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Abstract

The CO2 concentration of air has increased over the last two centuries and recently surpassed 400 ppm. Carbon
cycle models project CO2 concentrations of 720 to 1000 ppm for the IPCC intermediate scenario (RCP 6.0), resulting
in an increase in global mean temperature of ~ 2.6 °C and a decrease in seawater pH of ~ 0.3. Together, global
warming and ocean acidification are often referred to as the “evil twins” of climate change, potentially inducing
severe threats in the near future. In this paper, our discussion is focused on the response of two major calcifiers,
foraminifera and corals, which contribute much to the global carbonate burial rate. Photosymbiosis is regarded as
an adaptive ecology for living in warm and oligotrophic oceans, especially for reef-building corals and larger reef-
dwelling benthic foraminifera. As a consequence of global warming, bleaching may be a global threat to algal
symbiont-bearing marine calcifying organisms under conditions of high temperature and light intensity. If CO2 is
dissolved in seawater, the partial pressure of CO2 in seawater (pCO2) and dissolved inorganic carbon (DIC) increases
while pH and the saturation state of carbonate minerals decreases without any change in total alkalinity. Generally,
marine calcifying organisms show decreases in calcification rates in response to acidified seawater. However, the
response often differs depending on situations, species, and life-cycle stage. Some benthic foraminifera showed a
positive response to low pH conditions. The Acropora digitifera coral calcification of adult branches was not reduced
markedly at higher pCO2 conditions, although calcification tended to decrease versus pCO2 in both aposymbiotic
and symbiotic polyps. New analytical technologies help identify important constraints on calcification processes.
Based upon Ca isotopes, the transport path of Ca2+ and the degree of its activity would predominantly control the
carbonate precipitation rate. Visualization of the extracellular pH distribution shows that proton pumping produces
the high internal pH and large internal–external pH gap in association with foraminiferal calcification. From the
perspective of a long-term change in the Earth’s surface environment, foraminifera seem to be more adaptive and
robust than corals in coping with ocean warming and acidification but it is necessary to further understand the
mechanisms underlying variations in sensitivity to heat stress and acidified seawater for future prediction. Since CO2

is more soluble in lower temperature seawater, ocean acidification is more critical in the polar and high-latitude
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regions. Additionally, older deep-water has enhanced acidity owing to the addition of CO2 from the degradation of
organic matter via a synergistic effect with high pressure. With current ocean acidification, pH and the saturation
state of carbonate minerals are decreasing without any change in total alkalinity. However, in the Earth’s history, it
is well known that alkalinity has fluctuated significantly. Therefore, it is necessary to quantitatively reconstruct
alkalinity, which is another key factor determining the saturation state of carbonate minerals. The rapid release of
anthropogenic CO2 (in the present day and at the Paleocene/Eocene boundary) induces severe ocean acidification,
whereas in the Cretaceous, slow environmental change, even at high levels of pCO2, could raise alkalinity, thereby
neutralizing ocean acidification.

Keywords: Partial pressure of CO2, Global warming, Ocean acidification, Coral, Foraminifera, Bleaching, Calcite,
Aragonite, Saturation state, Organic matter, Alkalinity, Carbon cycle
Introduction
Human beings are now dramatically changing our planet
and altering the environment by modifying the global car-
bon cycle through anthropogenic carbon dioxide (CO2)
emissions from the burning of fossil fuels. The CO2 concen-
tration of air was around 280 ppm in 1750 AD (the begin-
ning of Industrial Revolution), but it has increased over the
last two centuries and is currently above 400 ppm. Carbon
dioxide is one of the primary greenhouse gases in Earth’s at-
mosphere, together with water vapor, methane, nitrous
oxide, and others. The Intergovernmental Panel on Climate
Change (IPCC) intermediate RCP 6.0 scenarios (IPCC
2013b) predicts that the CO2 concentration in air will in-
crease to 720–1000 ppm by 2100 AD and that the global
mean temperature will rise by 2.6 °C. Comparison of CO2

concentrations in the atmosphere with fossil-fuel burning
data indicates that about 60% of fossil-fuel emissions remain
in the air. The remainder is mainly absorbed by the ocean,
which may provide some relief from severe warming.
Atmospheric carbon reservoirs are controlled by the for-

