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Abstract

A comprehensive validation of three satellite precipitation datasets (SPDs), including (1) the Climate Prediction
Center Morphing algorithm (CMORPH), (2) Global Satellite Mapping of Precipitation (GSMaP) Reanalysis, and (3)
Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TRMM) 3B42, was conducted using the rain
gauge-based Vietnam Gridded Precipitation dataset (VnGP) and rain gauge station data for Central Vietnam. The
three SPDs were compared and evaluated for two contrasting topographic regions, i.e, the Vietnam Central
Highlands (VCH) and the Vietnam Central Coast (VCC), during the rainy seasons from 2001 to 2010 at different
spatial (grid and regional) and temporal (daily and monthly) scales. Widespread heavy rainfall (WHR) days caused by
the Northeast Winter Monsoon (NM), the Inter-tropical Convergence Zone (ITCZ), and tropical cyclones (TCs) were
also identified, and the accuracies of the SPDs in detecting heavy rainfall during the WHR days were evaluated.
TRMM was shown to exhibit advantages over the other SPDs, regardless of the spatial and temporal scales.
Although the CMORPH and GSMaP datasets appeared to correlate moderately well with the VnGP dataset and
proved able to capture the spatial distribution of rainfall characteristics in the VCC, they significantly underestimated
rainfall in the VCH. Regarding the capability to reproduce WHR events, the three SPDs exhibited better performance
for TCs and the ITCZ than for the NM. TRMM exhibited the best performance among the three datasets, especially
for rainfall thresholds ranging from 25 to 80 mm day ™. The GSMaP and CMORPH biases showed a clear dependence
on elevation and zonal wind speed, indicating the need to improve correction methods.
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Introduction

Rainfall is extremely important for human life, agricul-
ture, and the global water cycle. In recent years, satellite
precipitation products have developed rapidly and sig-
nificantly, allowing satellite precipitation estimation to
emerge as a valuable source of data and information, es-
pecially for developing countries that do not have an ex-
tensive ground observation network, such as Vietnam
(Nguyen-Xuan et al. 2016). Satellite products can deter-
mine the distribution of precipitation with great spatial
and temporal accuracy. They have also proven to be cap-
able of providing data over areas inaccessible for ground
weather radars or other in situ instruments. However,
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despite these enormous advantages, they exhibit poor
performance for several reasons.

According to Dinku et al. (2008) and Gao and Liu (2013),
two types of radiometric observations are popularly used to
create satellite precipitation products, ie., 1) infrared im-
agery, which has a high sampling frequency and produces
precipitation estimates based on an indirect relationship
with cloud-top temperature (consequently, the use of infra-
red algorithms is typically problematic for estimations
involving warm orographic rain) and 2) microwave, includ-
ing both passive imagery and microwave radar, which has
fewer temporal sampling intervals but can provide precipi-
tation estimates with higher accuracy due to the direct con-
nection of the data with precipitation hydrometers. Owing
to significant advancements in sensor technology and new
methods for combining data sources, temporal and spatial
resolutions and measurement accuracies have increased
tremendously. Recently, the combination of microwave and
infrared data has generated precipitation products with
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higher resolutions, allowing for the use of various emerging
algorithms for hydrological purposes (Tapiador et al. 2012).

Many studies have been conducted to evaluate satellite
precipitation products for different areas around the
world. For example, Dinku et al. (2008, 2010) showed
that some satellite precipitation products performed rea-
sonably well on 10day to monthly time scales, with a
resolution of 2.5° over the complex topography of East
Africa. Thiemig et al. (2012) reported that the Climate
Prediction Center Morphing (CMORPH) algorithm has
the ability to replicate rainfall, even with the sparse
ground data available in African river basins. Several
studies reported that satellite observation does not suffi-
ciently reproduce precipitation in high elevation areas
such as the Tibetan Plateau (Yin et al. 2008), subtropical
Andes (Hobouchian et al. 2017), river basins in South-
east Asia (Ngo-Duc et al. 2013), and African coastal
areas (Toté et al. 2015). In addition, the performance of
satellite precipitation products has been reported to vary
among different regions. For instance, Vernimmen et al.
(2012) and Jamandre and Narisma (2013) showed that
CMORPH presented lower verification scores than the
Tropical Rainfall Measuring Mission (TRMM) precipita-
tion 3B42 Version 6 over Indonesia and the Philippines,
respectively. In contrast, Shen et al. (2010) showed that
CMORPH performed better for spatial and temporal
patterns of precipitation over China compared to
TRMM. These findings are also supported by Shige et
al. (2013), who reported that the accuracy of the satellite
estimations varies for different regions or countries as
well as topographic profiles.

