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Abstract

As geomorphological processes operate at various spatial scales, their morphological expressions, i.e., land-surface
variables (LSVs) should be scaled accordingly. Most approaches on landslide susceptibility modeling and landslide
detection have been performed based on arbitrarily scaled LSVs. We propose a methodology to improve automated
landslide detection by fitting each LSV to its optimal scale. We test our approach on two landslide inventories, with
different landslide morphology. First, we derive seven LSVs from a DEM in a standard 3 x 3 moving window. Then, we
rescale each LSV using focal mean statistics in increasingly larger moving windows until the optimal scale is found, ie.,
scale at which logistic regression shows the best fit between the existence of landslide scarps and individual LSVs. The
LSVs at the optimal scale are used as input data in a random forest (RF) model. In order to calculate the effect of
scaling predictors on the accuracy of the model, we compare the results, using the area under the curve (AUC), against
the results from an RF model with unscaled LSVs as input data. The results show (i) that different LSVs have different
optimal scales, and (i) the multi-scale approach improved the models significantly, from AUC = 0.73 to 0.80 for the first

terrain settings.

study area and from AUC = 0.59 to 0.73 for the second study area. Based on these results, we conclude that a multi-
scale approach should be considered when automated models are used in order to detect landslides, in complex
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Introduction

The concept of scale stands at the basis of geomorphology
and geomorphometry (Pike et al. 2008) and yet it is not
straightforwardly defined in both theory and practical
applications (Bishop et al. 2012; Zhilin 2008). Most often,
the concept of scale has different meanings in different
fields of study (Goodchild 2001). In cartography it repre-
sents the ratio between the real dimensions and the repre-
sented dimensions, while in geomorphology scale usually
refers to the size of the study area (e.g., local, regional,
national, or continental scale) (Broeckx et al. 2016; Gariano
et al. 2017; Segoni et al. 2018). In order to have a more
coherent approach, the concept of scale can be further
divided into sub-concepts (Dekavalla and Argialas 2017).
Relevant to our study are the observational scale, the oper-
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ational scale, and the computational scale. These concepts
can have different meanings depending on the type of data
and the field of study. In geomorphometry, where the data
are usually in raster format, the observational scale refers
to the spatial resolution or the cell size of a digital elevation
model (DEM), the operational scale describes the scale at
which different process occurs and the computational scale
is the scale at which the analysis is conducted, i.e., the size
of the moving window used in preprocessing the predictors
(Goodchild 2001).

Most often, the land surface is a product of a number
of processes and control factors (Bishop et al. 2012) that
have different operational scales while sharing the same
physical space. When performing (space) prediction
studies, the challenge is to find the most appropriate
computational and observational scales of the predictor
data at which they best match the process of interest, or
at least the process features employed in modeling.
Because the computational scale is strongly related to
the observational scale, they are often discussed together
or in an interchangeable manner. Furthermore, both the
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DEM resolution and the size of the moving window can
influence the modeling process and the way in which
the data is scaled to better fit the operational scale.

The effect of the spatial resolution of a DEM on geo-
morphological modeling results has been tested in differ-
ent disciplines and with somewhat different results. Some
studies conclude that the best option is to use the DEM
with the highest available spatial resolution for modeling
erosion, deposition, and rill network (Lu et al. 2017), or
catchment hypsometry (Liffner et al. 2018). Other studies,
however, showed that a higher DEM resolution does not
necessarily produce better results (Garosi et al. 2018), and
sometimes induces more uncertainty or produce worse re-
sults in applications such as connectivity index modeling
(Cantreul et al. 2018), hydrological modeling (Zhang and
Montgomery 1994; Li and Wong 2010;), and catchment
area modeling (Becker et al. 2017).

Landslides research is an important topic in geomorph-
ology and a significant number of studies dealt with land-
slide susceptibility and landslide detection. Landslide
inventory maps are created traditionally by interpretation
of aerial photographs and/or field mapping. In recent years,
however, (semi)automated models have been utilized for
producing landslide inventories (Guzzetti et al. 2012;
Scaioni et al. 2014; Peppa et al. 2019), landslide susceptibil-
ity maps (Reichenbach et al. 2018), and for numerical simu-
lation of a landslide (Iverson et al. 2015).