mation/dissolution of both carbonate and organic matter
(OM) in the ocean, which changes the chemical equilib-
rium of the marine CO2 system by removing/adding alka-
linity in association with the release/absorbance of CO2 in
the atmosphere (Fig. 1) (e.g., Kleypas et al. 1999; Kleypas
et al. 2006; Orr et al. 2005). In open ocean, biogenic car-
bonate production is positively correlated with biogenic
OM production, although the carbon ratios of OM to car-
bonate generally increase as OM fluxes increase (based
upon the results from sediment trap experiments in the
Pacific Kawahata 2002). Planktic foraminifera, which live
in the ocean surface layers from tropical to polar regions,
secrete low-Mg calcite shells and contribute 32–80% of
the total deep-marine calcite budget in the global carbon-
ate cycle (Schiebel 2002). The comparable carbonate con-
tributor in the open ocean is coccolithophore. This is a
unicellular, eukaryotic phytoplankton (alga) and one of the
more abundant primary producers in the ocean, espe-
cially in tropical and subtropical oceans influenced by
El Nino/Southern Oscillation phenomena (e.g., Beaufort
and Grelaud 2017).
In oligotrophic environments such as coral reefs and sub-

tropical gyres in the Pacific, the symbiotic relationship be-
tween the host and its symbiotic algae presents three major
advantages: energy from photosynthesis, an enhancement
of calcification, and uptake of host metabolites. Bleaching is
defined as (i) damage to the symbiotic relationships be-
tween hosts and algal symbionts and (ii) photosynthetic
pigment loss (Iglesias-Prieto et al. 1992). Elevated seawater
temperature brings negative effects on marine calcifiers; in
particular, coral bleaching has occurred repeatedly since
1979 AD (e.g., Bunkley-Williams and Williams 1990) in
tropical regions worldwide (Brown 1997; Hoegh-
Guldberg et al. 2007). Mass bleaching events such as those
in 1979–1980 AD, 1982–1983 AD, and 1986–1988 AD
provide important opportunities for investigating the in-
fluence of bleaching during the early stages of this re-
search area. Recently, bleaching has been found in benthic
foraminifera in coral reefs (Schmidt et al. 2011). Coral
reefs are among the ecosystems most vulnerable to envir-
onmental stresses associated with future climate changes
caused by human activities (IPCC 2017).
By the end of twenty-first century, the surface waters of

the ocean could be more acidic, resulting in an undersatur-
ation condition with respect to carbonate minerals in some
areas of high latitude. Ocean acidification (OA) will induce
severe stress in calcifiers, some of which are sensitive to en-
vironmental changes at global and local levels. Additionally,
Oschlies et al. (2008) pointed out that anthropogenic CO2

emissions will extend oxygen-minimum zones, a 50% in-
crease in the suboxic (defined as dissolved O2 < 5mmolm−3)
water volume by the end of this century, although a serious
ocean anoxic event, which occurred in the Cretaceous, will
not occur in the normal open ocean. Drivers such as OA,
higher seawater temperature, or reduced dissolved oxygen
concentration may overlap to amplify ecosystem impacts.
Therefore, understanding the effect of environmental

