
Progress in Earth and
 Planetary Science

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6
https://doi.org/10.1186/s40645-019-0320-z

REVIEW Open Access

Coupling library Jcup3: its philosophy
and application
Takashi Arakawa1* , Takahiro Inoue2, Hisashi Yashiro3 and Masaki Satoh4

Abstract

In this paper, we describe the design of the coupling library, Jcup, and report its various applications, including the
coupling between global atmospheric and oceanic models of different grid systems. Jcup is a software library mainly
focused on weather/climate models and was developed for coupling the components of various models. Jcup has
the flexibility to be applied to an unspecified number of components of earth system models. To achieve a high level
of safety and versatility, we classified the processes of the general coupling software into processes that change the
value of the data and those that do not and placed the former outside of the program and under the control of the
user. Consequently, Jcup exhibits two features: (1) the correspondence relationship between grid indexes is used as
input information, and (2) the user can implement an arbitrary interpolation code. Jcup was applied to
atmosphere-ocean coupling, IO component coupling, and the coupling between the seismic model and structure
model, and the validity and usefulness of the design were demonstrated.

Keywords: Earth system modeling, Coupler, Coupled simulation

Introduction
A typical weather/climate model is generally composed of
several submodels, such as an atmospheric model, ocean
model, and land surface model. However, as the required
accuracy of reproduction increases, the number of sub-
models also increases. For example, according to the tran-
sition of the components of the NCAR CCSM (2009), at
the beginning of its development, the model comprised
two components, namely, the atmosphere (land surface)
and the ocean. In the 1990s, the sea ice and aerosol com-
ponents were added, and the vegetation and carbon cycle
modules are currently being incorporated.
In the structure of such a model, it is necessary to

exchange relevant information on the appropriate spa-
tiotemporal scale, corresponding to each component,
when executing the model. In this situation, a grid remap-
ping is required according to the spatial scale of each com-
ponent; however, it is not preferable from the viewpoint
of development efficiency and maintainability to sepa-
rately develop and implement such a remapping program
for each component. For this reason, dedicated software

*Correspondence: arakawa@rist.jp
1Research Organization for Information Science and Technology, 1-18-16
Hamamatsu-cho, Minato-ku, Tokyo 105-0013, Japan
Full list of author information is available at the end of the article

responsible for the coupling between components has
been developed and used.
In this paper, software that executes such tasks is called

coupling software or couplers. Generally, there are two
types of coupling software. One is a program that targets
a specific model.
In this case, because target components are predeter-

mined, coupling software specialized for a specific grid
system, time scale, or coupling pattern may be sufficient.
An example of this type of coupling software is the cou-
pler used in NCAR CESM. The other type is the coupling
software developed for general use. As the specific tar-
get is not assumed, the structures of both the interface
and program are determined depending on the extent of
support on the grid system, the coupling pattern, and
the interpolation method. As a representative of this type
of coupler, the OASIS coupler was developed mainly by
CERFACS and is widely used among European meteoro-
logical research groups (Valcke et al. 2006; Valcke 2013).
YAC is also a coupling software developed by European

research institutions (Hanke et al. 2016). YAC is devel-
oped as a lightweight library that supports various grid
systems. YAC 1.2.0 is utilized in the coupling of the Icosa-
hedral Nonhydrostatic general circulation model. As its
name suggests, ESMF is a software framework for earth

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-019-0320-z&domain=pdf
http://orcid.org/0000-0003-2811-2082
mailto: arakawa@rist.jp
http://creativecommons.org/licenses/by/4.0/

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 2 of 17

system modeling (Hill et al. 2004). ESMF provides several
functions for various component models that make up the
earth system model, and it can flexibly couple component
models that have various grid systems.
C-Coupler2 has state-of-the-art functions supporting

variable vertical coordinates in time integration (this func-
tion is also supported by ESMF) and a user-friendly inter-
face using XML (XML is also supported by YAC) to deal
with complex couplings (Liu et al. 2018).
Scup was developed to target models of the Japanese

Meteorological Agency and Meteorological Research
Institute but has a general-purpose interface that can be
used for other models (Yoshimura and Yukimoto 2008).
Furthermore, MCT was developed as a basic software
library for constructing coupling software and cannot per-
form coupling alone. However, it can be thought of as
general-purpose coupling software (Larson et al. 2005;
Jacob et al. 2005). In addition to being used for CESM cou-
plers, MCT is also utilized as a basic library for construct-
ing the latest version of the OASIS coupler (OASIS3-
MCT, Craig et al. 2017).
These couplers have developed various functions in

response to the demands of component models that
progress in larger andmore complex directions. For exam-
ple, OASIS3-MCT, ESMF, and YAC support concurrent
and sequential coupling. OASIS3 and ESMF can generate
interpolation weights offline. For many of these couplers,
the diversity of grid systems that can be adapted has been
discussed, and that diversity is particularly noticeable in
YAC, ESMF, and OASIS3-MCT.
Jcup has also been developed for application in a variety

of models, but its approach is different from the existing
couplers.
These couplers support existing grid systems and inter-

polation methods and provide coupled computing envi-
ronments; however, to deal with future grid systems and
interpolation calculations that the software does not cur-
rently support, some kind of software modification will be
required. Meanwhile, Jcup is a library developed to cor-
respond to various grid systems and interpolation algo-
rithms without the need for futuremodification of its code
and enable coupled calculations of various patterns.
To achieve this goal, first, the general characteristics of

weather/climate models need to be considered as a tar-
get of a coupled simulation. These may be summarized as
follows:

• Each model has a grid structure suitable for the
physical state expressed by the model. In addition,
the optimum grid structure may change depending
on external factors, such as computer architecture.
For example, in the conventional global atmospheric
model, latitude and longitude grids and spectral
methods were used. However, to avoid an increase in

the calculation cost of Legendre transformations,
models using grid structures that differ from those in
conventional models, such as icosahedral grids,
Yinyang grids (Baba et al. 2010), and cubic grids
(Adcroft et al. 2004), have recently been developed.
Regarding the ocean model, grid point concentration
in the polar region (Arctic Ocean) is a classical
problem, which is typically resolved by the use of
stretch and tri-polar grids. Furthermore, river models,
for which an irregular grid system is used to express
the catchment along the river channel (Yamazaki
et al. 2014), might become a coupling target.

• The interpolation method between models varies
depending on the physical requirements of each
model and cannot be uniquely determined. The cases
in which the integration period is relatively short or
the system is not physically closed; it is unnecessary
to strictly satisfy conservativity, whereby, simple
linear interpolation might be sufficient. However, in
simulations that require long integration times and
have physically closed systems, such as climate
simulations, the preservation of physical quantities is
crucial, and interpolation algorithms that satisfy
conservativity are required. Furthermore, it can be
assumed that the physical quantity to be interpolated
or the interpolation algorithm itself might change
depending on the physical condition in the model, for
example, the solar altitude and coverage degree of ice.

