future climate
experiments.
The different climate change scenarios would lead to

generate different evapotranspiration (ET) in the future.
For example, when precipitation increases in the future,
and ET may also increase due to the increase of
temperature increase. In this case, the surface runoff
might not change following only precipitation change. In
order to eliminate this uncertainty for future projection,
the correction of future ET was calculated by extracting
ET from present and future climates of AGCMs as the
following equation.

ETfut ¼ ETJRA − 55 þ △ETfut ð2Þ

where ETfut is ET for each future scenario; ETJRA − 55 is
evapotranspiration from JRA-55 dataset; and ΔETfutis
the change of ET for each future scenario comparing to
their present climates.

RRI model simulation
The rainfall-runoff-inundation (RRI) model was used to
simulate runoff and flood inundation for the MRB. The
RRI model is a two-dimensional distributed hydro-
dynamic model that is able to simulate rainfall-runoff
and inundation processes simultaneously (Sayama et al.
2012, 2015). The slope grid cells receive rainfall and flow
based on 2D diffusive wave equations, while the in-
channel flow is calculated with 1D diffusive equations.
Topographic information (digital elevation model
(DEM), flow direction, and flow accumulation), obtained
from the Multi-Error-Removed-Improved-Terrain
(MERIT DEM, Yamazaki et al. 2017), were used as input
to the RRI model. The river geometry was available from
the Mekong River Commission, and land use was from
MODIS (product: MCD12Q1) for 2000 (Friedl et al.
2010). The simulation setting was separated into two
parts. First, the model was set up with 2.5′ resolution
(approx. 5 km) for the whole MRB for assessing river
discharge. Then, the model was set up with 1.5′

resolution (approx. 2.7 km) for the LMB for predicting
more accurate flood inundation. Try et al. (2020) evalu-
ated the performance of five various gridded precipita-
tion datasets for rainfall-runoff and inundation modeling
over the MRB. The result showed that the Global Pre-
cipitation Climatology Centre (GPCC) product was suit-
able for long-term hydrological modeling in the MRB
comparing to other precipitation products: APHRO-
DITE, TRMM-3B42V7, PERSIANN-CDR, and GSMaP.
Based on retrospective experiment, this study conducted
a simulation of 25 years (1982–2007) using GPCC pre-
cipitation for model verification. The surface evapotrans-
piration was available from the Japanese 55-year
Reanalysis dataset (JRA-55) with 3-hourly and 0.5625°
resolution (Kobayashi et al. 2015). The calibrated RRI
model and its parameter setting (Table 1) were retrieved
from Try et al. (2020). The performance of river dis-
charge and flood inundation was compared between the
observation and simulation results. After verification of
the hydrodynamic model, the same parameter setting
was used to simulate river discharge and flood inunda-
tion using the climate change dataset.
To evaluate the performance of the model, we used in-

dicators as the following: Nash-Sutcliffe model efficiency
(NSE), coefficient of determination (R2), and root mean
square error (RMSE):

NSE ¼ 1 −

P
Qsim tð Þ −Qobs tð Þð Þ2P
Qobs tð Þ −Qobs

� �2 ð3Þ

R2 ¼
P

Qsim tð Þ −Qsim

� �
Qobs tð Þ −Qobs

� �� �2
P

Qsim tð Þ −Qsim

� �2 P
Qobs tð Þ −Qobs

� �2 ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Qsim tð Þ −Qobs tð Þð Þ2
n

s
ð5Þ

where Qsim(t) and Qobs(t) are the simulated and observed
discharge at time step t. Qsim and Qobs are the simulated
and observed average discharge, and n is the number of
data.

Table 1 The values of parameter setting of the RRI model used in the study

Parameters Mountains Plains

Manning’s coefficient for slope n (m−1/3s) 0.4 0.015

Soil depth d (m) 2.0 –

Lateral saturated hydraulic conductivity ka (m/s) 0.1 –

Parameter of unsaturated hydraulic conductivity β – 9.0 –

Vertical hydraulic conductivity kv (cm/h) – 0.06

Soil porosity φ – – 0.6

Wetting front soil suction head Sf – – 0.273

Manning’s coefficient for river nriver (m−1/3s) 0.03

Try et al. Progress in Earth and Planetary Science            (2020) 7:34 Page 4 of 16



To evaluate the performance of flood extent, two of
the following indices including true ratio (TR) and hit
ratio (HR) were used:

TR ¼ ICobs∩ICsim

ICsim
ð6Þ

HR ¼ ICobs∩ICsim

IAobs
ð7Þ

where ICsim and ICobs are the number of inundated cell
from simulation and observation. The observed inun-
dation maps were available from NASA MODIS near
real-time global flood mapping product (https://flood-
map.modaps.eosdis.nasa.gov/) whose spatial and

temporal resolutions are 250 m and 3 days for global
scale (Nigro et al. 2014).