Very few studies to date have evaluated satellite pre-
cipitation products for Vietnam. Of most relevance,
Ngo-Duc et al. (2013) evaluated the performance of the
Global Satellite Mapping of Precipitation data (GSMaP_
MVK, Version 5) for North Central Vietnam and found
large biases over the study area. The GSMaP quality was
significantly improved with the implementation of a
correction method using an artificial neural network. In
recent decades, the National Hydro-Meteorological
Service of Vietnam (NHMS, recently was renamed to
Vietnam Meteorological Hydrological Administration—
VMHA) has recorded frequent severe floods that were
mainly caused by heavy rainfall events in Central
Vietnam. Previous studies have shown that heavy rainfall
events in Central Vietnam are related to either tropical
cyclones (TCs) (Nguyen-Thi et al. 2012), the Inter-

Table 1 Summary of the three SPDs used in this study
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tropical Convergence Zone (ITCZ), the Northeast
Monsoon (NM), or sometimes a combination of two or
more factors interacting with topography (Yokoi and
Matsumoto 2008; Chen et al. 2012a, 2012b).
Accordingly, the aim of this study was to evaluate the
performance of three satellite precipitation datasets
(SPDs) for the Vietnam Central Highlands (VCH) from
May to August (MJJA), and the Vietnam Central Coast
(VCC) from September to December (SOND), where
complex topography and contrasted rainfall seasonality
are found (Nguyen-Le et al. 2015; Ngo-Thanh et al
2017). Moreover, rivers in the VCC are fairly short and
flow steeply, creating high probabilities of flooding dur-
ing widespread heavy rainfall (WHR, defined in the next
section) events. Therefore, WHRs caused by both TCs
and ITCZ (hereafter termed TI) and by NM were specif-
ically taken into consideration in this study to provide
useful information for hydrological applications, such as
water management and flood warning, in the VCC.

Data and methods

SPDs

The SPDs used in this study were (1) CMORPH Version
1.0, (2) Global Satellite Mapping of Precipitation (GSMaP)
Reanalysis data Version 6, and (3) TRMM multi-satellite
precipitation analysis 3B42 Version 7 (Table 1).

CMORPH is a precipitation dataset that uses micro-
wave observation data from several satellites combined
with geostationary infrared data (Joyce et al. 2004). In
CMORPH, the motion of cloud systems with propaga-
tion vectors was estimated using infrared data generated
by geostationary satellites. Different bias correction
methods were applied to the algorithm depending on its
location, i.e., either over land or ocean. The satellite esti-
mates were adjusted against the Climate Prediction Cen-
ter (CPC) daily rain gauge analysis for over-land data
and merged with the Global Precipitation Climatology
Program pentad data for over-ocean data (Xie et al
2007, 2017). In the current study, data from CMORPH
Version 1.0 (hereafter simply called CMORPH) with a
three hourly bias correction at a spatial resolution of
0.25° was used.

GSMaP integrates passive microwave with infrared
data to provide precipitation estimates with high tem-
poral (hourly) and spatial (0.1°) resolution. The standard
product version GSMaP_MVK was produced based on a
Kalman filter model that refined the precipitation rate

Product Provider Spatial resolution (degree) Temporal resolution (h) Temporal coverage

CMORPH NOAA-CPC 0.25 3 Since 1998 Jan. to 2015 Dec.
GSMaP JAXA-EORC 0.1 1 Since 2000 Mar. to 2014 Feb.
TRMM NASA/JAXA 0.25 3 Since 1998 Jan. to 2016 Dec.
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propagated based on the atmospheric moving vector de-
rived from two successive infrared images (Ushio et al.
2009). The reanalysis version of the GSMaP (GSMaP_
RNL) implemented the same GSMaP_MVK algorithms
and used the Japanese 55 year reanalysis six hourly data
(Kobayashi et al. 2015) as ancillary data to ensure the
continuity and homogeneity of the dataset for the past
period. The current study used GSMaP_RNL Version 6
(hereafter simply called GSMaP), since some noticeable
improvements in the algorithms have been implemented
since Version 5, such as an orographic rainfall correction
method for warm rainfall in coastal areas (Yamamoto
and Shige 2015).

Additionally, with combined estimations from multiple
satellites based on both passive microwave and geosta-
tionary infrared data, TRMM was computed for real-
time monitoring and post real-time research (referred to
as 3B42). In the TRMM 3B42 algorithm, the calibration
and combination of microwave precipitation estimates
were followed by the generation of infrared precipitation
estimates based on the calibrated microwave data. Infra-
red and microwave data were then combined before be-
ing rescaled on a monthly basis using the Global
Precipitation Climatology Centre (GPCC) precipitation
data (Huffman and Bolvin 2013). In the current study,
data from TRMM 3B42 Version 7 (hereafter simply
called TRMM) at 3 hour intervals were analyzed.

It should be noted that prior to this analysis,
CMORPH and TRMM were already bias-adjusted using
the CPC dataset (Xie et al. 2007) and the GPCC dataset
(Schneider et al. 2014), respectively, while GSMaP was
only based on satellite products. Thus, the monthly
values from CMORPH and TRMM were expected to be
closer to the observed rainfall values for the areas where
rainfall stations are available.