• In many cases, coupled simulations entail
multiphysics and multiscale nonlinear calculations,
making computational bugs extremely difficult to
find. In complex-system simulations, results are
difficult to predict because of the nonlinearity of the
system and are complexly altered by slight changes in
the parameters. Therefore, even if there are bugs in
the program, their detection is generally difficult,
requiring intensive labor, except fatal bugs for which
the results would change radically.

To deal with such models, Jcup contains the following
two features.

• Correspondence of grid points in an interpolation
calculation is used as input information.

• Interpolation calculation code can be freely
implemented by the user.

In this paper, the design, implementation, and applica-
tion examples of Jcup are described. First, the structure
and justification for the design of Jcup is described. Next,
an implementation that realizes the above two features
is described. And finally, we clarify the usefulness of
the design adopted by Jcup in three cases: atmosphere-
ocean coupling, coupling of IO components, and coupling
between the seismic model and structure model.

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 3 of 17

Review
Overview of Jcup
First, the general features of Jcup are addressed. Like the
other couplers mentioned in the introduction (OASIS3-
MCT, ESMF, YAC), Jcup also supports concurrent and
sequential coupling. Figure 1 shows an example of such a
coupling pattern. There are three binaries, namely, A, B,
and C, in the figure. Component A is executed in binary
A, components B, C, and D are executed in binary B, and
component E is executed in binary C. In binary B, com-
ponent B is executed in all MPI processes. Subsequently,
component C is executed in certain processes, while com-
ponent D is executed in the other process in parallel. The
solid line in the figure indicates parallel exchange, and
the dotted line indicates sequential exchange. In reality, it
seems that there is no case where such complicated exe-
cution and data exchange patterns are required, but Jcup
is designed to deal with such complicated cases. The time
interval for data exchange is constant for each record of
data. The interval is set for each record of data through
the Jcup API subroutine in the initialization process. The
interface related to data exchange is detailed in Arakawa
et al. (2011). In this paper, we refer to Jcup as a “coupling
library,” rather than a “coupler,” because Jcup is delivered
as subroutine libraries.

Design philosophy
Relationship between research community and development
community
As mentioned in the introduction, coupling software is
roughly categorized as those targeting specific models
and those intended to be used generically without spec-
ifying a model. In the former case, the majority of the

coupling software development community is close to or
included in the model research and development com-
munity. The direction of model improvement is well
organized, and the development community also works
with limited partners. Consequently, the developers of
coupling software can respond quickly and appropriately
to changes in model components. However, in the case
of coupling software developed for general purpose use,
the relationship between the development entity and the
user community varies. For example, they can belong to
the same community, as in the case of Scup, they can
develop software independently without belonging to a
specific research community, as in the case of MCT, or
development can be promoted by maintaining a relatively
close relationship with multiple research institutions, as
in the case of OASIS. In particular, when the development
community does not have a relationship with a specific
research community and develops coupling software tar-
geting an unspecified number of models, the direction of
model improvement is not determined. In such a case,
the relationship between the research community and
the development community tends to be distant. From
the view of the research community, this means that the
required improvement of the coupling software accompa-
nying the improvement of their own model might not be
performed promptly or at all. Moreover, for research com-
munities, the coupler code is a black box, which means
that it is difficult to detect and trace a non-fatal bug.

Essential functions of coupling software
The essential functions of coupling software in the large-
scale parallel computing environment is as follows: (1)
coupling between two or more component models, (2)

Fig. 1 Example of complex coupling pattern. The solid line indicates parallel exchange, and the dotted line indicates serial exchange

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 4 of 17

appropriate timing, (3) performing appropriate time inter-
polation according to the time scale of each model, (4)
performing appropriate interpolation calculations accord-
ing to the grid shape, and (5) exchanging data between
appropriate nodes. Here, the condition that the time step
of each model is a divisor of the data exchange interval
is set. This condition seems to be reasonable in cou-
pling components such as atmospheric and ocean models
that involve large-scale phenomena and long- term, con-
stant interaction. In this case, the essential functions of
coupling software are to perform interpolation calcula-
tion and data exchange at appropriate times. Since the
characteristics of Jcup are related to data exchange and
interpolation calculation, the following sections focus on
these two characteristics in the explanation of the design
and implementation of Jcup.

Basic design of Jcup
Jcup is a general purpose coupler that does not cover spe-
cific models, and the relationship between the coupler
developer and user community is one-to-many and not
dense. In this case, the required design concepts can be
summarized as follows:

• Since Jcup is a black box for users, it is desirable to
minimize the possibility of bugs caused by the
coupler.

• Since Jcup is used over a wide range, it must respond
flexibly to various grid systems and interpolation
methods that exist or will be developed.

The design philosophy of Jcup is to realize the above-
mentioned two functions under these requirements.

• Data exchange Based on the implementation of Jcup,
we assumed that the spatial interpolation calculation
was performed by the receiving-side component.
Furthermore, we assumed that each component was
parallelized by region. In this case, data exchange
means that the value of each grid point of the sending
component is transmitted and received by an area
that requires its value in the receiving component,
that is, it uses the value of that point in the
interpolation calculation. Therefore, to perform
appropriate data exchange, information on the grid
point index of the sending-side component used for
calculating each grid point value of the receiving-side
component was necessary. The correspondence
between the grid point index of the sending-side
component and that of the receiving-side component
in the interpolation calculation is referred to as a
mapping table here. Moreover, since each
component is parallelized by region, it suffices that a
point index for each grid point is assigned to each
region of each component to perform the appropriate

data exchange. The problem here is how to obtain
the mapping table. In general coupling software, the
position of the grid points and the grid shape are
given as input information, and mapping tables and
interpolation coefficients are calculated in the
coupling software. This method, however, has the
following problems:

1. Coupling software can only deal with grid shapes
and interpolation algorithms that are already
installed, and portability/extensibility is poor.

2. Depending on the grid shape, it might be difficult
to eliminate the possibility of bug contamination,
for example, requiring complicated calculations or
accurate judgment considering the rounding error.

This can be a serious disadvantage for
general-purpose coupling software, for which there is
a distance between the software developer and users
and which is recognized as a black box by the user.
Therefore, Jcup does not calculate the mapping table
internally but uses the mapping table itself as input
information. This enables the elimination of
problems caused by the mapping table calculation
from the coupling software, as described above. The
idea of using the mapping table as input information
is not unique to Jcup; there are other coupling
software that can give a mapping table in addition to
grid information, such as OASIS3-MCT or YAC
coupler. What is significant about Jcup is not that the
mapping table can “also” be used as input
information but that input information is limited to
the mapping table only.
As a result, increases in the size and complexity of the
code of the coupling software are suppressed, and the
future extensibility and security of the software are
"clearly" secured. This is considered to be an essential
condition for an unspecified number of research
communities that cannot necessarily uniquely control
the tendency of a coupling software developer.