The methods of landslide modeling are getting increas-
ingly sophisticated, with the use of additive statistics (Goetz
et al. 2011), machine learning or artificial intelligence algo-
rithms (Catani et al. 2013; Lagomarsino et al. 2017) and nu-
merical modeling (Lombardo et al. 2018), and the number
of studies comparing different algorithms has been increas-
ing (Reichenbach et al. 2018). Landslide modeling, however,
still depends on the input data, with various aspects, such
as sampling strategy, size or scale (Arnone et al. 2016;
Reichenbach et al. 2018; Schlogel et al. 2018).

Spatial resolution of a DEM is important in modeling
landslide susceptibility (Sulaiman et al. 2017; Wang et al.
2017; Schlogel et al. 2018), and it should be adapted to the
size of the study area (Reichenbach et al. 2018) or the
average size of the landslides (Claessens et al. 2005). Other
studies showed that scaling the predictors can improve
the overall accuracy of the model. A straightforward
upscaling method is resampling a DEM to lower resolu-
tions, and then deriving the predictors and testing the
scale (spatial resolution) that produces the best model
(Catani et al. 2013). This methodology has shown that not
all predictors perform best at the same scale, thus, Paudel
et al. (2016) introduced an approach to find the best scale
for each predictor and used it in the model for landslide
susceptibility prediction. These findings were further sup-
ported by Pawluszek et al. (2018) who used scaled predic-
tors for automated landslide detection.
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Choosing the appropriate input data in terms of DEM
resolution (observational scale) and the appropriate com-
putational scale to derive different predictors (operational
scales) are still challenges in landslide detection. We
propose a methodology that solves the problem of adapting
the best operational scale in landslide detection by itera-
tively rescaling each predictor and finding its best fit. We
illustrate this by modeling two different landslide scarp
inventories without preprocessing to evaluate the success
of the proposed approach. The new approach has been
developed as an algorithm for the open source R platform
(R_Core_Team 2017) and can be freely downloaded to use
or improve.

All the models that we build and present in this paper
are used for automated landslide detection rather than
landslide susceptibility modeling.

Methods/Experimental

Study areas and landslide inventory characteristics

In order to test if our hypothesis works on different set-
tings, we have chosen two distinct study areas that are dif-
ferent in geology and land cover and thus they produce
landslides with different morphogenetic typology. By using
the two areas, we decrease the possibility that our results
are site specific and thus increase the confidence in
generalization of our conclusion. The modeling results, for
the two areas, are not directly compared against each
other, but are utilized to compare for the scaled models
against the unscaled models. For both areas, compilation
of the landslide inventory precedes the acquisition of the
DEMs, so that the landslide scarps should be recognizable
in the DEMs.

The first study area is located in the Shizuoka Prefecture,
in the southeast of Honshu Island, Japan (Fig. 1) and covers
an area of about 125 km?. Hillslopes in this area are mostly
covered by forest. Lithology is dominated by a melange
matrix of the Late Eocene to Early Miocene accretionary
complex with chaotic facies with intrusions of limestone
and marble blocks of the same accretionary complex.
Along the river valley, in the eastern study area, Late Pleis-
tocene to Holocene fan deposits can be found. The avail-
able data consist of a DEM based on airborne LiDAR (light
detection and ranging) at a 5 m spatial resolution, and an
inventory of 371 landslide scarps (Uchiyama et al. 2012).
The inventory was provided by the National Research In-
stitute for Earth Science and Disaster Resilience, Japan
(NIED) (Shimizu et al. 2002; Oyagi et al. 2015). The inven-
tory was derived by visual interpretation of topographic
discontinuities using stereo-paired aerial photographs at a
1:40,000 scale, acquired in the 1970s. It includes historical
landslides that have occurred in the past decades to centur-
ies, wider than 150 m, but does not include smaller shallow
slope failures. The majority of landslides are shallow slides
occurring on moderate to steep slopes but deep-seated
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Fig. 1 Landslide scarps inventories in Shizuoka, Japan (1) and Buzdu, Romania (2), and their locations (right)
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landslides are also contained in the inventory. The use of
historical landslide inventories is advantageous for the
landslide modeling in that it summarizes past multiple
landslide events reflecting distinct topographic features in a
DEM and various environmental conditions (Fig. 2).