Gauge precipitation data

To compare and evaluate the SPDs, the Vietnam Grid-
ded Precipitation (VnGP) dataset (Nguyen-Xuan et al.
2016) and observational data obtained from rain gauge
stations operated by the NHMS (Fig. 1 and Table 2)
were used. VnGP is a daily gridded precipitation dataset
produced from data collected by 481 rain gauges in
Vietnam using the Spheremap interpolation method
(Willmott et al. 1985). The VnGP dataset has two ver-
sions with spatial resolutions of 0.1° and 0.25°, covering
the period from 1980 to 2010. In the present study, the
VnGP dataset at the resolution of 0.25° from 2001 to
2010 was used. In Vietnam, both daily rain gauge and
VnGP data were collected and designated as 24 h rainfall
amounts that were accumulated from 1200 UTC (1900
local time) on the previous day to 1200 UTC on the
current day. For this reason, the daily-accumulated rain-
fall for the SPDs was computed for each grid on a

(2019) 6:54

Page 3 of 16

18°N 1

16°N 1

14°N 1

12°N 1

106°E 108°E 110°E 112°E
Fig. 1 Topography (shaded, m) of the VCC and the VCH (surrounded
by thick-solid-black lines) and eastern part of the Indochina Peninsula.
The small blue box indicates the study region. The blue broken line
indicates the Truong Son Mountains. The red points show rain gauge
stations in the VCC and are listed in Table 2

particular day by summing the 1h or 3 h rainfall data
values for the same time span as that mentioned above
before evaluations were processed.

To investigate the effects of monsoonal wind speed
and elevation, both of which influence satellite precipita-
tion estimations, the 925-hPa zonal wind from ERA-In-
terim reanalysis data (Dee et al. 2011) with a spatial
resolution of 0.25° from ECMWF and the topography
data from the Global 30 Arc-Second Elevation
(GTOPO30) dataset were used.

WHR days

According to the NHMS, a WHR day over a region is
defined as having occurred when the total rainfall re-
corded exceeds 50 mmday ™" in at least half of the ob-
served stations in that region. The synoptic features

Table 2 List of the seven meteorological stations in the VCC
used in this study

No. Station Lon (°E) Lat (°N) Altitude (m)
1 DongHoi 106.60 1748 7

2 DongHa 107.08 16.85 7

3 Hue 107.58 1643 17

4 DaNang 108.20 16.03 6

5 TraMy 108.25 1512 123

6 BaTo 108.73 14.77 51

7 QuyNhon 109.22 13.77 5
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causing WHRs were listed based on associated weather
maps (NHMS 2017). It should be noted that the number
of operational observed stations in the VCC might
change over time and there was no precision given on
the number of stations used for each WHR event in the
NHMS reports. The identification of a WHR event by
the NHMS was consequently based on the different lists
of stations over time. Thus, the results could be changed
if one station was added or removed. To ensure the
consistency in identifying WHR days, the definition used
in the present study is slightly different from that of the
NHMS. In the VCC, daily rainfall data during 2001-2010
were collected at seven rain gauge stations (Fig. 1 and
Table 2). A WHR in the VCC is defined, in the present
study, as a day on which the rainfall recorded exceeded
50mmday " in at least four of the seven stations. Thus,
the number of WHR days estimated here is slightly differ-
ent from that reported by the NHMS. From 2001 to 2010,
154 WHR days caused by TI and 164 WHR days caused
by NM (Table 3) were identified for the VCC in this study,
whereas 163 TI and 169 NM WHR days were reported by
the NHMS.

Study area

Central Vietnam, in the Indochina Peninsula region, is
divided into two typical climatic sub-regions by the
Truong Son Mountains (Fig. 1). In the east side, the
VCC has a long coastal line that opens to the east,
meaning the rainfall regime is mainly dominated by the
influences of the TI and Northeast Winter Monsoon sys-
tems (Matsumoto 1997; Phan and Ngo-Duc 2009; Yen
et al. 2011). Occasionally, WHR events occur owing to
combinations of the above influences and their interac-
tions with topography (Yokoi and Matsumoto 2008;
Chen et al. 2012a, 2012b). Conversely, being located on
the west side of the Truong Son Mountains, the VCH is
influenced by the southwest summer monsoon and
westward migrating convection systems during May to
August (Phan and Ngo-Duc 2009; Yen et al. 2011; Taka-
hashi 2013; Nguyen et al. 2014; Nguyen-Le et al. 2015).
According to the VnGP dataset, rainfall during MJJA in
the VCH accounts for approximately 50-70% of the an-
nual rainfall (Fig. 2a). In contrast, due to the seasonal
transition from the boreal summer to the winter mon-
soon, SOND rainfall contributes up to 60-80% of the
annual precipitation in the VCC (Fig. 2b).