• Interpolation calculation
As with data exchange, in interpolation calculation, it
is important to ensure future extensibility and
portability and to eliminate the possibility of bug
contamination. For this purpose, the interpolation
calculation program should not be implemented as a
black box in Jcup but should be placed in a location
such that it can be controlled by the user. The
difference between the mapping table and the
interpolation calculation is that the former can be
calculated with a program independent of the model
before model execution, whereas the interpolation
calculation must be performed at each data exchange
step during model execution. This means that the

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 5 of 17

calculation performed during model execution as
part of the operation of the coupling software must
be placed under user control. To realize this in the
interpolation calculation, we ensured that the
interface subroutine was provided by the
coupling-software side, and the concrete
interpolation calculation code was implemented in
the interface subroutine by the user. The following
conditions were considered:

1. Interpolation algorithms used for one set of
coupling are not necessarily limited to one type but
may vary depending on data or other conditions.

2. Interpolation calculation is executed not only for
each type of data; it can also be computed by
combining multiple types of data, such as in
vector calculation.

Therefore, in the interface subroutine implementing
the interpolation calculation, it is indispensable to
have functions for identifying individual data points
and for simultaneously processing multiple kinds of
data. Conversely, if these functions are provided,
arbitrary interpolation calculation code can be
implemented with a high degree of freedom.

Implementation
As described in the previous section, the unique function
of Jcup is that the user can implement the spatial interpo-
lation calculation code. In this section, the data flow and
code structure for realizing this is explained.

Data flow
First, the data flow related to data exchange and interpo-
lation calculation is described. Here, in order to facilitate
understanding, an explanation is provided based on the
example of Fig. 2. In the figure, data are exchanged from
component A to component B. Both components have a
6× 6 grid, and the positions of the grid points are assumed
to be the same. Therefore, the interpolation calculation
is equal to a copy of the value for each grid point. The
red lines drawn on each grid represent the dividing line
of the region. In the figure, component A is divided into
six parts of size 2 × 3, and component B is divided into
three parts of size 1 × 3. The grid points of component
B are color-coded. The gray circles represent the masked
value. In this case, only the values of the grid points rep-
resented by the blue circle are meaningful and are to be
sent and received. In the figure, the data exchange and
interpolation calculation relating to rank 2 of component
B are shown in detail. The grid point indexes, required
by rank 2 of component B, are 33 on rank 3 of compo-
nent A, 28, 33, and 34 on rank 4, and 29, 30, 35, and
36 on rank 5. Therefore, these grid point values are sent
from ranks 3, 4, and 5 of component A to rank 2 of

component B. These values are received by rank 2 of com-
ponent B and passed to the interpolation subroutine in the
order of receipt. The interpolation calculation is executed
inside the interpolation subroutine(interpolated_data)
called from Jcup in the receiving-side component. In
this example, since the interpolation calculation is a data
copy from the grid point to the grid point, indicated
by the code below, it is sufficient to provide conver-
sion tables is and ir of the array indexes from iteration
index i.
do i = 1, N

R(ir(i)) = S(is(i))

end do

Initialization
The information necessary for the data exchange and
interpolation calculation is the following:

1. For the sending component, the rank numbers of the
receiving component that receives the value of each
grid point value held by a sending rank.

2. For the receiving component, the rank numbers of
the sending component that holds the value of the
sending-side grid point necessary for the
interpolation calculation.

3. The conversion tables representing the conversion
from the iteration index to the array indexes in the
interpolation calculation for each rank.

The first and second items of information can be cal-
culated from the correspondence table showing the rela-
tionship between the grid point indexes and the rank
number to which they belong (index-rank table), along
with the mapping table. The index-rank table can be eas-
ily constructed by gathering the grid point indexes of
each rank into one rank. Figure 3 shows the example
of how to calculate the rank of the target component.
The left square indicates the grid point indexes of rank 1
of component A. The center square is a mapping table,
and the right square is the index-rank table of target
component B. As shown in the figure, the rank number
of each grid point of the sending destination/receiving
source can be obtained immediately from the map-
ping table and the index-rank table of the “opponent
component.”
The third piece of information corresponds to is and ir,

described in the previous section. In Jcup, the interpola-
tion calculation is performed on the receiving component.
Thus, these tables can be calculated from the order of the
grid point indexes of each receive rank, mapping table,
rank number of the sending component, and order of
the grid point indexes within the send rank. In addi-
tion, the last two of these four conditions to calculate the
tables are obtained from the second of the three items of
information discussed above.

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 6 of 17

Fig. 2 Data exchange diagram. The gray circles represent masked value. Therefore, only the grid point value indicated by the blue circle is passed
from component A to component B

Therefore, the information necessary to perform the
data exchange and interpolation calculation can be con-
structed from the grid point indexes held by each
rank and from the mapping table. Jcup provides APIs,
jcup_def_grid and jcup_set_mapping_table, to obtain this
information (Table 1). Users can provide information to
Jcup by calling these subroutines at the appropriate steps
in the initialization process.

Time integration
There are only three types of Jcup subroutines that a
user must call during the time integration: jcup_set_time,
jcup_put_data, and jcup_get_data.
Figure 4 shows an overview of these three routine

calls and data processing within Jcup. In the figure, blue
squares indicate the API routines. Green squares refer
to the data processing in Jcup. The orange square rep-
resents the calling of the interpolation subroutine inter-
polate_data in which the interpolation code must be
implemented by users.
Jcup_put_data is a subroutine for applying the data to

Jcup. The argument “varp” is an identifier of the data,
and a unique value is set in advance by the initialization
subroutine jcup_def_varp. Jcup_get_data is a subroutine
for obtaining the data from Jcup. Same as jcup_put_data,
the argument “varg” is an identifier of the data. A unique
value is set in advance by the initialization subroutine

jcup_def_varg. The functions of both subroutines com-
prise only put/get data to/from data buffer in Jcup, and
almost all functions for exchanging the data are performed
inside the subroutine jcup_set_time.
Subroutine jcup_set_time is expected to be called at the

beginning of each time step. The argument “time” refers
to the current model time(YYYY/MO/DD/HH/MM/SS)
and “deltaT” is the �T of the current time step. The
left side of the figure shows the data sending process. At
the beginning of the subroutine jcup_set_time, a judg-
ment is made for each data record as to whether it is
time to send. The data judged to be sent are extracted
from the buffer and rearranged based upon the first
piece of information listed above. After the rearrange-
ment, the data are sent to the appropriate ranks of the
receive-component.
The right side of the figure shows the data-receiving

process. Similar to the sending side, at the beginning
of the subroutine, a judgment is made for each data
record as to whether it is time to receive. The data
judged to be received are received based upon the
second piece of information from the list and rear-
ranged into one array. After the receive-rearranging
loop, the data are passed to the interpolation subrou-
tine interpolate_data, and after the interpolation based
on user implementation, the result (iA) is stored in the
data buffer.