Assessing climate change impacts
In addition to assessing the impacts of climate change
on extreme river flow and flood inundation in the MRB,
the change of precipitation was also examined. The
monthly precipitation of the projected future climate
was compared with that of the present climate for the
entire MRB. Next, the mean annual flow (Qm) and the
high flow exceeded 5% of the time (Q5) were calculated.
Further, the changes of inundation area and volume,
flood probability, inundation peak time, and duration
were also evaluated from the present period (1979–

Fig. 2 Monthly simulated and observed discharges at Luang Prabang, Pakse, and Stung Treng for the period of 1982–2007. Model performance
for river discharge was evaluated by Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and root mean square error (RMSE)
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2003) to the future period (2075–2099). Moreover, the
statistical Kolmogorov-Smirnov (K-S) test, a non-
parametric test of two samples, was used to check the
variation of flood inundation between present and future
climates. The maximum difference of the cumulative
distribution function of the two samples is defined by:

Dn;m ¼ sup
x

jFnðxÞ − FmðxÞj ð8Þ

where Fn and Fm are the empirical distribution functions
of the two samples, and sup is supremum function. The
null hypothesis, H0, assumes that two samples have no
significant difference in CDF. When the likelihood of the

different distribution of the two samples exceeds a
significance level, the null hypothesis is rejected. Two
samples have different distribution if

Dn;m > c αð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþm
nm

r
ð9Þ

where n and m are the sample sizes. At the significance
level 5% used in this study, c(α) is equal to 1.36.

Results
Performance of the model simulation
The RRI model simulated for 1982–2007 considering as
model verification period, and the performance indices
of NSE, R2, and RMSE were calculated at three stations
along the mainstream of the MRB: Luang Prabang,
Pakse, and Stung Treng. These three stations were se-
lected according to the availability of observed discharge,
and their locations vary in the upper part of the LMB
(i.e., Luang Prang is located near the outlet from the

Table 2 The statistical indices of model performance of flood
extent true ratio (TR) and hit ratio (HR)

2000 2001 2002 2003 2004 2005 2006 2007 Avg.

TR 0.82 0.74 0.65 0.42 0.58 0.46 0.49 0.47 0.58

HR 0.85 0.80 0.87 0.89 0.76 0.88 0.94 0.89 0.86

Fig. 3 Comparison of flood extent from simulation result (top) and satellite observation (bottom)
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Upper Mekong in China), middle part (Pakse), and
downstream of the LMRB (Stung Treng). Figure 2
showed the simulated and observed monthly discharge
at the three locations. In general, the hydrographs of ob-
servation and simulation had similar pattern of all three
stations; however, the model predicted underestimation
in the low flow season in Luang Prabang. The evaluation
statistics were NSE = 0.79. R2 = 0.85, and RMSE = 1371
m3/s. At Pakse, the performance indices were NSE =
0.90, R2 = 0.92, and RMSE = 3433 m3/s. The prediction
at Stung Treng was high performance (NSE = 0.91, R2 =
0.92); however, large flow at this location produced more
error value (RMSE = 3990 m3/s) than other locations.
The performance of annual maximum flood inunda-

tion was determined using true ratio (TR) and hit ratio
(HR). The observed flood extent was obtained from the
NASA MODIS flood observation dataset (Nigro et al.
2014) for the period of 2000–2007. The threshold of in-
undation depth of 0.5 m was selected following the pre-
vious studies (Sayama et al. 2012 and 2015; Try et al.
2018) to identify the flood and non-flood areas. The stat-
istic indices of observation and model prediction flood
extent were listed in Table 2 (see Fig. 3 for the compari-
son map of simulation and observation). The spatial per-
formance index TR ranged from 0.42 to 0.82 during
2000–2007 where the average accuracy was 58% (avg.
TR = 0.58). The HR indicator varied from 0.76 to 0.94,
and its mean accuracy was 86% (avg. HR = 0.86). The
factors which reduced inundation accuracy would come

from two main sources. First, the satellite observation
would not be able to detect flooded area at the man-
grove forests on the banks of the Tonle Sap Lake while
the simulation might correctly identify these areas under
inundation. Secondly, the simulation was not able to de-
tect inundated area in some low parts of the Mekong
delta where might be influenced by saltwater intrusion.
This effect was not considered in this study due to
unavailability of observed information.