In addition, the difference at each grid point of the 10
year average rainfall between the highest and the lowest
values among the three SPDs in MJJA (Fig. 3a) and
SOND (Fig. 3b) was considered. There is a significant
disparity in MJJA between the highest and the lowest
grid values that exceeds 5mmday ™" in almost all grids
of the VCH. A point worth noting here is that a consid-
erably large difference appears in MJJA rainfall for the
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west side of the high mountains in the northern region
of the VCH. However, the SOND rainfall disparity was
up to 5mmday ! in the VCC except for that in some
grid boxes, which were observed in both the northern
and southern regions of the VCC. This result demon-
strates that the precipitation estimation over complex
topographies such as those in the VCH and VCC are
fairly different and thus challenging.

Evaluation method
The statistical indices used to compare the SPDs with
VnGP for the two types of evaluation groups are pre-
sented separately.

To statistically compare the performance of the SPDs,
GSMaP was remapped to a spatial resolution of 0.25° to
match those of TRMM, CMORPH, and VnGP. Then,
the SPDs were evaluated with VnGP using the linear
correlation coefficient (CORR), bias, and root mean
square error (RMSE) ratio. The bias and RMSE ratio
were estimated using the following formulae:

> Si _

bias = STV, 1,
n 2
RMSE 1| ra (5i2V)
n
RMSE —
RMSE ratio=—YV,

where V; is the precipitation value from VnGP, §; is the
precipitation value from the SPD, # is the total number
of data inputs, and V is the average value of V;.

To evaluate the SPDs with rain gauge station data sys-
tematically, the SPDs were interpolated with values at
the closest four grid points to the station locations. For
evaluation of the SPD estimates at different precipitation
thresholds on WHR days (Table 3), probability of detec-
tion (POD), false alarm ratio (FAR), and Heidke skill
score (HSS), summarized in Table 4, were computed
based on daily rainfall values with thresholds from 25 to
100 mm day ' at 5mmday " intervals at the seven sta-
tions in the VCC. The HSS is a measure of quality or
skill in forecasts that compares the proportion of correct
forecasts to a no-skill random forecast. A perfect fore-
cast obtains a HSS of 1, and a no skill forecast obtains a
HSS of 0. The POD and FAR provide complementary in-
formation on true alarms and false alarms (Toté et al.
2015). The value of POD ranges from 0 at the poor end
to 1 at the good end. Conversely, the value of FAR
ranges from O at the good end to 1 at the poor end.
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Table 3 WHR events during 2001-2010 detected in this study in the VCC and caused by Tl and NM

From To Duration (days) From To Duration (days)
Central Coast—TC and ITCZ (154 days)

Oct. 19, 2001 Oct. 26, 2001 8 Dec. 3, 2006 Dec. 6, 2006 4
Nov. 12, 2001 Nov. 15, 2001 4 Oct. 1, 2007 Oct. 5, 2007 5
Dec. 9, 2001 Dec. 11, 2001 3 Oct. 30, 2007 Nov. 5, 2007 7
Sep. 18, 2002 Sep. 25, 2002 8 Nov. 10, 2007 Nov. 13, 2007 4
Sep. 7, 2003 Sep. 14, 2003 8 Sep. 8, 2008 Sep. 12, 2008 5
Sep. 24, 2003 Sep. 26, 2003 3 Sep. 28, 2008 Oct. 1, 2008 4
Oct. 2, 2003 Oct. 6, 2003 5 Nov. 17, 2008 Nov. 18, 2008 2
Oct. 14, 2003 Oct. 20, 2003 7 Sep. 3, 2009 Sep. 9, 2009 7
Sep.17, 2004 Sep. 19, 2004 3 Sep. 22, 2009 Sep. 26, 2009 5
Sep. 10, 2005 Sep. 14, 2005 5 Sep. 28, 2009 Sep. 30, 2009 3
Sep. 18, 2005 Sep. 20, 2005 3 Oct. 15, 2009 Oct. 23, 2009 9
Sep. 26, 2005 Sep. 27, 2005 2 Nov. 2, 2009 Nov. 4, 2009 3
Oct. 7, 2005 Oct. 13, 2005 7 Oct. 14, 2010 Oct. 19, 2010 6
Oct. 29, 2005 Nov. 2, 2005 5 Nov. 3, 2010 Nov. 5, 2010 3
Sep. 23, 2006 Sep. 27, 2006 5 Nov. 13, 2010 Nov. 17, 2010 5
Sep. 29, 2006 Oct. 4, 2006 6

Central Coast—Northeast Monsoon (164 days)