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 7 of 17

Fig. 3 Example of how to calculate the rank of target component. Left square indicates the grid point indexes of rank 1. Center square is a mapping
table and right square is an index-rank table of target component

Interpolation
The subroutine interpolate_data is the realization of a key
concept of Jcup; thus, its interface and implementation
example are explained in this section. The arguments of
this subroutine are listed in Table 2. Send_comp_name
and recv_comp_name are the names of send and receive
components, respectively. The argument mapping_tag is
the identifier of the mapping table set by the initializa-
tion subroutine set_mapping_table. The arguments sn1
and sn2 and rn1 and rn2 indicate the size of arrays
send_data and recv_data, respectively. Jcup treats the

spatial dimension to be interpolated as one dimension.
For example, assuming horizontal interpolation, sn1 and
rn1 are the number of horizontal grid points of the
send- and receive-components, respectively. The argu-
ments, sn2 and rn2, representing the size of the array of
the second dimension, ordinally refer to the number of the
vertical layer. The last argument, data_tag, is an identifier
for identifying the data. The value of this argument is set
at the initialization subroutine jcup_def_varg by the user.
For future extension, data_tag is to be given as an array,
but each value of the array is the same.

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 8 of 17

Table 1 APIs for grid setting

Subroutine name Argument type Argument name Description

jcup_def_grid Integer, intent(IN) grid_index(:) Array of grid index
Character(len=*), ,intent(IN) comp_name Name of component
Character(len=*), intent(IN) grid_name Name of grid
Integer, optional, intent(IN) num_of_vgrid Number of vertical layers

jcup_set_mapping_table character(len=*), intent(IN) my_comp_name Name of my component
Character(len=*), intent(IN) send_comp_name Name of send component
Character(len=*), intent(IN) send_grid_name Name of send grid
Character(len=*), intent(IN) recv_comp_name Name of receive component
Character(len=*), intent(IN) recv_grid_name Name of receive grid
Integer, intent(IN) mapping_tag Identifier of the mapping table
Integer, optional, intent(IN) send_grid_index(:) Index of send grid
Integer, optional, intent(IN) recv_grid_index(:) Index of receive grid

The interpolation calculation code will vary depend-
ing on the model, data, etc., but in a simple and typi-
cal case, the value of a grid point of receive-component
R is calculated from the values of some grid points of
send-component S and interpolation coefficients C, as
expressed in the formula below.

R =
n∑

i=1
Si ∗ Ci (1)

In this case, the calculation is expressed as follows.
Do i = 1, ni

R (ir (i)) = R (ir (i)) + S (is (i))*Cl(i)

End do

A simple implementation of the subroutine inter-
polate_data on this example is shown in Fig. 5.
Jcup_get_local_operation_index(Table 3) is an API

subroutine for obtaining number of iterations ni and
index conversion tables is and ir from arguments rname,
sname, and mapping_tag.
The example shown by Fig. 2 was a data copy case,

and an interpolation coefficient was not needed. How-
ever, in the case considered here, an interpolation coef-
ficient should be taken into account. As for the inter-
polation coefficient, it is assumed that there is one
coefficient for each correspondence of the grid points
listed in the mapping table. In this case, it is only nec-
essary to extract the interpolation coefficient used for
the interpolation calculation of the local region from
the array of interpolation coefficients of the global
region, and the subroutine for this, jcup_get_local_coef,
is provided by Jcup API (Table 4). In the example
of Fig. 5, Cg means an array of interpolation coeffi-
cient for the global region that is calculated in advance

Fig. 4 Overview of API routine calls and data processing within Jcup. Blue squares indicate the API routines. Green squares mean data processing in
Jcup. Orange square is a calling of interpolation subroutine interpolate_data in which the interpolation code must be implemented by users

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 9 of 17

Table 2 Interface of the interpolation subroutine interpolate_data

Subroutine name Argument type Argument name Description

interpolate_data Character(len=*), Intent(IN) recv_comp_name Name of receive component

Character(len=*), intent(IN) send_comp_name Name of send component

Integer, intent(IN) mapping_tag Identifier of mapping table

Integer, intent(IN) sn1, sn2 Array size of send_data

Real(kind=8), ,intent(IN) send_data(sn1, sn2) Array of send data

Integer, intent(IN) rn1, rn2 Array size of receive data

Real(kind=8), intent(INOUT) recv_data(rn1, rn2) Array of receive data

Integer, intent(IN) num_of_data Number of data

Integer, intent(IN) tn Number of data tag

Integer, intent(IN) data_tag(tn) Array of data tag

and stored in the module “mod_common.” By calling
the subroutine jcup_set_local_coef, localized interpola-
tion coefficient Cl is obtained. In the figure, for sim-
plicity, these subroutines are called in interpolate_data.
However, since these subroutines need only to be called
once, they are usually called during the initialization
process.

Application case studies
In this section, we describe cases where Jcup was applied,
thereby showing that the Jcup features mentioned above
are effective for coupling various models.

MIROC coupling
The first case is the coupling of the atmospheric and
ocean models in the climate model MIROC. MIROC is
a global climate model jointly developed by the Univer-
sity of Tokyo, Japan Agency for Marine-Earth Science and
Technology and the Institute for Environmental Studies. It
is a representative climate model in Japan, and its results
have been referenced in the Intergovernmental Panel on
Climate Change report(Watanabe et al. 2010). MIROC
consists of four subcomponents: atmosphere, ocean, land
surface, and rivers, and the atmospheric model and ocean
model are coupled by MIROC’s proprietary coupling

Fig. 5 A simple implementation example of the subroutine interpolate_data

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 10 of 17

Table 3 Interface of jcup_get_local_operation_index

Subroutine name Argument type Argument name Description

jcup_get_local_operation_index character(len=*), intent(IN) recv_comp_name Name of receive component