parameters (i.e., temperature, salinity, pH, and dissolved
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Fig. 1 a Schematic diagram of modern carbon cycle for both global warming and ocean acidification, which are often referred to as the “evil
twins” of climate change. The increase in atmospheric CO2 concentration caused by human activities is predicted to promote global warming by
~ 2.5 °C and an ocean pH reduction of ~ 0.3 by 2100 AD. Coral reefs are among the ecosystems most vulnerable to environmental stresses
(bleaching and/or ocean acidification). An aragonite saturation state of 3.3 is suggested to be the environmental limit for the existence of tropical
coral reefs where calcification exceeds the dissolution of calcium carbonate (Kleypas et al. 2006). The culture experiments reported general
negative effects on survival, calcification, growth, and reproduction despite significant variation among taxonomic groups in marine environments. For
example, calcification tended to decrease versus pCO2 in both aposymbiotic and symbiotic polyps of Acropora digitifera, although its coral calcification
of adult branches was not reduced so much under higher pCO2 conditions. In contrast to the majority of benthic foraminifers dwelling in coral reefs,
Calcarina gaudichaudii showed a positive response to increases in pCO2. Since CO2 is more soluble in lower temperature seawater, ocean acidification
is more critical in the polar and high-latitude regions. Surface water in the Southern Ocean will be undersaturated with respect to aragonite by
2050 AD (Orr et al. 2005). More severe dissolution of carbonate will occur in deep-sea due to the increase in solubility at higher pressure, which will
make the CCD shallow. Most likely, deep-sea benthic foraminifera will be forced to change from calcareous to the agglutinated forms reported at the
Paleocene/Eocene boundary. b Schematic diagram of the carbon cycle in coral reefs. The equations involve the following important processes: (1)
photosynthesis (CO2 invasion, resulting in slowing acidification), (2) respiration/degradation (CO2 evasion, promoting acidification), (3) calcification (CO2

evasion), and (4) dissolution of carbonate (CO2 invasion, one of the neutralizing processes). Processes (1) and (2) are associated with organic carbon
metabolism, whereas (3) and (4) are associated with inorganic carbon processes. Photosynthesis triggers the production of OH−, commonly resulting
in the deposition of carbonate. In contrast, the reaction of carbonate with CO2 works as a sink of CO2. This reaction is often promoted in deep-sea,
which results in the depletion of carbonate on abyssal plains in the Pacific
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oxygen concentration) on representative calcifiers such as
corals and foraminifera is essential for the verification of
carbonate cycles and future environments. In the global
carbonate budget, the carbonate production rates in the
ocean and the tropical shelves are estimated to be ~ 1.0 Pg
C year−1 and ~ 0.17 Pg C year−1, respectively. However, its
burial rate to sediments in the ocean is ~ 0.15 Pg C year−1

via 85% dissolution in water column/surface sediments;
this is comparable to that in the tropical shelves
(~ 0.13 Pg C year− 1). Foraminifera, coccolithophores, and
pteropods accounted for 43%, 22%, and 34%, respectively,
in the ocean (personal communication with Prof. Tim
Rixen). Of these, pteropods often produce aragonite shells,
which are more liable to dissolution. Our discussion is fo-
cused on two major calcifiers, foraminifera and corals, al-
though OA may impact other groups of marine organisms
(e.g., Iglesias-Rodriguez et al. 2002; Catubig et al. 1998;
Gangsto et al. 2008; Tambutté et al. 2011).
In this review, initially, we describe the general features

of the marine carbonate system and biotic and abiotic
carbonate minerals. In the next section, we summarize the
response of corals and foraminifera to OA. Photosymbio-
sis is regarded as an adaptive ecology for living in warm
and oligotrophic oceans and also enhances calcification of
the host’s skeleton (e.g., Stanley Jr. 2006; Moya et al.
2008). Therefore, it is believed to facilitate the prosperity
of calcifying organisms in such environments. After dis-
cussing the role of symbiosis, we report the latest results
on coral and foraminiferal bleaching including culture
experiments, and then discuss the responses of
symbiont-bearing calcifiers in a warm and/or high CO2

world. New chemical and isotope analyses of biominerals,
together with visualization techniques for extracellular pH
distribution, provide valuable information regarding bio-
mineralization including calcification. Furthermore, the
latest results on carbonate dissolution using X-ray
micro-computed tomography will be presented. Finally,
we discuss results on the response of calcifiers to different
environments such as extreme warmth in the Cretaceous,
the middle Eocene climatic optimum (MECO) event, and
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perturbations in the global carbon cycle at the Paleocene/
Eocene boundary. This discussion includes the interaction
between terrestrial and marine environments to better
understand the key factors inducing OA in the past and
the near future.