Oct. 4, 2001 Oct. 5, 2001 2 Nov. 24, 2005 Nov. 26, 2005 3
Dec. 13, 2001 Dec. 15, 2001 3 Nov. 30, 2005 Dec. 8, 2005 9
Oct. 6, 2002 Oct. 7, 2002 2 Dec. 11, 2005 Dec. 21, 2005 1
Oct. 14, 2002 Oct. 16, 2002 3 Dec. 10, 2006 Dec. 11, 2006 2
Oct. 24, 2002 Oct. 26, 2002 3 Oct. 13, 2007 Oct. 18, 2007 6
Nov. 1, 2002 Nov. 4, 2002 4 Nov. 16, 2007 Nov. 20, 2007 5
Nov. 6, 2002 Nov. 12, 2002 7 Nov. 22, 2007 Nov. 24, 2007 3
Nov. 10, 2003 Nov. 14, 2003 5 Dec. 4, 2007 Dec. 7, 2007 4
Nov. 23, 2003 Nov. 25, 2003 3 Oct. 10, 2008 Oct. 13, 2008 4
Dec. 8, 2003 Dec. 11, 2003 4 Oct. 16, 2008 Oct. 18, 2008 3
Sep. 9, 2004 Sep. 13, 2004 5 Oct. 23, 2008 Oct. 25, 2008 3
Oct. 2, 2004 Oct. 4, 2004 3 Oct. 27, 2008 Oct. 30, 2008 4
Oct. 23, 2004 Oct. 24, 2004 2 Nov. 3, 2008 Nov. 6, 2008 4
Oct. 27, 2004 Oct. 29, 2004 3 Nov. 23, 2008 Nov. 27, 2008 5
Nov. 15, 2004 Nov. 18, 2004 4 Dec. 5, 2008 Dec. 7, 2008 3
Nov. 23, 2004 Nov. 28, 2004 6 Sep. 29, 2010 Oct. 5, 2010 7
Dec. 1, 2004 Dec. 2, 2004 2 Oct. 27, 2010 Oct. 28, 2010 2
Oct. 18, 2005 Oct. 20, 2005 3 Oct. 30, 2010 Nov. 2, 2010 4
Oct. 22, 2005 Oct. 26, 2005 5 Nov. 6, 2010 Nov. 10, 2010 5
Nov. 16, 2005 Nov. 20, 2005 5 Nov. 28, 2010 Nov. 30, 2010 3
Results both the daily and monthly scales, TRMM shows good
Overall performance agreement with the VnGP data while GSMaP and
Central Highlands (VCH) CMORPH significantly underestimate rainfall over the

Figure 4 shows the scatter plots for the VCH regional VCH region. On the daily scale, the CORR values for
mean daily and monthly precipitation data from the SPDs  CMORPH and GSMaP are 0.66 and 0.60, respectively.
in comparison with VnGP during MJJA of 2001-2010. On  Moreover, the performances of the SPDs are better on the
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Fig. 2 Spatial patterns of a MJJA and b SOND total rainfall contribution in percentage to annual rainfall over Central Vietnam averaged for 2001-
2010, derived from the VnGP data. Vectors show horizontal wind fields at 925 hPa averaged for the corresponding months and years, derived
from ERA-Interim reanalysis data. The VCH and the VCC are surrounded by black thick lines in a MJJA and b SOND patterns, respectively

monthly scale with high CORRs of 0.93, 0.71, and 0.69 for
TRMM, CMORPH, and GSMabP, respectively.

The spatial distribution of seasonal MJJA precipita-
tion in the VCH is shown in Fig. 5. The VnGP data-
set shows two local rainfall maxima in the west of
the VCH with values up to 15 mm day'. Additionally,
the decrease in precipitation amounts from the west
to the east is also recognized. TRMM generally

represents the VnGP patterns well, while CMORPH
and GSMaP do not. Both CMORPH and GSMaP
underestimate the precipitation amount compared to
VnGP, especially in the southeastern and northern
regions of the VCH in which high mountains are
found. Relatively low CORR values are obtained with
CMORPH and GSMaP compared to that with TRMM
over the same region.
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Fig. 3 Spatial patterns of SPDs' rainfall difference between maximum and minimum values among the three SPDs at each grid point in Central
Vietnam, averaged for a MJJA and b SOND in 2001-2010. The VCH and the VCC are surrounded by black thick lines in a MJJA and b SOND
patterns, respectively
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Table 4 Summary of the statistics, POD, FAR and HSS, used in this study. They are computed from counts (letters a-d) in a 2 x 2
contingency table (N=1078 in Tl case, N=1148 in NM case). a SPD rainfall > threshold, VnGP rainfall > threshold; b SPD rainfall >
threshold, VnGP rainfall < threshold; ¢ SPD rainfall < threshold, VnGP rainfall > threshold; and d SPD rainfall < threshold, VnGP

rainfall < threshold

Name Formula Perfect score Worst score
POD a/(a+q) 1 0

FAR b/(a+0b) 0 1

HSS 2(ad - bd)/((a+(c+d) + (a+b)b+d) 1 — oo

Figure 6 shows the comparison between the three
SPDs and VnGP over the VCH for MJJA in 2001-
2010. It can be seen that TRMM has a relatively
small bias with VnGP with the 25th and 75th percen-
tiles at - 0.05 and 0.20 mm day ™, respectively. On the
monthly scale, TRMM performs well, showing a
CORR median value of 0.80 and an RMSE ratio me-
dian value of 0.29. The median values of CORR and
RMSE ratio for GSMaP are 0.60 and 0.52, while those
for CMORPH are 0.58 and 0.77, respectively. How-
ever, on the daily scale, the three SPDs do not differ
significantly in terms of RMSE ratio and CORR. The
median values of CORR and RMSE ratio range from
051 to 0.54, and from 1.23 to 145, respectively.
Higher estimation accuracy is observed for the
monthly scale than for the daily scale. In terms of
statistical indicators, TRMM shows the best perform-
ance on both monthly and daily scales (except for
daily RMSE ratio), while CMORPH shows the highest
errors on the monthly scale.