The second study area is situated in the Buzdu County
(Fig. 1), Romania, and covers about 800 km? at the con-
tact between the Romanian Curvature Carpathian
Mountains and the Subcarpathian Hills, which are part
of the Vrancea seismic region. Cretaceous and Palaeo-
gene flysch (i.e., alternations of thick cohesive sandstone
with schistose intercalations of marls, clays or bitumen)
is specific to the mountainous section, while hills and
depressions are built on less cohesive Neogene molasses
deposits, i.e., a heterogeneous mixture of clays, marls,
salt breccias, loose conglomerates, sands, and loess-like
deposits. The morphology of landslides reflects the
litho-structural conditioning. Large, dormant (partially
relict), landslides prevail in the mountainous flysch sec-
tor featuring numerous reactivations in the form of shal-
low translational slides across the broad terminal
accumulation of landslide deposits, mainly due to the ac-
tive river undercut (Fig. 2). The molasses sector features
very frequent but low-magnitude landslides and is char-
acterized by the widespread presence of shallow transla-
tional earth slides and earth flows, reflecting at least
three propitious triggering frameworks: spring showers
and snowmelt, torrential convective summer showers

and less heavy but long-lasting autumn rains. This leads
to numerous sequences of first-time failures and subse-
quent reactivations which are responsible for the devel-
opment of large landslide complexes, typically 5 to 10
ha, with a polycyclic evolution (Fig. 2).

Less than 10% of the inventory could be considered
multi-temporal, since it covers the period of the last 40
years. The majority of the inventory is being represented by
shallow and medium-seated earth and debris slides in the
south-eastern half, which corresponds to the molasses for-
mations of the Subcarpathian Hills; while for the Car-
pathians, it gathers both depletion and accumulation
sectors of shallow to deep-seated landslides. It was com-
piled from different sources. Some of them have been re-
constructed from archive data (Institute of Geography,
Romanian Academy), while others resulted from detailed
geomorphological field mapping and databases of the local
authority: Buzau County Inspectorate for Emergency Situa-
tions (Zumpano 2014; Zumpano et al. 2014). The largest
proportion (> 90%) of data is represented by a single-period
inventory obtained in 2014 through digital stereographic
photo interpretation using color aerial ortho-photographs
(cell size 2m, resampled from an original 0.5 m) taken in
2005 by ANCPI (Agentia Nationala de Cadastru si Publici-
tate Imobiliara) Bucharest. The anaglyph 3D visualization
was created using the “stereopair from DTM” (DTM—
digital terrain model) module of ILWIS Version 3.4 soft-
ware. The 10m resolution DEM used for the landslide
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Fig. 2 High magnitude deep-seated landslides in the Buzau Carpathians, upper left; low magnitude, clearly individualized shallow earth slide in
the Buzdu Subcarpathians, upper right; mountain slopes with historical landslides, that are mostly covered by vegetation in Shizuoka Prefecture,

interpretation was obtained from linear interpolation of
topographic contour lines (20 and 5m interval) derived
from 1:25,000 topographic maps published by the military
topographic direction (Damen et al. 2014). The DEM used
for model construction is an optically derived DTM with a
spatial resolution of 4 m.

The landslide scarps from the two study areas show
significant differences in size (Fig. 3). The average size of
the landslide scarp in the Buzau County study area is
8.64 ha and the median size is 4.28 ha, while the mean
size of the landslide scarps in the Shizuoka Prefecture
study area is 2.35 ha and the median value is 1.44 ha.