Background to ocean acidification
When CO2 is dissolved in seawater, chemical reactions re-
duce seawater pH, carbonate ion concentration ([CO3

2−]),
and the saturation states of biogenic carbonate minerals
(Fig. 1):

CO2 aqð Þ þH2O⇄H2CO3⇄HCO3
‐

þHþ⇄CO3
2‐ þ 2 Hþ ð1Þ

These chemical reactions are termed “ocean acidifica-
tion (OA).” The seawater pH of surface ocean waters
was 8.17 at 1750 AD but this has decreased to 8.06
in the present day and is expected to reach to 7.93
(pCO2 = 560 μatm) or 7.71 (pCO2 = 1000 μatm) in the
near future (Gattuso et al. 1998). OA is known as
“climate change’s equally evil twin”, in reference to
the significant and harmful consequence of enhanced
CO2 in the atmosphere. As the pH scale is logarith-
mic, a change of 1.0 pH unit represents approxi-
mately a 30% increase in acidity.
Fig. 2 Total alkalinity and dissolved inorganic carbon (DIC) diagrams show
of aragonite (Ωarag; c) and calcite (Ωcal; d). Chemistry of surface water und
data are available from http://pacifica.pices.jp/table/) will be modified in 23
Foraminifera, corals, haptophytes, mollusks, and sea
urchins produce skeleton structures of carbonate, mainly
in the mineral form of aragonite and high and low mag-
nesium (Mg) calcites. Of these, foraminifera, corals, and
haptophytes are the most important organisms forming
large amounts of carbonate rock, calcareous sediment,
and coral reef; thus hosting one of the richest and most
diverse ecosystems of our planet (Kleypas et al. 1999).
Both carbonate formation and OM production play im-
portant roles in controlling the amount of CO2 in the
oceans and atmosphere. Generally speaking, OM pro-
duction and degradation work as a sink and a source of
CO2, respectively. Conversely, carbonate formation in
the sea via the combination of calcium ions (Ca2+) and
HCO3

− liberates CO2, whereas its dissolution works as a
sink of CO2 (Fig. 2). Additionally, the chemical weathering
of terrestrial rocks plays an important role in the long-term
global carbon cycle (Sarmiento and Gruber 2006). The
weathering of both carbonate and silicate rocks consumes
atmospheric CO2 and generates bicarbonate (HCO3

−),
which is transported to the ocean and released back to the
atmosphere in the form of CO2 through oceanic carbonate
mineralization processes (Eq. 3 in Fig. 1):

CaSiO3 þ 2CO2 þH2O→Ca2þ þ 2 HCO3‐þ SiO2 ð2Þ
CaCO3 þ CO2 þH2O→Ca2þ þ 2 HCO3

− ð3Þ
ing contours of pH (a), partial pressure of CO2 (b), and saturation states
er modern conditions (solid red circle) at St. 96 (5°00’N, 144°55.7’E;
00 AD (open circle)

http://pacifica.pices.jp/table/
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Silicate and carbonate weathering in this sequence of pro-
cesses consumes the difference in the molar ratio of CO2.
Over long timescales (104 to 106 years), it is suggested that
only silicate weathering contributes to a net reduction of at-
mospheric CO2 concentrations, which are closely linked to
past climate conditions (Berner 1992; Brady 1991).

Review
Basics of ocean acidification
OA is in essence a CO2-related phenomenon in the ocean.
Therefore, its basic physicochemical characteristics can be
well illustrated by chemical equilibrium modeling of the
CO2 system in seawater (Figs. 2, 3, 4, and 5, Table 1).

General features of the carbonate system
Dissolved inorganic carbon (DIC = [CO2] + [HCO3

−] +
[CO3

2−]) and total alkalinity (TA = [HCO3
−] + 2[CO3

2−] +
[B(OH)4

−] + [OH−] + 2[PO4
3−] + [HPO4

2−] + [SiO(OH)3
−]

– [H+] – [HSO4
−]) are the most important parameters in

the aquatic CO2 system because they are essential for rep-
resentation of the laws of conservation of mass and elec-
tricity. A cross plot of DIC and TA is known as the
Deffeyes’ diagram (Deffeyes 1965). pH and pCO2 can be
a b

d e

Fig. 3 Upper panels: changes in pCO2 in seawater and the corresponding
pH decreases under three different climate schemes: a polar and high-latit
panels: changes in [CO3

2−] with the progression of ocean acidification at th
The corresponding DIC and [HCO3