Central Coastal area (VCC)

Comparisons between the SPDs and VnGP for daily and
monthly precipitation were processed on a regional scale
for the VCC, as shown in the scatter plot in Fig. 7. On
the daily scale, good agreements with the VnGP data are
observed for all three SPDs on the grid scale with high
CORRs of 0.86 for TRMM and CMORPH and 0.81 for
GSMaP. The degree of reliability increases as the tem-
poral scale transitions from daily to monthly scales with
a CORR value higher than 0.84.

Figure 8 displays the spatial patterns of SOND rainfall,
of rainfall differences and correlations between each of
the three SPDs and VnGP. The VnGP patterns show an
area of heavy local seasonal mean precipitation located
from around 15 to 17° N in SOND, in which the daily
rainfall exceeds 15mmday '. In general, the SPDs
present relatively similar precipitation patterns to those
of VnGP. However, they significantly underestimate pre-
cipitation throughout the whole VCC (Fig. 8 middle
panel), except in some locations in the northern and
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Fig. 4 Scatter plots of VnGP and SPDs (CMORPH, GSMaP, and TRMM) regional mean rainfall over the VCH for MJJA in 2001-2010, for a daily and
b monthly values. Sample numbers are N = 1230 and 40 for each scatter plot of daily and monthly values, respectively. Correlation coefficients
between each SPD and VnGP are also displayed
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southern parts of the region, where GSMaP or TRMM  for every grid point of the coastal region. This improve-
slightly overestimate rainfall. ment was also observed by Yamamoto and Shige (2015),
Figure 9 shows the comparison between the three who reported that the algorithm of GSMaP Version 6
SPDs and VnGP over the VCC for SOND in 2001-2010. provided improved rainfall estimations over the coastal
The three SPDs show rather high median CORR values area compared to those of the previous version.
(from approximately 0.78-0.87) on the monthly scale.
TRMM and CMORPH show similar performances on  Performance for capturing rainfall thresholds
the grid scale, which makes them better than GSMaP in  Figure 10 shows the RMSE ratio values computed for
terms of CORR. It is worth noting that there is a signifi- each SPD for each threshold of regional averaged daily
cant improvement for GSMaP Version 6 compared to rainfall. Generally, the RMSE ratios decrease with in-
Version 5 for the observed precipitation in the VCC. creasing precipitation intensity for all three SPDs in both
Ngo-Duc et al. (2013) reported that GSMaP Version 5 the VCC and VCH. For rainfall of less than 10 mm
performed poorly and that its rainfall results even had  day ', the RMSE ratios of the three SPDs are relatively
negative correlations with the gauged data from several high, ie., higher than 0.75 and 1.0 for the VCH and
stations in the VCC. Conversely, in the current study, VCC, respectively. In the VCC, the RMSE ratio values
GSMaP Version 6 shows reasonably positive correlations  for CMORPH and TRMM when precipitation intensities
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Fig. 10 RMSE ratio of the SPDs for the different categories of regional mean precipitation intensity in the VnGP a during MJJA over the VCH and
b during SOND over the VCC. The numbers of days (i.e, sample numbers) for each category of VnGP precipitation intensity during 2001-2010 are
also displayed
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are greater than 50 mmday ' are close to 0.4 and less
than 0.4, respectively. In the VCH, the performances of
TRMM for precipitation thresholds of more than 10
mm day ™" are better than those of GSMaP, which in turn
outperforms CMORPH. Conversely, in the VCC, TRMM
and CMORPH show relatively similar performances and
both also perform better than GSMaP for rainfalls of
more than 10 mmday *. The better quality of TRMM
and CMORPH compared to that of GSMaP can be
partly explained by the fact that TRMM and CMORPH
are bias-corrected by rain gauge-based datasets, which
take into account station data from the VCC (Xie et al.
2007; Schneider et al. 2014). It is worth noting that, for
rainfalls of less than 10 mmday ', the performance of
TRMM is slightly poorer than those of GSMaP and
CMORPH, as evidenced by its higher RMSE ratios for
both the VCC and VCH. This result is in agreement with
Figs. 4 and 7 where the daily TRMM values are very dif-
ferent from that of VnGP in the low-intensity category.