The landslides analyzed in the present study are not dif-
ferentiated based on their origin or morphologic traits.
Thus, the term landslide in this paper includes shallow or
deep-seated slides, flows, and avalanches.

Land-surface variables

We have chosen only predictors that can be extracted from
a DEM and ignored predictors like land cover and lith-
ology, which are known to hold an important influence on
landslides but fall outside the scope of the study. Further-
more, these land-surface variables (LSVs) had to satisfy two
additional conditions: they can be extracted using moving
windows of variable size, and their influence on landslide
scarps has a clear geomorphological explanation. Thus,
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Fig. 3 Area of landslide scarps in the two study areas, in hectares.
Boxplots represent 25-75% of values, whiskers represent 10-90% of
values, and the line within the box represents the median. Extreme
values are omitted
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LSVs like total catchment area or hillshade were not
considered.

The LSVs were derived, in a standard 3 x 3 moving
window, from the available DEMs using the RSAGA
package (Brenning 2008) that implements the algorithms
of SAGA (System for Automated Geoscientific Analyses;
Conrad et al. 2015) into the R software as follows:

e Elevation, as expressed by DEM values, is regularly
used as a predictor in modeling of landslides (Catani
et al. 2013; Reichenbach et al. 2018)

e Mean curvature is a second derivative of the
elevation and was computed according to the
methodology proposed by Moore et al. (1991)

e Plan curvature is calculated perpendicular to the
direction of flow and is generally used to describe
the divergence or convergence of flow (Catani et al.
2013)

e DProfile curvature is calculated on the direction of
flow and is generally used to characterize erosion/
deposition potential of a slope (Catani et al. 2013)

e Slope gradient is the most widely used predictor in
landslide modeling (Reichenbach et al. 2018)

e The topographic positioning index (TPI) gives an
estimate of the slope position of landslides and was
found to have a scale dependency (Wang et al. 2018)

e The topographic roughness index (TRI) measures the
unevenness of a terrain by calculating the difference in
elevation between a cell and the average of the
surrounding cells, in a given window size (Olaya 2004)

e Terrain surface texture (texture), emphasizing fine
differences in elevation of different pixels, was
derived with the method proposed by Iwahashi and
Pike (2007).

The values of these LSVs were associated with one
randomly sampled point per scarp, as well as an equiva-
lent number of randomly sampled non-scarp points
(Santacana et al. 2003). It is possible for the non-scarp
points to be located on landslide bodies.

Scaling of LSVs

For scaling of LSVs, we propose a methodology that can
(i) analyze the degree of fitting between each predictor
and the presence/absence of landslide scarps, (ii) adapt to
different study areas or scenarios, and (iii) easily integrate
into a (semi)automated modeling approach (Fig. 4).

At first, each LSV was re-scaled to successively
broader representations of topography with focal mean
statistics in increasing squared windows, starting from
3 x 3 cells (Dragut et al. 2009), using the RSAGA pack-
age (Brenning 2008).

For each LSV, the best scale was evaluated in an itera-
tive process, by fitting a simple binary logistic regression
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(Brenning 2005; Deluigi et al. 2017; Cauzzi et al. 2018;),
where each scale of the LSV is, in turn, the predictor
variable and the scarp presence/absence is the predicted
variable. The process continues as long as the result of
the logistic regression improves, and it stops when the
scale that best describes the presence/absence of scarps
is found. All the available points for presence/absence of
landslide scarps are used for the logistic regression.

The performance of each model was evaluated using
the AUC (area under the curve) metric. The AUC is ob-
tained by plotting all possible sensitivity (true positive)
rates against 1-sensitivity (false positive) rates, and
returns values between 0.5 (no discrimination between
presence/absence) and 1 (perfect discrimination) (Hos-
mer and Lemeshow 2000). The AUC values are com-
puted using the ROCR package (Sing et al. 2005).
Because the aim of the test is to evaluate the goodness
of fit, the data used for model evaluation was the same
as the training data.