Precipitation changes
The bias correction performance was checked by
comparing the precipitation and simulated discharge
of historical AGCMs before and after bias correction.
Figure 4 shows average daily precipitation and simu-
lated discharge comparing between GPCC and
AGCMs before and after bias correction. The raw
precipitation and discharge had seasonal bias (i.e.
overestimation) at the beginning of the wet season.
The performance of average daily AGCM precipita-
tion before and after bias correction was improved
with R2 from 0.85 to 0.94 for SPA_m01 and from
0.87 to 0.93 for HPA_m01, respectively. Moreover,
the performance discharge was improved from R2 =
0.89 and 0.96 to R2 = 0.99 and 0.98 for SPA_m01
and HPA_m01, respectively.
Figure 5 showed the bias-corrected monthly precipi-

tation from MRI-AGCM3.2H and MRI-AGCM3.2S
datasets in the present (1979–2003) and future

Fig. 4 Comparison of raw and bias corrected average daily precipitation and discharge at Stung Treng for historical AGCMs (SPA_m01 and
HPA_m01) with GPCC simulation
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(2075–2099) climates. The basin average precipitation
was expected to increase for RCP and SST scenarios
during the rainy season (May–October). During the
late rainy season in September, the precipitation of
future scenarios of HFA_rcp45, HFA_60, and HFA_
rcp85 significantly raised up while less increase could
be observed in HFA_rcp26. Three future SST patterns
(SFA_rcp85, SFA_c2, and SFA_c3) provided higher in-
crease of precipitation than SFA_rcp85_c1 in rainy
season comparing to their present climate SPA_m01.
The annual precipitation would increase by 6.6%,
8.0%, 9.5%, and 14.2% for four RCP scenarios
(RCP2.6–RCP8.5), and four SST pattern scenarios had
less diversified increasing (9.9–12.5%).

Effects of climate change on river flow
The future changes in river discharge were assessed by
simulation of RRI model using precipitation and evapo-
transpiration projected by MRI-AGCM3.2H and MRI-

AGCM3.2S models from present climate (1979–2003) to
the future climate (2075–2099) for four greenhouse gas
emission scenarios (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5) and four SST scenarios (Fig. 6). The flow
change was examined at four locations along the main-
stream of the MRB. Table 3 showed the mean annual
discharge (Qm) and extreme river flow exceeding 5% of
the time (Q5). Overall, Qm and Q5 increased for all fu-
ture scenarios. The Qm of the upstream stations (Chiang
Saen and Vientiane) was predicted to increase 5–10%
while the downstream stations (Pakse and Kratie) raised
up a higher increment of 10–15% for three climate
change scenarios (RCP2.6, RCP4.5, and RCP6.0). The
Qm for all stations significantly escalated for RCP8.5
(23–26%) and SST scenarios (10 ± 3%–29 ± 3%). At the
end of the twenty-first century, high flow (Q5) showed
increases of 5–14% at Chiang Saen and Vientiane and
11–18% at Pakse and Kratie for the three low emission
scenarios (RCP2.6, RCP4.5, and RCP6.0). The Q5

Fig. 5 Bias corrected monthly precipitation in present and future climate experiments of MRI-AGCM3.2H and MRI-AGCM3.2S models. The bottom and
top of the box show first and third quartiles, and the flat line inside the box is median. The whiskers represent the minimum and maximum values
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momentously stepped up to 21–30% for four observa-
tions stations for RCP8.5 while it ranged between 10 ±
4% and 18 ± 3% for the SST scenario. The peak dis-
charge took place in September (Fig. 6), and this
remained the same for all future scenarios at Vientiane,
Pakse, and Kratie except Chiang Saen where the peak
discharge from SST somehow happened earlier in
August.