−] are shown in each graph. The chemical eq
with the following conditions: total alkalinity of 2200 μmol kg− 1, salinity of 34, a
shown in the contours in the DIC and TA plane be-
cause these parameters are functions of DIC and TA
(Figs. 2 and 3). The four parameters, DIC, TA, pH, and
pCO2, are all measurable parameters in the marine CO2

system. More importantly, OA is expressed as a horizontal
vector in the Deffeyes’ diagram (DIC–TA plot), as shown
in Fig. 2. OA is the result of increased oceanic CO2 uptake
by continuing anthropogenic emissions. CO2 dissolution
in seawater increases DIC but causes no changes in TA
(Table 1).
The conditions of under- and super-saturation of sea-

water with respect to calcium carbonate (CaCO3) are rep-
resented by calcium carbonate solubility (Ω), which is
defined as the ratio of the product of the solutes over the
product of the solutes at saturation (solubility product):

Ω ¼ CO3
2‐

� �
Ca2þ
� �

= CO3
2‐

� �
sat Ca

2þ� �
sat

¼ CO3
2‐

� �
Ca2þ
� �

=Ksp ð4Þ

where [CO3
2−]sat and [Ca2+]sat are, respectively, the con-

centrations of carbonate and dissolved Ca2+ in equilibrium
with carbonate mineral (CaCO3). [CO3

2−] and [Ca2+] are
the observed CO3

2− and Ca2+ concentrations. [CO3
2−] is
c

f

saturation states of calcite and aragonite (Ωcal and Ωarag) as seawater
ude regions (2 °C), b temperate (15 °C), and c tropical (28 °C). Lower
ree different temperature settings of 2 °C (d), 15 °C (e), and 28 °C (f).
uilibrium calculation was conducted using CO2calc (Robbins et al. 2010),
nd pressure of 10 dbar
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Fig. 4 Depth profiles of temperature and salinity (a), total alkalinity and DIC (b), pH and total hydrogen concentration scale (c), and saturation
states for calcite (Ωcal; d), and aragonite (Ωarag; e) at St. 96 (5° 00′ N, 144° 55.7′ E; water depth 4102 m; sampling date April 22, 1995) in the tropical
western Pacific during the NOPACCS NH95-1 cruise (data were downloaded from http://pacifica.pices.jp/table/). The compositions of the surface
water include a temperature of 29.4 °C, salinity of 33.859, DIC of 1870 μmol kg− 1, and total alkalinity of 2225 μmol kg−1. The chemical equilibrium
calculation was conducted using CO2calc (Robbins et al. 2010) to elucidate temperature and pressure influences on changes in the depth profiles
of Ωcal and Ωarag. Note that changes in CO2 system chemistry are responsible for rapid decreases in Ωcal and Ωarag below the surface layer, whereas
pressure influence becomes dominant at greater depth. Ksp is much dependent on the pressure: Ksp for calcite = (1.95–0.0176 × T)10− 2 × S × 10((0.693–
0.00645 × T)10–4 × z); Ksp for aragonite = (3.06–0.0217 × T)10− 2 × S × 10((0.650–0066 × T)10–4 × z)
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closely related to the acidity of seawater. Ksp is the solubil-
ity product, which is dependent on temperature, salinity,
pressure, pH, and nutrient levels. The term Ω is also
known as the carbonate saturation state and is calculated
for both calcite and aragonite (Ωcal and Ωarag, Robbins
et al. 2010). When Ω > 1, seawater is supersaturated with
respect to carbonate minerals; conversely, when Ω < 1,
seawater is undersaturated. Because [Ca2+] in the ocean
has a long residence time (106 years), it can be assumed to
be constant on a time scale shorter than 104 years. [Ca2+]
is assumed to be proportional to the salinity level. There-
fore, the carbonate saturation state (Ω) is mainly deter-
mined by [CO3