Prediction of landslide scarps

In order to assess the impact of scaling the predictors in
modeling, two models were produced and compared:
one that used the scaled predictors as input data, while
the other used the default LSVs (derived in a 3 x 3 mov-
ing window, without further smoothing). The latter was
considered the baseline in evaluating the scaling per-
formance. Because the aim is to test the prediction
power of the model, the input data has been split into
70% and 30%, for training and validation respectively.

The employed modeling technique is random forest
(RF; Breiman 2001). RF is a robust, easy to use, and
computationally efficient classification algorithm (Chen
et al. 2018) with a high level of accuracy (Youssef et al.
2016; Chen et al. 2017; Behnia and Blais-Stevens 2018).
It produces a number of classifications, based on a bin-
ary decision algorithm, called decision trees and uses all
of them, with a majority voting, to form the best predic-
tion model. Thus, each classification is assigned to a cer-
tain class (presence or absence) if the majority of
decision trees do so. Furthermore, it is possible to obtain
the results as probabilities of class assignment for a cer-
tain sample by evaluating the strength of the majority of
decision trees. RF has several characteristics linked with
the input data that are useful for our purposes: (i) there
is no need for the input data to have a specific frequency
distribution, (ii) it is not sensitive to outliers in the input
data, (iii) it can use a great number of predictor vari-
ables, and (iv) it is not sensitive to collinearity in the
predictor variables (Catani et al. 2013).

The modeling was performed using the package “ran-
domForest” (Liaw and Wiener 2002) in the R software,
with the settings ntree (number of classification trees) =
501 and mtry (number of candidate variables) = 3. The
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ntree value was set in a “trial and error” method in
which the model was run with a high number of trees and
the results were plotted against the OOB (out of bag
error). The ntree value at which the curve flattened was
selected as the appropriate one for modeling because a
further increase in ntree would not improve the model
(Catani et al. 2013). The mtry value was obtained by the
standard formula, /p, where p is the number of variables.
Another output of an RF model is the ranking of pre-
dictor importance in creating the model, the so-called
variable importance (VI). There are many ways for com-
puting this but we used the simplest method, based on the
decrease in mean accuracy. The OOB is calculated using
all the predictors and then, in turn, omitting one pre-
dictor. The differences between the two OOB values are
averaged for all the decision trees and are normalized
using the standard deviation of the differences. The pre-
dictors that are found to reduce the OOB when used, are
regarded as the most important (Liaw and Wiener 2002).
In order to account for the random part in RE, the
models were run for 25 times and the results were aver-
aged and evaluated using the validation data set and AUC.

Automatic procedure

Catani et al. (2013) and Paudel et al. (2016) show that scal-
ing of all or individual predictors can improve the model
of landslide susceptibility, and Reichenbach et al. (2018)
and Schlogel et al. (2018) show that choosing the appro-
priate DEM resolution is important and can influence the
overall accuracy of the model. However, preprocessing of
input data (predictors) in regard to scale is still not a com-
mon practice in landslide modeling. Moreover, our litera-
ture review on landslide modeling indicates that there are
more studies for choosing the right method than studies
for calibration of input data to the model.

For easier preprocessing of the predictors in order to
fit them to the most appropriate scale of analysis, we
provided a script that can run with the free software R,
available in Additional file 1. The necessary input data
for the script is a DEM from which the predictors will
be extracted, and a shapefile containing landslide pres-
ence/absence data for the variable that is to be modeled.
Note that for this study, we have chosen to work with
only eight predictors, but the script can extract more
predictors from an input DEM.
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Results and discussion

Scaling of predictors

LSVs calibrated to scale could better predict the scarp
presence/absence in five out of eight cases for the Shizu-
oka study area, and in six out of eight cases for the Buzau
study area (Fig. 5). Elevation and profile curvature display
the best prediction of the landslide scarps at their default
scale in both areas, and plan curvature also shows the best
prediction at the default scale for Shizuoka, but at a 17 x
17 pixels for Buzau. Three predictors (elevation, profile
curvature, and mean curvature) were found to perform
best at the same scale in both study areas (Fig. 5).