Effect of climate change on flood inundation
The flood plain and agricultural land are the majority in
the LMB, so the threshold was selected at 0.5 m of water
depth to classify the inundated and non-inundated area.
According to the simulation results, flood magnitudes
were expected to increase for all future scenarios.
Figure 7 showed the 25-year average inundation ex-
tent in the present and future climatic conditions.
The ratios of mean and variance of the inundation
extent of the future and present were 1.19–1.43 and
2.08–3.92 for MRI-AGCM3.2H and 1.26–1.32 and
1.12–2.13 for MRI-AGCM3.2S (Table 4), respectively.
Figure 8 showed boxplot comparison of peak inunda-
tion time (days of the year (DOY)) and inundation
volume in the LMB. There was no significant change
of peak flood time of future climate compared to the
present climate (i.e., the variation of the median was
within ± 5 days). The K-S test showed result of no signifi-
cant difference for all future scenarios (RCP and SST) at
significant level 5% (p value = 0.2370–0.8774). The peak
inundation volume took place in October for the present
climate and all projected future scenarios. However, there
was a huge variability in peak inundation volume. The first

Fig. 6 Average monthly discharge of present and projected future climate experiments of RCP and SST scenarios

Table 3 Changes (%) of annual mean discharge (Qm) and flow
exceeded 5% of the time (Q5) for each RCP and SST scenarios
comparing with present climate. The values for SST scenarios
show mean (μ) ± standard deviation (σ)
Station Scenario Qm Q5

Chiang Saen RCP2.6 6% 9%

RCP4.5 9% 10%

RCP6.0 5% 14%

RCP8.5 23% 27%

SST (μ ± σ) 10% ± 3% 10% ± 4%

Vientiane RCP2.6 7% 5%

RCP4.5 10% 8%

RCP6.0 7% 10%

RCP8.5 23% 21%

SST (μ ± σ) 11% ± 2% 10% ± 4%

Pakse RCP2.6 10% 11%

RCP4.5 13% 11%

RCP6.0 13% 17%

RCP8.5 26% 29%

SST (μ ± σ) 25% ± 3% 16% ± 4%

Kratie RCP2.6 12% 14%

RCP4.5 13% 13%

RCP6.0 15% 18%

RCP8.5 25% 30%

SST (μ ± σ) 29% ± 3% 18% ± 3%
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quartile values of the LMB peak inundation volume (the
boxplot in the lower row of Fig. 8) for all future scenarios
(100–124 km3 for HFA and 99–118 km3 for SFA) were
greater than the third quartile value of their present cli-
mates (99 km3 and 98 km3 for HPA and SPA). Median of
peak inundation volume for HFA increased between 15%
for RCP2.6 and 42% for RCP8.5 and 28–41% for SST. The
relative ratio of the mean of inundation volume varied be-
tween 1.24–1.55 and 1.29–1.41, and the relative ratio of
inundation volume variance changed 2.30–4.60 and 1.66–
2.09 (Table 3) for RCP and SST scenarios, respectively.
The result of K-S test of peak inundation volume revealed
significant difference for all RCP and SST scenarios (i.e.,
null hypothesis was rejected at significant level of 5% with
p value less than 0.002).
Figures 9 and 10 showed the flood inundation prob-

ability, the difference of probability of flood inundation

from the present to future (dP), and the K-S test result for
each climate model. The dP clearly indicated the positive
value for all projected future scenarios. For MRI-
AGCM3.2H, the dP ranged from one less increasing
(HFA_rcp26), two medium increase (HFA_rcp45 and
HFA_rcp60), and one large increase (HFA_rcp85). Among
the area of significant difference of inundation probability
(dP ≥ 0.05 in Figs 9 and 10), the proportion for area dP ≥
0.3 was just only 12% (i.e., area of proportion 0.05 ≤ dP <
0.03 was 88%) for RCP2.6, and this proportion raised up
to 48%, 40%, and 56% for HFA_rcp45, HFA_rcp60, and
HFA_rcp85, respectively. On the other hand, the same
proportion value of dP ≥ 0.3 had less diversification (i.e.,
54–62%) for ranges of SST scenarios. The spatial K-S test
indicated almost not significant in HFA_rcp26 and partial
significant in HFA_rcp45 and HFA_rcp60 while large area
was found significant in HFA_rcp85. The K-S test for SST
patterns determined significant at most area in SFA_rcp85
following by SFA_rcp85_c3, and SFA_rcp85_c2 and SFA_
rcp85_c1 had less area of significant.
The inundation duration, change of duration, and its