Character(len=*), intent(IN) send_comp_name Name of send component

Integer, intent(IN) mapping_tag Mapping table indentifier

Integer, intent(OUT) ni Number of local iterations

Integer, pointer is(:) Conversion table of send grid

Integer, pointer ir(:) Conversion table of receive grid

software. The first test case in the development of Jcup is
to replace the original coupling code of MIROCwith Jcup.
Importantly, when replacing the coupling code with Jcup,
the calculation results do not change before or after the
replacement, that is, the results of both are identical at the
binary level. By guaranteeing matching at the binary level,
there will be no bug in Jcup internally or in the coupling
code using Jcup.
In the coupling of the original MIROC code, the cou-

pling procedure consists of three steps: (1) collecting the
data on the root processor and transmitting it to the
root processor of the other component, (2) executing the
interpolation calculation on the root processor of the
receiving-side component, and (3) distributing the result
to each rank. Meanwhile, in Jcup, data exchange is per-
formed local-to-local, and the interpolation calculation is
individually performed for each rank on the receiving side.
Since there is no change in the values during data trans-

fer, the interpolation calculation must at least be the same,
including the calculation order, to match the results at the
binary level.
This was made possible by the design of Jcup in that

users can arbitrarily implement an interpolation calcula-
tion code. A part of the interpolation calculation code
implemented in MIROC is shown in Fig. 6.
The interpolation code is composed of calculation for-

mulas, including branching by IF statement and the addi-
tion andmultiplication of constants. This code was ported
to Jcup’s interpolation calculation subroutine interpo-
late_data with only minor modifications, such as chang-
ing the name of the variable. As a result, it was possi-
ble to replace the coupling code of MIROC with Jcup
while maintaining binary compatibility. (This coupling

was conducted as a Jcup test, and Jcup is not used in the
current MIROC (MIROC6) atmosphere-ocean coupling.)

NICAM-COCO coupling
As a second example, we describe coupling of another
atmospheric model and ocean model. The target atmo-
spheric model is NICAM. NICAM is a global atmo-
spheric model that uses a non-hydrostatic equation sys-
tem (Tomita and Satoh 2004; Satoh et al. 2008; Satoh
et al. 2014). The discretization method is a finite vol-
ume method, and the grid system employs an icosahedral
grid. This model has been mainly utilized for research on
phenomena with time scales of several days to months,
such as typhoons and MJO, and in such research, simu-
lation is carried out with the atmosphere-only model by
specifying the sea surface temperature (SST) or assum-
ing a slab ocean model (Miyakawa et al. 2014). However,
NICAM is expected to be applied not only to such short-
to medium- term simulations but also to climate simu-
lations with time scales of several decades to centuries
(Kodama et al. 2015; Haarsma et al. 2016). In such long-
term simulations, although the current simulations are
conducted with the atmosphere-only model under the
specified sea surface temperature (SST) condition, it is
natural to extend NICAM to be coupled with an ocean
model for use as an atmosphere-ocean coupled model to
internally reproduce SST in the model. The ocean model
coupled to NICAM in this study was COCO (Hasumi
2006). COCO is a global ocean model that uses the
Boussinesq approximate hydrostatic equation and a gen-
eral orthogonal coordinate system. The version of COCO
used for this coupling adopts the tri-polar grid. The tri-
polar grid has an irregular grid shape, such that the North

Table 4 Interface of jcup_set_local_coef

Subroutine name Argument type Argument name Description

jcup_set_local_coef character(len=*), intent(IN) recv_comp_name Name of receive component

Character(len=*), intent(IN) send_comp_name Name of send component

Integer, intent(IN) mapping_tag Mapping table indentifier

Real(kind=8), intent(IN) Cg(:) Global coefficient

Real(kind=8), pointer Cl(:) Local coefficient

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 11 of 17

Fig. 6 A part of MIROC interpolation code. Owing to the design of
Jcup, this code could be ported directly to the Jcup interpolation
subroutine

pole is stretched to the North American and Eurasian con-
tinents. In fact, a study using the NICAM-COCO coupled
model with Jcup has already been conducted byMiyakawa
et al. (2017).
In this way, both NICAM and COCO are irregular grid-

system models covering a spherical surface, and a large
number of calculations are required to determine the
grid point correspondence and interpolation coefficients
necessary for coupling. This is because it is necessary
to search for polygons, including individual grid points,
in the calculation of the grid correspondence. In addi-
tion, the calculation of the interpolation coefficients must
account for the preservation of water, energy balance, etc.,
during the time integration. An interpolation algorithm
that satisfies the preservations is formulated by Jones
(1999). According to Jones, the interpolation coefficient is
represented by the area ratio of the overlapping portion
of the polygon formed by each grid point. The calcula-
tion algorithm and execution performance are reported
in Arakawa et al. (2014). As reported in that paper, a
large number of calculations are required to determine the
mapping table and coefficients. Meanwhile, in meteoro-
logical simulations, the grid shape is generally constant,
irrespective of time, and the pattern of resolution is also
generally limited. For example, in NICAM, there is a con-
straint condition in which the number of grid points is
specified by the power of two, and the pattern of resolu-
tion that can normally be employed is limited to five to six
patterns.

In summary, in NICAM-COCO coupling, it can be
said that the mapping table calculation might be compu-
tationally expensive compared with processing the pre-
calculated table, and the required pattern is limited. For
these reasons, the design of Jcup in which the mapping
table is calculated in advance and used as input informa-
tion is well adapted to NICAM-COCO coupling.
In the experiment, three cases were considered accord-

ing to the number of horizontal grid points of NICAM,
which could be calculated by the function 10 ∗ (2glevel)2.
The correspondence between the cases and grid points is
shown in Table 5
Experimental conditions are listed in Table 6. The con-

ditions of COCO were fixed in all experiments. Size m52
corresponded to the number of horizontal grid points
360 (West– East) × 256 (South–North). The number of
the process was 16, and �T was 15 min. The number
of NICAM processes was represented by the r-level as
equation 10 ∗ 4rlevel. �T and duration time are shown in
the table. The data exchange interval is 1 h.
The results of the performance measurement are shown

in Fig. 7. The bar graph indicates the number of days
that can be simulated by the one day calculation. The
line graph is a scaling factor on the basis of 10 (or 40)
processes.
The most notable difference between the cases was the

state of the change in the scaling factor. In case 1, the
scaling factor was reduced according to the number of
processors, but it was almost constant in case 3.
Two reasons can be postulated for this difference:

1. Efficiency of NICAM itself
The number of grid points per processor was smaller
in case 1 than in case 2 or 3, as shown in Table 7.
Therefore, the calculation time, which was scalable,
became relatively short, and the non-parallelized
process became longer. This could have caused the
low scalability.

2. Load imbalance between NICAM and COCO
In case 1, the time step calculation of NICAM was
faster, and NICAM had to wait for data from COCO.
Therefore, the execution time did not decrease with
an increase in the number of processors. In contrast,
in case 3, NICAM did not need to wait for the data.
Therefore, the execution time was determined by the
number of processors assigned to NICAM.