The performance of the predictors for both study areas
shows that two predictors (plan curvature and texture)
display a higher scale for Buzau, while three others
(slope, TRI, and TPI) show a higher scale for Shizuoka.
Pawluszek et al. (2018) also found that TPI performs
better when it is scaled using a relatively larger moving
window. These results suggest that the relationship be-
tween the size of landslides and the scale of predictors
is not straightforward. If such a relationship exists, then
it is most probably defined for each individual pre-
dictor, and is more complex than a simple linear one.
This confirms the findings of Paudel et al. (2016) and
Pawluszek et al. (2018) in that there is no universal
scale that works for all LSVs, but each LSV performs
best at its own scale.

The curvatures, with one exception, perform better at
fine scales, while slope, texture, TPI, and TRI perform
better at broad scales. When scaled, the prediction
power of individual LSVs increases in both study areas.
The most significant increase in the Shizuoka study area
is for slope (AAUC =0.10) and TRI (AAUC=0.11). For
the Buzau study area, the biggest increase is for mean
curvature (AAUC =0.07). The increase in AUC for a
scaled LSV compared to the default is greater for the
Shizuoka study area, with the exception of elevation,
plan, and profile curvatures (Fig. 6).
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Prediction of landslide scarps

The results show a significant improvement in the ac-
curacy of the models for both study areas when the pre-
dictors have been scaled. The increase is particularly
significant in Buzau, where AUC changed from 0.59 to
0.73, corresponding to a poor to a good model. For
Shizuoka, the increase in accuracy is more limited, from
AUC=0.73 to 0.80, but is still important, especially
considering that the model with default predictors had
already shown a good accuracy (Fig. 7).

Building a model for detecting landslide scarps gets
increasingly more complex as the terrain is more variable
and the landslides are of different type. The relation
between landslide scarps and LSVs is not linear and gener-
ally not intuitive. For example, there is no clear relation
between the slope of a scarp and the slope of the terrain
before the landslide occurred. A deep-seated slide can
occur on a gentle slope but the slope of its scarp can be
steep. And also an older, deep-seated slide can occur on a
much steeper slope but the scarp can be eroded and thus
less steep.

Variable importance

Our study found out that not all the LSVs have their
best fit at the same scale. This controls the final accuracy
of the model, because using each LSV at its appropriate
scale not only improves the modeling accuracy (Paudel
et al. 2016) but also strongly affects the ranking of pre-
dictor importance (Pawluszek et al. 2018). Indeed, for
the Buzau study area, the ranking changes significantly
when the model is constructed with scaled predictors
(Fig. 8). For the default model, elevation stands as the
most important predictor, followed by a group of other
three predictors with similar importance (TRI, TPI, and
slope). Curvatures have lower importance while texture
has a negative importance coefficient, which indicates a
negligible contribution to the model. For the scaled
model, two predictors stand out as important, slope, and
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TPI, and the variable importance graph shows all the
predictors influence the model, even texture. For the
Shizuoka study area, the default model’s predictor rank-
ing is quite similar to that of the Buzau default model,
elevation stands as the most important predictor,
followed by TRI, slope, and TPI, while curvatures and
texture are the list important. For the scaled model,
there is an even bigger gap between elevation and the
other predictors. Notable is the rise in importance of the
texture when scaled, which becomes the second most
important predictor (Fig. 8).

These findings are supported by similar results pre-
sented by Paudel et al. (2016) and Pawluszek et al. (2018).
Also, by testing the effect of DEM resolution on the accur-
acy of landslide models, Catani et al. (2013) found that
using a DEM with a different spatial resolution changes

the ranking of variable importance. This is in strong con-
trast with the vast majority of studies on landslide model-
ing that use all the LSVs at the same scale. The problem
of model accuracy can be, partially, solved by using an al-
gorithm that can have a high number of predictor vari-
ables from which those that improve the model are
chosen (e.g., RF). However, the possibility that some LSVs
can be ranked of little or no importance to the model oc-
curs, because they are not used at the proper scale, affect-
ing the geomorphological interpretation of the model.