spatial K-S test results were illustrated in Figs. 11 and 12
for MRI-AGCM3.2H and MRI-AGCM3.2S, respectively.
The variation of inundation duration per 25-year in the
present and future between − 1 and 1 day was considered
as no change in this study. Overall, the longer durations of
inundation were observed for the LMB for both RCP and
SST scenarios. The area with high flood inundation prob-
ability commonly experienced long flood durations while
the low probability place corresponded with a shorter dur-
ation of inundation. Similarly, the spatial K-S test showed
significant at most of area regardless of RCP and SST sce-
narios. The increasing of flood duration was observed at
the floodplain except inside the Tonle Sap Lake where the
water exists for the whole year.

Fig. 7 25-year average of annual maximum inundation extent for the present and the future climate experiments

Table 4 The ratio (F) of mean (μ) and variance (σ2) of
inundation area and volume for future climates comparing their
present climate

Model Scenario Inundation area Inundation volume

F(μ) F(σ2) F(μ) F(σ2)

MRI-AGCM3.2H HFA_rcp26 1.19 2.28 1.24 2.68

HFA_rcp45 1.26 2.08 1.32 2.30

HFA_rcp60 1.32 3.92 1.41 4.60

HFA_rcp85 1.43 3.37 1.55 3.96

Avg. 1.30 2.91 1.38 3.38

MRI-AGCM3.2S SFA_rcp85 1.32 1.12 1.41 1.66

SFA_rcp85_c1 1.26 2.13 1.29 1.98

SFA_rcp85_c2 1.32 1.67 1.38 2.09

SFA_rcp85_c3 1.27 2.08 1.30 1.89

Avg. 1.29 1.75 1.34 1.90
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Fig. 8 Peak inundation time (upper row) and peak inundation volume (lower row) in the LMB resulted from MRI-AGCM3.2H model (left column)
and MRI-AGCM3.2S model (right column). The boxplot explanation is the same as Fig. 5

Fig. 9 Spatial distribution of inundation probability (upper row), difference between present and each future RCP scenarios (middle row), and K-S
test (lower row) for MRI-AGCM3.2H model
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Discussion
Benefits of high-resolution data
This study used two high-resolution models MRI-
AGCM3.2H and MRI-AGCM3.2S with spatial resolution
of 60 km and 20 km. To see benefits of fine spatial-scale,
two other coarse-resolution GCMs (MRI-CGCM3 and

MRI-ESM1) from the CMIP5 were examined to com-
pare their performance without bias correction for 25-
year in the historical climate (1979–2003). The grid res-
olutions of MRI-CGCM3 and MRI-ESM1 are 125 km ×
125 km. Figure 13 showed the comparison of spatial dis-
tribution of annual average precipitation of GPCC and

Fig. 10 Spatial distribution of inundation probability (upper row), difference between present and each future SST scenarios (middle row), and K-
S test (lower row) for MRI-AGCM3.2S model

Fig. 11 Spatial distribution of inundation duration (upper row), difference between present and future RCP scenarios (middle row), and K-S test
(lower row) for MRI-AGCM3.2H model
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Fig. 12 Spatial distribution of inundation duration (upper row), difference between present and future SST scenarios (middle row), and K-S test
(lower row) for MRI-AGCM3.2S model

Fig. 13 Spatial distribution of annual precipitation of GPCC and four climate models (MRI-AGCM-3.2S, MRI-AGCM3.2H, MRI-CGCM3, and MRI-ESM1)
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the four models over the MRB region. The two high-
resolution AGCMs (MRI-AGCM3.2H and MRI-
AGCM3.2S) used in this showed a similar distribution
while the two coarse resolution models (MRI-CGCM3
and MRI-ESM1) indicated large error, particularly in the
area close the coast. This was the advantage of using ob-
served SST as boundary condition in AGCM; however,
GCMs were not able to consider this effect.
In addition, basin monthly precipitation was also com-

pared between GPCC and four climate models without
bias correction. Figure 14 showed the similarity of violin
shapes between GPCC and two high-resolution AGCMs
(MRI-AGCM3.2H and MRI-AGCM3.2S). The mean
values range between 126–131 mm for AGCMs and
119–113 mm for GCMs comparing to 126 mm of
GPCC. The MRI-CGCM3 and MRI-ESM1 models pro-
duced precipitation at more spread density (i.e., their
median is at very low value, and top height of violin is
overestimation) comparing to GPCC. Overall, two high-
resolution AGCMs used in this study performed better
than two GCMs in CMIP5 in term of spatial and
monthly precipitation in the MRB region.