Table 5 Correspondence between the cases and grid points

Case glevel Grid points

Case 1 5 10240

Case 2 7 163840

Case 3 9 2621440

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 12 of 17

Table 6 Experimental conditions of NICAM–COCO coupling

Case 1 Case 2 Case 3

COCO Size m52 m52 m52 m52 m52 m52 m52 m52 m52

Process 16 16 16 16 16 16 16 16 16

�T[min] 15 15 15 15 15 15 15 15 15

NICAM glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

Process 10 40 160 10 40 160 40 160 640

�T[min] 15 15 15 4 4 4 1 1 1

Duration time [day] 10 10 10 2 2 2 1 1 1

To confirm these assumptions, the execution time of
NICAM’s time integration loop is listed in Table 8. “Main
ALL” is the execution time of the entire time-integration
loop. “Coupler Put” is the time required to move the data
fromNICAM to the coupler, and “Coupler Get” is the time
required for the reverse process. “Coupler Exchange” is
the time required for the data exchange; the load imbal-
ance is included in this time. “Atmos” is the calculation
time without coupling.
To examine the scalability of NICAM itself, we cal-

culated the scalability factor from the execution time of
“Atmos”. The result is shown in Fig. 8. In case 1, the

scalability factor decreased, even though there was no
data exchange.
However, it should be noted that with the examina-

tion of the load imbalance, the time “Coupler Exchange”
in case 1 was significantly longer than that in the other
cases. This suggests that the reception waiting occurred
on the NICAM side during the data exchange. The latency
became larger as the execution time was reduced so as
to keep the time of “Main All” constant. This constant
time was determined by the execution time of COCO,
and it can be concluded that the decrease in the parallel
efficiency was mainly caused by the load imbalance.

Fig. 7 Results of performance measurement on NICAM–COCO coupling. Bar graph is the number of days that can be simulated in 1 day’s
calculation. Line graph is a scaling factor

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 13 of 17

Table 7 Number of horizontal grid points per processor

Case 1 Case 2 Case 3

glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

The number of grid points 1024 256 64 16384 4096 1024 65536 16384 4096

In contrast to case 1, the scaling factor in high-
resolution case 3 remained mostly constant. Therefore, it
can be concluded that the effect of coupling was minimal.

NICAM-IO coupling
The coupling of NICAM and IO components shows
that “users can implement their own interpolation code,”
which is one of the features of Jcup features that worked
effectively.
As mentioned above, NICAM is an icosahedral grid

model. This grid system may be inconvenient for post-
process visualization and analysis. This is because many
of the visualization and analysis tools that are currently
widely available are predicated on the latitude-longitude
grid (although the situation is improving).
For this reason, a program was developed to convert the

results of NICAM into a latitude-longitude grid. This pro-
gram is called NICAMIO. The overview of NICAMIO is
shown in Fig. 9. In the figure, the area surrounded by the
blue square represents NICAMIO.
NICAMIO operates in parallel with NICAM in multi-

ple processes, simultaneously converting the result to the
latitude-longitude grid with the calculations of NICAM
and outputting them to files. Jcup is utilized to couple
NICAM and NICAMIO, and the grid conversion code is
implemented in the Jcup interpolation subroutine inter-
polate_data.
The interpolation algorithms implemented in

NICAMIO are the following:

1. Area weighting method
2. Distance weighting method by three grid points
3. Nearest neighbor method

Among these three methods, the nearest neighbor
approximation is a method that was later added owing

to user request, and the interpolation code implementa-
tion is an example in which Jcup’s feature that interpola-
tion code can be freely implemented worked effectively.
Figure 10 illustrates the outline of the distance weight-
ing method and the nearest neighbor method used in
NICAMIO. The values of the latitude-longitude grid rep-
resented by blue circles are calculated from the three
points of the NICAM grid represented by orange squares
and the coefficients that are inversely proportional to the
distances. Here, the grid point indexes and coefficients are
calculated and given in advance. For the nearest neighbor
approximation method, the value with the largest coeffi-
cient among the three coefficients in the distance weight
method is adopted. To be precise, this algorithm does not
necessarily obtain the nearest value. This is because when
the grid is irregular, there may be points closer to the three
points used in the calculation. Nevertheless, this three-
point method was adopted because it is not necessary
to search for the nearest point exactly, and the accuracy
required by the user is sufficient. In this way, the design
that the interpolation code can be freely implemented has
made it possible to flexibly respond to user needs.

Seismicmodel-structuremodel coupling
The coupling of the seismic model and the structure
model can be easily implemented, depending on the con-
ditions, although the model grid is complex. The struc-
tural model used here is FrontISTR ++, which has an
unstructured grid employing the finite element method
(Okuda 2019), and the seismic model is Seism3D, which
is a finite difference model with a regular rectangular grid
(Furumura 2005). The coupled calculation of these mod-
els involves the conversion of the ground motion speed
calculated by Seism3D into the displacement by Jcup and
transmission to FrontISTR++, where it is considered to

Table 8 Execution time of NICAM (s)

Case 1 Case 2 Case 3

glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

Main ALL 386 265 258 2096 564 177 19070 4379 1318

Coupler Put 2 3 3 3 12 6 305 127 106

Coupler Exchange 36 114 172 4 1 1 18 17 3

Coupler Get 1 2 3 1 1 1 2 6 19

Atmos 338 141 75 2039 538 163 17613 3969 1078

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 14 of 17

Fig. 8 Execution time and scaling factor of “Atmos.” Bar graph illustrates execution time (s). Line graph represents scaling factor

vibrate the building (Matsumoto et al. 2015). Figure 11
shows the grid used by the structure model for this calcu-
lation. The grid is largely divided into a part representing
the building and a part representing the ground, and the
ground grid is embedded in the seismic model grid. In

this case, the data exchange is one-way, from the seismic
model to the structure model, and physical quantity con-
servation in the interpolation calculation does not have
to be strict, in contrast to the NICAM-COCO case. The
seismic model has a regular rectangular grid in which

Fig. 9 The overview of IO component for NICAM. A blue square indicates NICAMIO process

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 15 of 17

Fig. 10 The interpolation method from NICAM grid to lat-lon grid.
Orange squares indicate NICAM grid points and blue circles indicate
lat-lon grid points. The lat-lon grid point value is calculated from the
values of the vertices of the triangle of the NICAM grid in which the
point is included

Fig. 11 Grid shape of the structure model FrontISTR++ used in the
seismic model-structure model coupling. A grid representing a
building is set at the center of the grid representing the ground

�X, �Y , and �Z are constant. Therefore, the grid point
indexes of the seismic model surrounding the individual
grid points of the structure model can be easily calcu-
lated, and the interpolation coefficient can be calculated
by tri-linear interpolation from the eight grid points of the
seismicmodel surrounding the grid points of the structure
model. As shown in this case, by using a mapping table as
an input, even if the model grid is unstructured and has
a complicated shape, it is possible to easily couple them
depending on the conditions.