Figure 10 also shows the number of days for each
threshold of the VnGP precipitation intensity during
2001-2010. Over the VCH during the 10year MJJA
period, only 4.3% of the days (i.e. 53 days) show regional
averaged rainfalls of more than 30 mm day ™, while this
number decreases to 1.3% (i.e., only 16days) for the
threshold of more than 50 mmday'. Over the VCC,
during the 10 year SOND period, 20.7% and 9.6% of the
days (i.e, 253days and 117 days, respectively) show
regional averaged rainfalls of more than 30 mm day*
and more than 50 mm day ", respectively. Consequently,
the number of heavy rainfall days over the VCC is sig-
nificantly higher than that over the VCH.

Discussions

Our results demonstrate that TRMM exhibits the best
performance for both the VCH and VCC in terms of the
monthly time scale and that it exhibits not only the
highest CORR values, but also the lowest bias and lowest
RMSE ratios. This could be due to the fact that TRMM
uses multi-sensor passive microwave data combined
with infrared and microwave radar data. Additionally,
this product uses the GPCC dataset for bias corrections
at the monthly scale. CMORPH performs better in the
VCC than in the VCH. Hobouchian et al. (2017) re-
ported that CMORPH has a tendency to provide sub-
standard estimations in high-elevation areas. In addition,
CMORPH was calibrated using the CPC daily gauge
analysis data, which does not use any data from stations
in the VCH (Xie et al. 2007). Moreover, CMORPH per-
forms fairly well in the VCC, where there is a higher sta-
tion density. The underestimations by GSMaP and
CMORPH in the VCH could be attributed to the fact
that the satellite rainfall algorithms underestimate for
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orographic convection with relatively low echo-top
heights (Shige and Kummerow 2016).

Ability of SPDs to detect heavy rainfall on WHR days

As mentioned above, the number of days having regional
averaged rainfalls of more than 50 mm day ™" in the VCC
is significantly higher than that in the VCH. During
2001-2010, 154 WHR days caused by TI and 164 WHR
days caused by NM (Table 3) were identified based on the
data from seven rain gauge stations in the VCC (Fig. 1,
Table 2). The relationships between rainfall thresholds
ranging from 25 to 100 mm day ' and the POD, FAR, and
HSS values of the SPD daily rainfall estimates with rain
gauge observations at the seven stations on the WHR days
are plotted in Fig. 11. Generally, the POD decreases while
FAR increases with increasing rainfall thresholds, except
for the FAR values for CMORPH in the NM cases. The
HSS values for CMORPH and TRMM range from 0.48 to
0.65 and reach the highest value when the rainfall
amounts are around 50 to 70 mmday'. The POD and
HSS values for CMORPH decrease when daily rainfall
exceeds 75 mm. In contrast, regarding the NM cases, the
POD and FAR of the three SPDs roughly decrease from
0.5 to 0.3 and increase 0.1 to 0.35, respectively, when the
rainfall thresholds are increased from 25 to 100 mm day .
These results indicate that CMORPH and TRMM, which
use bias correction, are able to detect heavy rainfall effect-
ively on the TI WHR days. The ability of CMORPH to ef-
fectively detect heavy rainfall noticeably decreases when
daily rainfall exceeds 75 mm.

Compared to the NM cases, heavy rainfall in the TI
cases is detected more accurately. This can be explained
by the fact that the deep cloud convections that form in
the TI cases are captured more easily than those in the
Northeast Monsoon cloud system. In both the TI and
NM WHR cases, TRMM shows good performance for
detecting heavy rainfall. This result is consistent with
the findings of Tang et al. (2015), who reported that the
improvements in Version 7 of TRMM decrease random
errors compared to Version 6. Conversely, GSMaP ex-
hibits lower performance for detecting heavy rainfall on
the WHR days in the VCC compared to CMORPH and
TRMM. It should be noted that GSMaP uses Kalman fil-
tering, which might be subject to an induced offset for
the extreme precipitation by averaging the forward and
backward propagated passive microwave estimates
(Ushio et al. 2009). However, compared to its previous
version, GSMaP shows a better performance in the
coastal areas.

Potential factors influencing satellite precipitation
estimations

Many satellite rainfall algorithms assume that heavy
rainfall is associated with high echo-top heights (Shige
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at the seven stations on the WHR Tl and NM days listed in Table 3
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Fig. 11 The relations between rainfall thresholds and the POD, FAR, and HSS values of SPDs’ daily rainfall estimates with rain gauge observations

and Kummerow 2016). Thus, this can lead to conspicu-
ous underestimation with conventional satellite products
in the area where heavy orographic rainfall is frequently
associated with shallow convection systems such as the
coastal mountain ranges of the Asian monsoon region,
including Central Vietnam (Kubota et al. 2009, Shiget et
al. 2013, Shige and Kummerow 2016). As orographic
convection is driven by two factors, i.e., differential heat-
ing between air over elevated terrain and adjacent
plain and forced ascent by strong wind approaching the
mountain, wind speed consequently plays an important
role in controlling the convection (Nugent et al. 2014)
and thus has influence on the performance of satellite
rainfall products. Ngo-Duc et al. (2013) examined the
dependence of the performance of a satellite product
(GSMaP MVK Version 5) on the elevation and on the
925-hPa zonal wind speed over a river basin in Central
Vietnam. They reported that the satellite product exhib-
ited large negative rainfall biases with high zonal wind

speed in the winter monsoon. Moreover, the biases
tended to increase as the elevation decreased. Conse-
quently, in this study, the SPDs were examined in rela-
tion to zonal wind speed and elevation, both of which
contribute to shallow orographic rain systems in the
VCH and VCC.