2−] and Ksp (Table 1).
The saturation states of calcite and aragonite (Ωcal and

Ωarag) can be calculated and shown in the DIC–TA plot
(Figs. 4 and 5). OC modifies the CO2 system, and its change
is represented by the horizontal vector in the DIC-TA plot.
It always results in a decrease in Ω (Table 1).
While OA may progress ubiquitously, the correspond-

ing changes in pH and pCO2 vary locally. The most evi-
dent parameter to influence the pace of OA progression
is temperature. By using the parameters for the carbon-
ate system in the equatorial Pacific as representative,
Fig. 3 summarizes the temperature effects on marine
CO2 system parameters, including the saturation states
of carbonate minerals (Table 1). Although pCO2 is sensi-
tive to temperature (~ 4% increase per 1 °C), this cannot
be seen in the upper panels of Fig. 3. In contrast, Ωcal

and Ωarag show large variations according to the
temperature settings (Fig. 3a–c). Ωcal of the 2 °C condi-
tion becomes lower than the critical value of 1 (carbon-
ate dissolution) when pCO2 reaches around 750 μatm or
pH 7.7 (Fig. 3c). In contrast, Ωcal for the 28 °C condition
may not reach the critical value before pCO2 reaches
around 2300 μatm or pH 7.3 (Fig. 3c), clearly indicating
that OA is more critical in the polar and high-latitude
regions compared with temperate and tropical regions.
This trend become easily understandable in light of the
temperature dependency of [CO3

2−], as shown in the
lower panels in Fig. 3d–f.
Another important factor influencing the saturation

states of seawater with respect to carbonate minerals is
pressure. Pressure affects carbonate solubility in seawater
and thus Ksp and temperature. In order to depict the pres-
sure effect alone, we prepared depth profiles of saturation
states for calcite and aragonite at St. 96 (5° 00′ N, 144°
55.7′ E, water depth 4102 m, sampling date April 22,
1995) of the NOPACCS NH95-1 cruise (data were

http://pacifica.pices.jp/table/


a b

c d

Fig. 5 Carbonate saturation state of seawater (Ωcal and Ωarag) influenced by changes in physical condition (a, c) and ongoing ocean acidification
(b, d). The surface seawater compositions in the tropical western Pacific were used as an example (St. 96 of NOPACCS NH95-1 cruise; 5° 00′ N,
144° 55.7′ E; water depth 4102 m; sampling date April 22, 1995; data available from http://pacifica.pices.jp/table/). The red dotted lines in panels b
and d represent the possible future trajectory of seawater compositions, as influenced by ocean acidification (Caldeira and Wickett 2003). The chemical
equilibrium calculation was conducted using CO2calc (Robbins et al. 2010). Note that the CO2 system change in seawater caused by ocean acidification is
much more significant to the carbonate saturation state of seawater, as compared with physical condition changes including temperature and
pressure variations

Table 1 Water properties under different environmental conditions. In particular, [CO3
2−] and the corresponding saturation states of

calcite and aragonite (Ωcal and Ωarag) are calculated for modern, 2110 AD, and Cretaceous conditions using CO2calc (Robbins et al. 2010).
The numbers in the gray color column show the initial settings for the calculation

Here, we assumed that the pressuere at 1 km water depth roughly corresponded to ~ 100 bar (1000 dbar)
Salinity was fined at 34
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downloaded from http://pacifica.pices.jp/table/), as shown in
Fig. 4. The pressure influence becomes dominant at greater
depth because Ksp increases 1.72 times from the surface to
4000 m depth (Fig. 4d, e; Table 1). The corresponding satur-
ation levels of the carbonate ion concentration [CO3

2−]sat
are 41 μmol kg−1 and 70 μmol kg−1 at the surface and
4000 m depth, respectively. Note that the changes in CO2

system chemistry, i.e., degradation of OM and pH decrease,
are responsible for the rapid decreases in Ωcal and Ωarag for
the depth interval below the surface layer.
Figure 5 illustrates a more quantitative comparison of

the factors influencing Ω. The surface water composi-
tions at St. 96 in the western tropical Pacific are again
used as an example. Temperature decrease and pressure
increase result in decreases in Ωcal and Ωarag in seawater
(Fig. 5a, c), but the condition of undersaturation with re-
spect to aragonite is never reached. On the other hand,
the significant changes in Ωcal and Ωarag can be caused
by ongoing and future changes in the marine CO2 sys-
tem, indicating that OA is the prime driver of Ω under
the conditions of climate change.