Conclusions
Features and future of a coupling library Jcup
In this paper, we discussed the design concept and imple-
mentation of a coupling library, Jcup, to indicate how
coupling software should be implemented under the con-
ditions listed below. The conditions are as follows: (1)
developer does not belong to a specific research com-
munity, and the software is used generically. (2)Coupling
software must adapt to changes in the grid system and
interpolation algorithm, and the possibility of bug con-
tamination should be as low as possible.
Conceptual answers to these issues can be summarized

as follows: (1) dividing the function of the coupling soft-
ware into those that change the values and those that do
not change the values. (2) Enabling users to manage and
implement the code in which values are changed as a glass
box.
Based upon this basic concept, Jcup is constructed so

that (1) correspondence relations of grid points in the
interpolation calculation (mapping table) are utilized as
input information, and (2) interpolation calculation codes
can be freely implemented by the user.
Through these features, Jcup has high flexibility with

respect to coupling various components, but there are
restrictions on the timing of data exchange. That is, data
exchange is only performed at predetermined time inter-
vals for each element of data, and the model time must
match each exchange time. This constraint might not
be a problem when the time constant of interaction is
long, such as in atmosphere-ocean coupling. However,
when component �T varies irregularly, and interaction is
required on such a time interval, the current Jcup can-
not cope. Therefore, the next modification for Jcup is to
remove this restriction on the data exchange interval and
enable the coupling at an arbitrary time interval.

Concluding remark
Jcup is not software for easily coupling specific models
but is designed and implemented as a library that pro-
vides a wide range of users with limited functions. Such a
minimal approach would not necessarily match the direc-
tion of development of many modern coupling software.
However, considering the continuity and safety of usage

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 16 of 17

under a specific relationship between the developer and
user communities, we think that the design philosophy of
Jcup has a certain generality and usefulness.

Acknowledgements
This research was supported by the Integrated Research Program for
Advancing Climate Models (TOUGOU program) of the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and is supported by the Japan
Science and Technology Agency/Core Research for Evolutional Science and
Technology, and the Open Source Infrastructure for Development and
Execution of Large-Scale Scientific Applications on Post-Peta-Scale
Supercomputers with Automatic Tuning. This research used the
computational resources of the High Performance Computing Infrastructure
(HPCI) system provided by the Information Technology Center of the University
of Tokyo, through the HPCI System Research Project (Project ID:hp120190).

Authors’ contributions
T.A is in charge of designing and coding Jcup and has written this paper. T.I is
a code reviewer of Jcup and also implemented a coupling code of
NICAM-COCO and NICAM-IO. Y.H conducted the coupled calculation of
NICAM and COCO and measured and evaluated its performance. M.S was the
development manager of NICAM and led the development of a coupled
system between NICAM and other components. All authors read and
approved the final manuscript.

Funding
This research was supported by the Integrated Research Program for
Advancing Climate Models (TOUGOU program) of the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and is supported by the Japan
Science and Technology Agency/Core Research for Evolutional Science and
Technology, and the Open Source Infrastructure for Development and
Execution of Large-Scale Scientific Applications on Post-Peta-Scale
Supercomputers with Automatic Tuning.

Availability of data andmaterials
The version of Jcup described in this paper is v.3.150100. Jcup code
(doi:10.5281/zenodo.1297240) is available from github website. In addition, for
readers who want to tray Jcup, sample programs
(doi:10.5281/zenodo.1297250) also available from github website. The urls of
github are as follows. https://github.com/Jcuplib/jcup/releases/tag/3.150100.
https://github.com/Jcuplib/jcup_sample/releases/tag/3.150100.

Competing interests
The authors declare that they have no competing interest.

Author details
1Research Organization for Information Science and Technology, 1-18-16
Hamamatsu-cho, Minato-ku, Tokyo 105-0013, Japan. 2Japan Agency for
Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku,
Yokohama 236-0001, Japan. 3National Institute for Environmental Studies, 16-2
Onogawa, Tsukuba, Ibaraki 305-8506, Japan. 4Atmosphere and Ocean
Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba
277-8564, Japan.

Received: 23 May 2019 Accepted: 30 December 2019

References
Adcroft A., Campin J.-M., Hill C., Marshall J. (2004) Implementation of an

atmosphere-ocean general circulation model on the expanded spherical
cube. Mon. Weather Rev. 132:2845–2863

Arakawa T., Yoshimura H., Saito F., Ogochi K. (2011) Data exchange algorithm
and software design of KAKUSHIN coupler Jcup. Procedia Comput. Sci.
4:1516–1525

Arakawa T., Inoue T., Satoh M. (2014) Performance evaluation and case study of
a coupling software ppopen-math/mp. Procedia Comput. Sci. 29:924–935.
https://doi.org/10.1016/j.procs.2014.05.083

Baba Y., Takahashi K., Sugimura T., Goto K. (2010) Dynamical core of an
atmospheric general circulation model on a yin-yang grid. Mon. Weather
Rev. https://doi.org/10.1175/2010MWR3375.1

Craig A., Valcke S., Coquart L. (2017) Development and performance of a new
version of the OASIS coupler OASIS3mct3.0. Geosci. Model Dev.
10:3297–3308. https://doi.org/10.5194/gmd-10-3297-2017

Furumura T. (2005) Large-scale parallel simulation of seismic wave
propagation and string ground motion for the past and future
earthquakes in Japan. J. Earth Simul. 3:29–38

Haarsma R. J., Roberts M., Vidale P. L., Senior C., Bellucci A., Corti S., Fuckar N.,
Guemas V., von Hardenberg J., Hazeleger W., Kodama C., Koenigk T., Leung
R., Lu J., Luo J.-J., Mao J., Mizielinsky M., Mizuta R., Nobre P., Satoh M.,
Scoccimarro E., Semmler T., Small J., von Storch J.-S. (2016) High resolution
model intercomparison project (highresmip v1.0) for cmip6. Geosci. Model
Dev. 9:4185–4208. https://doi.org/10.5194/gmd-2016-66

Hanke M., Redler R., Holfeld T., Yastremsky M. (2016) Yac 1.2.0: new aspects for
coupling software in earth system modelling. Geosci. Model Dev.
9:2755–2769. https://doi.org/10.5194/gmd-9-2755-2016

Hasumi H. (2006) CCSR Ocean Component Model (COCO) Version 4.0. Center
for Climate System Research Report. vol 25:103. https://ccsr.aori.u-tokyo.ac.
jp/~hasumi/COCO/coco4.pdf

Hill C., DeLuca C., Balaji V., Suarez M., DaSilva A., ESMFJointSpecificationTeam
(2004) The architecture of the earth system modeling framework. Comp.
Sci. Eng. 6:12–28