Figure 12 shows the scatter diagrams for AP which is
defined as the monthly regional mean of precipitation
difference between the SPDs and VnGP, and the
monthly zonal wind speed (U component) of ERA-In-
terim at 925 hPa from May to August in the VCH and
September to December in the VCC. It is clear that, in
the VCH, the U component is always positive, which
means the summer monsoon was active during MJJA
(Fig. 12a). Conversely, the negative values of the U/ com-
ponent reveal that the VCC was dominated by NM in
SOND (except for September) (Fig. 12b). As a result, on
the windward side of the Truong Son Mountains, the
stronger the westerly wind, the larger the underestimates
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for the VCH, and the stronger the easterly wind, the
larger the underestimates for the VCC except for
September. The absolute values of AP (JAP|) tend to
increase as wind speed (absolute value of the U compo-
nent) increases. In the VCH, it can be seen that the

slopes for CMORPH and GSMaP are relatively large,
which means their rainfall estimations are strongly
dependent on zonal wind speed. Furthermore, TRMM
does not show any significant dependence on zonal wind
speed. The majority of the precipitation in the VCH
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could be attributed to the southwest monsoon, while in
the VCC, precipitation is caused by several factors, such
as the impacts of the NM and TI and/or the interactions
between them. Therefore, the relationship between the
U component and AP in the VCH is more significant
than that in the VCC.

In addition, to evaluate the relationship between the
time-averaged rainfall bias (AP) at each grid and the ele-
vation over these regions, the mean elevation of each
grid was obtained from the GTOPO30 data. Overall,
|AP| tends to increase as the elevation increases (Fig. 13).
A similar relationship between elevation and the accur-
acy of the SPDs has also been observed in previous stud-
ies, and this is mainly attributed to the fact that retrieval
algorithms based on infrared imagery have problems as-
sociated with the detection of warm orographic rainfall
(Kidd 2001; Dinku et al. 2008; Toté et al. 2015). The
CMORPH estimation is largely based on the thermal in-
frared band (Joyce et al. 2004), thus the CMORPH algo-
rithm can misinterpret warm clouds in elevated
topography, such as that in the VCH (Fig. 13a). In the
case of the VCC, CMORPH and GSMaP clearly present
slopes similar to those from TRMM, but with different
biases (Fig. 13b). These results indicate that other SPDs
could potentially be improved in high-elevation areas by
using the correction methods proposed by Yin et al.
(2008) and Shige et al. (2013).

Conclusions

In this study, three SPDs (CMORPH, GSMaP, and
TRMM) were assessed by comparison with VnGP during
rainy seasons in 2001-2010 over Central Vietnam. In
addition to evaluations based on spatial (grid and region)
and temporal (daily and monthly) scales, the ability of
SPDs to detect the heavy rainfall in WHR days caused
by TI and NM in the VCC region was also considered.

The results obtained demonstrate that, in complex
topographic regions such as Central Vietnam, estimation
algorithms combined with multi-sensors and rain gauge
observation or data reanalysis-based correction processes
lead to different performances. In general, the SPDs stud-
ied generate reasonable estimates of precipitation in the
plains but exhibit slightly poorer performance for higher-
elevation areas. TRMM exhibits superior performance (in
terms of higher correlations, lower biases, and lower
RMSE ratios) than GSMaP and CMORPH for the VCH,
specifically at regional and monthly scales. GSMaP ex-
hibits moderately good performance for the VCH but is
less efficient for the VCC. Conversely, CMORPH performs
better for the VCC than for the VCH.

The three SPDs perform better in detecting heavy
rainfall on the WHR days in TI cases than in NM
cases. In general, TRMM presents lower RMSE ratios
and higher POD and HSS values than GSMaP and
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CMORPH for most thresholds. Therefore, TRMM is
deemed to be reliable and, thus, shows potential for
use in hydrological applications. This conclusion is
consistent with those of other studies (Hobouchian et
al. 2017; Mantas et al. 2015) conducted in different
areas, which demonstrated the advantages of gauge
calibration and multi-satellite passive microwave data
incorporation. Hydrological applications considered in
further studies should take into account these poten-
tial suggestions.

Finally, the SPDs underestimate rainfall depending on
zonal wind speed and elevation, but the CMORPH and
GSMaP biases are larger than those of TRMM. There-
fore, variability in elevation plays an important role in
these biases and suggests that CMORPH and GSMaP
can be further improved via algorithm correction for ele-
vation and zonal wind speed.
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