Characteristics of biotic and abiotic-carbonate minerals
The chemical composition, ultrastructure, and organic
components of carbonate minerals ultimately determine
their physical and chemical properties. An apparent differ-
ence in mineral solubility exists between the two major
polymorphs of calcium carbonate, i.e., calcite and aragon-
ite (Morse et al. 2007; Ries 2011a, b). Calcite has the lower
solubility with a stoichiometric solubility product in sea-
water K′sp(stoich) of 6.65, whereas aragonite is more soluble
(K′sp(stoich) = 4.29, Morse et al. 1980). The solubility of cal-
cite increases with increasing Mg content. The solubility
of calcite, with an Mg/Ca of 0.14, is calculated to be
equivalent to that of aragonite (Ries 2011b).
The physical properties of biominerals outperform abiotic

minerals with respect to toughness, hardness, multi-scale
ordering, and architecture (e.g., Ma et al. 2009). In order to
facilitate calcification, biogenic calcium carbonate has the
compositional and spatial complexity of inorganic and or-
ganic compounds (Tamenori et al. 2014). One example is
Mg, an important minor constituent element in the hex-
agonal calcite structure (Finch and Allison 2008; Branson
et al. 2013; Yoshimura et al. 2015), which affects polymorph
mineralogy, the rate of crystal growth, and the solubility of
calcium carbonate (Davis et al. 2000; De Groot and Duyvis
1966). The skeletons produced by anatomically simple
organisms such as corals, macrophytic algae, sponges,
and bryozoans are composed of a high-Mg calcite con-
taining > 4 mol% MgCO3 in solid solution. In the mod-
ern marine environment, high-Mg calcite and aragonite
form via abiotic reactions. Because the presence of Mg2
+ in a fluid is known to inhibit calcite crystal growth
(Davis et al. 2000; Mucci and Morse 1983), certain taxa
such as foraminifera, coccolithophores, mollusks, and
brachiopods with skeletons composed of low-Mg calcite
(Mg/Ca molar ratio is below 4 mol%) reduce the Mg/
Ca ratio in the calcifying solution, and their skeletons
are generally more resistant to OA.
In the pelagic ocean, up to 80% of the biogenic car-

bonate is remineralized in the upper water column (Mill-
ero 2007). After the remaining portion settles through the
water column, the oxidation of OM at the sediment–water
interface plays a major role in diagenetic dissolution pro-
cesses (Eqs. 2 and 4 in Fig. 1). As described in the follow-
ing sections, the formation and dissolution of carbonates
in the context of CO2-induced OA are examined in terms
of Ω for a given environment. Although differences in the
extent of carbonate dissolution in the ocean basins are pri-
marily controlled by seawater pCO2, the use of simple
thermodynamic relationships in seawater systems is not
always an accurate predictor of biogenic carbonate dissol-
ution due to the complex interplay of mineral surfaces
and microbial processes, the presence of reaction inhibi-
tors, the heterogeneity of trace element distribution, dif-
ferences in the susceptibility of skeletal ultrastructure, and
so on (Morse et al. 2007; Cusack and Freer 2008; Iwasaki
et al. 2015; Yoshimura et al. 2017). For example, the im-
pact of preferential dissolution is seen in a size-dependent
change of the mass fluxes of foraminifera, along with
water depth and their relevance to total carbonate flux
(Thunell et al. 1983).

Ocean acidification under increased pCO2 conditions in
the atmosphere
Anthropogenic CO2-driven OA has been reported to pose
a severe threat to marine calcifying organisms because the
calcification rates of organisms generally decrease in acid-
ified seawater (e.g., Gattuso et al. 1999; Iguchi et al. 2012,
2014; reviewed in Kleypas et al. 2006; Kroeker et al. 2013).
Kroeker et al. (2010) conducted a meta-analysis of 149
results (including 18 coral, 1 large-benthic foraminifera,
and 15 coccolithophorid studies) and reported generally
negative effects on survival, calcification, growth, and
reproduction, despite significant variations among taxo-
nomic groups.