Jacob R., Larson J., Ong E. (2005) Mxn communication and parallel
interpolation in community climate system model version 3 using the
model coupling toolkit. Int. J. High Perform. Comput. Appl. 19(3):293–307.
https://doi.org/10.1177/1094342005056116

Jones P. H. (1999) First- and second-order conservative remapping schemes
for grids in spherical coordinates. Mon. Weather Rev. 127:2204–2210

Kodama C., Yamada Y., Noda A. T., Kikuchi K., Kajikawa Y., Nasuno T., Tomita T.,
Yamaura T., Takahashi T. G., Hara M., Kawatani Y., Satoh M., Sugi M. (2015) A
20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc.
Japan 93:393–424. https://doi.org/10.2151/jmsj.2015-024

Larson J., Jacob R., Ong E. (2005) The model coupling toolkit: a new Fortran90
toolkit for building multiphysics parallel coupled models. Int. J. High
Perform. Comput. Appl. 19(3). https://doi.org/10.1177/1094342005056115

Liu L., Zhang C., Li R., Wang B., Yang G. (2018) C-coupler2: a flexible and
user-friendly community coupler for model coupling and nesting. Geosci.
Model Dev. 11:3557–3586. https://doi.org/10.5194/gmd-11-3557-2018

Matsumoto M., Arakawa T., Kitayama T., Mori F., Okuda H., Furumura T.,
Nakajima K. (2015) Multi-scale coupling simulation of seismic waves and
building vibrations using ppopen-hpc. Procedia Comput. Sci.
52:1514–1523. https://doi.org/10.1016/j.procs.2015.05.341

Miyakawa T., Satoh M., Miura H., Tomita H., Yashiro H., Noda A. T., Yamada Y.,
Kodama C., Kimoto M., Yoneyama K. (2014) Madden-Julian Oscillation
prediction skill of a new-generation global model. Nat. Commun. 5:3769.
https://doi.org/10.1038/ncomms4769

Miyakawa T., Yashiro H., Suzuki T., Tatebe H., Satoh M. (2017) A Madden-Julian
Oscillation event remotely accelerates ocean upwelling to abruptly
terminate the 1997/1998 super El Nino. Geophys. Res. Lett. 44:9489–9495.
https://doi.org/10.1002/2017GL074683

Okuda H. (2019) Nonlinear structual analysis open software FrontISTR. https://
frontistr-commons.gitlab.io/FrontISTR/manual_en/index.html

Satoh M., Matsuno T., Tomita H., Miura H., Nasuno T., Iga S. (2008) J. Comput.
Phys. Spec. Issue Predicting Weather Clim. Extreme Events 227:3486–3514.
https://doi.org/10.1016/j.jcp.2007.02.006

Satoh M., Tomita H., Yashiro H., Miura H., Kodama C., Seiki T., Noda A. T.,
Yamada Y., Goto D., Sawada M., Miyoshi T., Niwa Y., Hara M., Ohno T., Iga
S-i., Arakawa T., Inoue T., Kubokawa H. (2014) The non-hydrostatic
icosahedral atmospheric model: description and development. Prog. Earth
Planet. Sci.:1–18. https://doi.org/10.1186/s40645-014-0018-1

Tomita H., Satoh M. (2004) A new dynamical framework of nonhydrostatic
global model using the icosahedral grid. Fluid Dyn. Res. 34:357–400

Valcke S., Budich R., Carter M., Guilyardi E., Foujols M.-A., Lautenschlager M.,
Redler R., Steenman-Clark L., Wedi N (2006) The PRISM Software Framework
and the OASIS Coupler. In: Hollies A. J., Kariko A. P. (eds). (ACCESS) - Changes
and Opportunities, BMRC Research Report. Bur. Met., Australia. pp 132–140

Valcke S. (2013) The OASIS3 coupler: a European climate modelling
community software. Geosci. Model Dev. 6:373–388. https://doi.org/10.
5194/gmd-6-373-2013

Washington W. M., Buja L., Craig A. (2009) The computational future for climate
and Earth system models: on the path to petaflop and beyond. Phil. Trans.
R. Soc. A 367:833–846

https://github.com/Jcuplib/jcup/releases/tag/3.150100
https://github.com/Jcuplib/jcup_sample/releases/tag/3.150100
https://doi.org/10.1016/j.procs.2014.05.083
https://doi.org/10.1175/2010MWR3375.1
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.5194/gmd-2016-66
https://doi.org/10.5194/gmd-9-2755-2016
https://ccsr.aori.u-tokyo.ac.jp/~hasumi/COCO/coco4.pdf
https://ccsr.aori.u-tokyo.ac.jp/~hasumi/COCO/coco4.pdf
https://doi.org/10.1177/1094342005056116
https://doi.org/10.2151/jmsj.2015-024
https://doi.org/10.1177/1094342005056115
https://doi.org/10.5194/gmd-11-3557-2018
https://doi.org/10.1016/j.procs.2015.05.341
https://doi.org/10.1038/ncomms4769
https://doi.org/10.1002/2017GL074683
https://frontistr-commons.gitlab.io/FrontISTR/manual_en/index.html
https://frontistr-commons.gitlab.io/FrontISTR/manual_en/index.html
https://doi.org/10.1016/j.jcp.2007.02.006
https://doi.org/10.1186/s40645-014-0018-1
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-6-373-2013

Arakawa et al. Progress in Earth and Planetary Science (2020) 7:6 Page 17 of 17

Watanabe M., Suzuki T., O’ishi R., Komuro Y., Watanabe S., Emori S., Takemura T.,
Chikira M., Ogura T., Sekiguchi M., Takata K., Yamazaki D., Yokohata T.,
Nozawa T., Hasumi H., Tatebe H., Kimoto M. (2010) Improved climate
simulation by MIROC5: mean states, variability, and climate sensitivity. J.
Clim. 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1

Yamazaki D., Sato T., Kanae S., Hirabayashi Y., Bates P. D. (2014) Regional flood
dynamics in a bifurcating mega delta simulated in a global river model.
Geophys. Res. Lett. 41:3127–3135. https://doi.org/10.1002/2014GL059774

Yoshimura H., Yukimoto S. (2008) Development of a simple coupler (Scup) for
earth system modeling. Pap. Met. Geophys. 59:19–29

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1175/2010JCLI3679.1
https://doi.org/10.1002/2014GL059774

	Abstract
	Keywords

	Introduction
	Review
	Overview of Jcup
	Design philosophy
	Relationship between research community and development community
	Essential functions of coupling software
	Basic design of Jcup

	Implementation
	Data flow
	Initialization
	Time integration
	Interpolation

	Application case studies
	MIROC coupling
	NICAM-COCO coupling
	NICAM-IO coupling
	Seismic model-structure model coupling

	Conclusions
	Features and future of a coupling library Jcup
	Concluding remark

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