It is important to note that there are great differences
in the ranking of variable importance between results
from RF (Fig. 8) and those from the logistic regression
(Fig. 6). The fact that different modeling approaches
produce different variable importance rankings, for the
same input data, has also been reported in previous
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studies (Goetz et al. 2015; Chen et al. 2017), and the rea-
son for this is beyond the scope of this paper. The main
point in our approach is to compare the scaled variable
against the unscaled variable for a better fit based on a
simple regression, since more complex modeling tech-
niques, like RF, work best when they use multiple pre-
dictors (Catani et al. 2013).

Scaling factor and landslide size

Our results show that, with the exception of profile
curvature, all others LSVs have a better fit to the land-
slide scarps when they were scaled, and that there is no
universal scale at which the LSVs should be used, each
individual LSV has a particular scale for a particular
study area. When we transform the scaling factor, from
pixels to hectares, in order to compare the results with
the average size of the landslides, we find that there are
significant differences between predictors and between
the two study areas (Fig. 9). For the Shizuoka study area,
five LSVs (plan curvature, profile curvature, mean curva-
ture, texture, elevation) that are not scaled or scaled to
represent an area less than 0.25ha (50 x 50 m) and only
three variables are scaled broadly. In the Buzau study
area, by contrast, three LSVs (profile curvature, mean
curvature, elevation) are scaled to finer sizes and five are
scaled broadly.

It has long been acknowledged that the multitudes of
processes, at different spatial and temporal scales, oc-
cupy the same physical space (Schmidt and Andrew
2005) and that DEMs with different pixel sizes portray
different processes and landforms for the same area
(Claessens et al. 2005). This is important in all geomor-
phological modeling and is particularly important in
models to detect past landslides, because the vast major-
ity of landslides are relatively big, and on both their
scarp and body other processes, at smaller scales, can
take place and develop a local microtopography (e.g., rill
networks and gullies). All the LSVs that are scaled to
finer areas seem to improve the modeling accuracy due
to a better representation of topography through elimin-
ation of local noise in the form of microtopography
(Fig. 10). Furthermore, the area that they are scaled to
seems to fit the range of spatial resolutions at which
other studies have found to be most appropriate to
model landslides. Thus, when studying the effects of
DEM resolution on landslide modeling in the past,
DEMs with spatial resolutions ranging from 2 to 500 m
were investigated and the conclusion was that the best
results were obtained using DEMs with a spatial reso-
lution of 10 m (Arnone et al. 2016; Wang et al. 2017;
Schlogel et al. 2018;), 20 m (Sulaiman et al. 2017; Paw-
luszek et al. 2018) and even 50 m (Catani et al. 2013).
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These results suggest that greater consideration should
be given to the choice of DEMs, and their spatial reso-
lution, when modeling landslides. Also, the fact that the
lowest pixel size (i.e., highest spatial resolution) is not al-
ways the best option is highly important today with the
increasing availability and use of DEMs with high to very
high resolution.

The LSVs that are scaled broadly, to an area of more
than 2500 m? (50 x 50 m), seem to be less related with the
microtopography developed on the landslides and more
with the size of the landslides themselves. They are related
to the findings of Claessens et al. (2005) who concluded

that there is no universal DEM resolution for landslide
modeling, and recommended that the DEM to be used
should be adapted to the average size of the landslides.