Implementation of climate change impact
The results from this study clearly indicated that the
river discharge and flood inundation in the MRB were
significantly affected by climate change impacts. The
simulation results of climate change revealed that flood
inundation magnitude in the future in the LMB would
be severer than the present climate. The increasing of
annual precipitation (6.6–14.2%) could force to enlarge
the extreme high flow (Q5) at the LMB (increasing 13–
30% at Kratie) and lead to increase excessive inundation

in the LMB up to 19–43% for inundation area and 24–
55% for inundation volume. Lauri et al. (2012) deter-
mined the change in discharge at Kratie from − 10.6 to
+ 13.4% for A1B scenario (comparable to RCP6.0) and
between − 6.9 and + 8.1% for B1 scenario (comparable
to RCP4.5) using five GCMs from baseline (1982–1992)
to projected period (2032–2042). Västilä et al. (2010)
projected annual maximum flooded area in the LMB
flood pulse for 2010–2049 by changing between − 3%
and 14% in for A2 emission scenario (comparable to
RCP8.5). Perera et al. (2017) found out the increasing
discharge volume of 25% at Kratie in RCP8.5 scenario.
Shrestha et al. (2016) analyzed the uncertainty sources
of climate change on river flow in the Sekong, Sesan,
and Srepok (3S) Rivers, one of the main tributary of the
MRB, using three GCMs (GISS, GFDL, and IPSL) and
revealed the results that peak flow was likely to increase
ranging from 54.1% for RCP2.6 to 78.9% for RCP8.5 for
the 2060s. The assessment results of climate change im-
pacts on hydrological extreme flows in 11 sub-basins of
the Tonle Sap Lake by Oeurng et al. (2019) using three
GCM models (GFDL-CM3, GISS-E2-R-CC, and IPSL-
CM5A-MR) for three projected time horizons (2030s,
2060s, and 2090s) under RCP6.0 scenario revealed that
most sub-basins of the Tonle Sap basin would face more
extreme drought than flood.
In addition to findings of Perera et al. (2017) who

studied flood inundation under SST patterns in the
LMB, this study found the significant increment of flood
inundation area and volume on various projected future
climate change including 4 RCP scenarios and 4 differ-
ent SST patterns scenarios. More importantly, further
analysis of increasing changes in flood inundation

Fig. 14 Violin plot and boxplot of monthly basin precipitation of GPCC and four climate models. The red circle and black dots represent mean
and median
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duration and probability was significantly determined in
this study while the flood peak time would be no sub-
stantial variation.

Limitations
However, the limitation of this study was assessing only
output from MRI-AGCM3.2H and MRI-AGCM3.2S.
Considering more high-resolution GCMs would provide
more reliability for future prediction of flood inundation.
Plus, due to the limited capacity of long-term and large-
scale simulation, the spatial resolution of the inundation
simulation in this study was taken 1.5′ (approx. 2.7 km);
therefore, the finer resolution was able to provide more
accurate results. Further, the water for urban water sup-
ply, irrigation, and power generation purposes was not
carried out in this study. The land-use map was taken
from MODIS (year: 2000) considered as static from the
present to the future. The rapid development would
affect the uncertainty in the prediction. The potential ef-
fect of land-use change should be considered in future
studies in the MRB.

Conclusions
This paper presented the effects of climate change on
flow in the MRB and inundation in the LMB for the
present (1979–2003) and the future period (2075–2099).
This study compared the extreme river flow, peak inun-
dation area, peak inundation time and volume, flood
probability, and inundation duration. The analysis was
conducted based on bias corrected precipitation and
evapotranspiration which were outputs from two high-
resolution atmospheric models (MRI-AGCM3.2H 60 km
and MRI-AGCM3.2S 20 km). The result indicated that
the extreme river flow and extreme flood inundation will
be severer and higher magnitude at the end of the twenty-
first century for all future scenarios (RCP and SST). How-
ever, flood peak time was observed with no significant
variation. The area with long flood duration corresponded
with a high probability of flood inundation. This study
provided additional information about climate change im-
pacts on flood inundation for further understanding and
preparing for climate change adaptation as well as flood
damage reduction strategies in the LMB.
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