For the Shizuoka study area, the three LSVs (slope,
TRI, and TPI) that are scaled broadly represent an area
greater than that of the average area of landslides
whereas, the broadly scaled LSVs for the Buzau study
area represent an area of approximately three times
smaller than that of the average landslide. This can be
related to the type and accuracy of the DEMs. The Lidar
DEM used for the Shizuoka study area has a higher ac-
curacy than that of the optically derived DEM for the

P -
Plan %urvature
B " C:S landslide scarp 0_1031

Fig. 10 Example of a scaled predictor in relation to a landslide scarp in the Shizuoka area. Left image: plan curvature at the default scale. Right

image: plan curvature scaled in a 9 x 9 window. Note a north-south trench inside the landslide scarp on the left image is filtered out on the
right image

.
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Buzau study area, and the latter has more artifacts re-
sulted from the transformation from a DSM (digital sur-
face model) to a DTM (digital terrain model). However,
an even greater uncertainty in interpreting the relation
between the area at which the LSVs were scaled and the
area of the landslides is the variability in landslide size
for the two study areas and that in size within each
study area. This is valid especially in the Buzau area
where the size differences between the more frequent
smaller landslides and the bigger landslides are signifi-
cant, and using only the average to express the size is
statistically unrepresentative. The complex relation be-
tween the scaling factors of different predictors and the
sizes of landslides under different conditions should be
addressed in future studies.

Scaling LSVs for landslide detection models vs landslide
susceptibility models

In recent years, more and more landslide inventories are
created using automated or semi-automated models that
can detect changes in the topography and/or land cover
or that can be trained to identify the characteristics of
landslides. The input for these models can be DEMs, re-
mote sensing data or a combination of both.

The methodology that we propose here was developed
and tested for detecting landslides in order to build a
new inventory. We have chosen this approach, instead
of a landslide susceptibility study because (i) it allows us
to use landslides that are different in size and scarp
characteristics, making the modeling more challenging
and also reducing the risk of overfitting (creating an al-
gorithm with good results on our data but with poor
transferability), and (ii) it is easy to validate, since we
already have the inventory of landslides that the algo-
rithm predicts.

Different methods of scaling input data have been used
for landslide susceptibility studies (Catani et al. 2013;
Paudel et al. 2016). We estimate that our model for scal-
ing can also be used in landslide susceptibility models.
From the R script that is provided in Additional file 1,
the scaling subroutine can be run independently of the
rest of the script and can be used as a preprocessing step
in a workflow of landslide susceptibility modeling. How-
ever, this should be tested in further studies.

Conclusion

We tested the hypothesis that scaling LSVs to better fit
the observational scale improves modeling the presence/
absence of landslide scarps. The results show that when
using scaled predictors, the models outperform the
models with unscaled predictors. In terms of AUC
values, an increase of 0.07 (0.73 to 0.80) was achieved
for the Shizuoka area and an increase of 0.14 (0.59 to
0.73) for the Buzau area. We further found that the
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importance of predictors in modeling changes as LSVs
become more relevant at appropriate scales. These re-
sults highlight the importance of considering the scale of
the input data in relation to the scaled of the modeled
landslides. Therefore, we recommend that a multiscale
analysis of the LSVs should be performed as a prepro-
cessing of the input data before the modeling.

The proposed upscaling approach was integrated into
a script available in Additional file 1, with a description
and instructions to use in Additional file 2. The script
can run automatically, as a preprocessing step in model-
ing, or it can run on a line by line base, in order to bet-
ter analyze and understand the input data. This script
can be applied to any DEM resolution in order to scale-
up the input data to the size of geomorphological
features.

In this paper, the errors that can be present in the two
DEMs, and the other factors that can influence the mod-
eling results, such as sampling strategy or modeling
techniques are not discussed. Also, predictors that are
known to have an important role in landslide modeling
but are not derived from a DEM, like lithology and land-
cover, were not used. Those factors are beyond the scope
of this paper and in order to test solely the influence of
scaling the DEM-derived input variables, we had to keep
all other factors constant, at the expense of potential loss
in the overall accuracy of the model. Furthermore, we
do not discuss the differences in the ranking of variable
importance when computed with different methods. All
of this should be addressed in future research.

Additional files

Additional file 1: R scalling script. (R 7 kb)
Additional file 2: R script user guide. (DOCX 14 kb)
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