General features of the response of coral to ocean
acidification
The work of Kleypas et al. (1999) is widely recognized as
one of the pioneering studies focusing on the decrease of
coral calcification under the influence of increased
atmospheric pCO2, although the term “ocean acidifica-
tion” was not used in this paper. Since then, experi-
mental studies on calcification versus Ωarag at the level
of marine organisms and communities have become
more prevalent (Orr et al. 2005). In a recent review, the
majority of corals were identified as showing a negative

http://pacifica.pices.jp/table/
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response to a decrease in aragonite saturation (Witt-
mann and Pörtner 2013).
Although some decreases in calcification rates in acid-

ified seawater have been observed among coral species
(Ries et al. 2009; Comeau et al. 2014; Iguchi et al. 2014;
Sekizawa et al. 2017), some species are insensitive to acid-
ified seawater under certain conditions (e.g., Holcomb
et al. 2010; Rodolfo-Metalpa et al. 2010; Chauvin et al.
2011; Ohki et al. 2013; Takahashi and Kurihara 2013;
Nakamura et al. 2017). It is suggested that increased pCO2

may facilitate the onset of photosynthesis by increasing
HCO3

− levels in acidified seawater (Marubini et al. 2008;
Comeau et al. 2013). Although the relationship between
coral calcification and photosynthesis by symbiotic algae
in acidified seawater is not straightforward (Kleypas et al.
2006; Tanaka et al. 2007), it is evident that increased
HCO3

− in acidified seawater partially facilitates coral calci-
fication (Marubini et al. 2008; Comeau et al. 2013).
The impact of OA on corals has also been studied at

the ecosystem level. Kleypas and Langdon (2006) re-
ported that a Ωarag of 3.3 is likely the environmental
limit for the existence of tropical coral reefs where calci-
fication exceeds the dissolution of calcium carbonate.
Hoegh-Guldberg et al. (2007) discussed possible future
coral reef scenarios under rapid climate change and OA
and concluded that a pCO2 above 500 ppm presented a
high risk to coral reefs, with a potential for the loss of
coral-dominated ecosystems. Recently, Cyronak et al.
(2018) proposed a biogeochemical approach based on
DIC–TA plots to monitor the net calcification potential
of coral reef ecosystems under anthropogenic perturba-
tions including ocean warming and acidification.
A poleward shift of the northern limit of coral distri-

bution along the Japanese Islands has been reported and
attributed to global warming (Yamano et al. 2011). How-
ever, OA in temperate waters may influence a northward
shift of coral distribution.

Response of foraminifera to ocean acidification
Recent foraminiferal studies (both planktic and benthic)
generally exhibited negative responses to OA (e.g., Rus-
sell et al. 2004; Kuroyanagi et al. 2009; Kroeker et al.
2010; Keul et al. 2013). Culturing results showed that
shell calcification decreased under low [CO3

2−]. For ex-
ample, culture experiments suggested that the higher is
[CO3

2−], the heavier is the shell produced by planktic
foraminifera (Orbulina universa) (Bijma et al. 1999).
Moreover, the shell weight of Globigerinoides sacculifer
increases 2.1–3.6 μg for every 100 μmol kg−1 increase in
[CO3

2−] (Bijma et al. 2002). Although this effect on shell
production would be species-specific, the shell weight
and calcification rate of both O. universa and G. sacculi-
fer have been shown to exhibit increases under high
[CO3

2−] (Lombard et al. 2010). Keul et al. (2013) also
cultured benthic foraminifera (Ammonia sp.) under con-
stant DIC concentrations or constant pH conditions and
reported that increased [CO3

2−] caused increasing
size-normalized shell weights and growth rates.
Some culturing results have suggested a new perspective

on acidification. When we attempt to evaluate the effect of
OA on foraminifera, we have to consider (1) that the bio-
logical responses to OA differ among different life stages
(i.e., gamete, neanic, or mature) and (2) the effect of each
carbonate species (i.e., [CO3

2−], [HCO3
−], and [CO2]) on

shell calcification. Kroeker et al. (2010) reported that the
larval and juvenile phases of marine organisms might be
more vulnerable to OA. In fact, cultured juvenile Neoglobo-
quadrina pachyderma (sin.) individuals were more affected
by reductions in pH than adults (Manno et al. 2012).
Other culturing experimental studies using asexually

reproduced individuals have revealed different trends
among genera. Hikami et al. (2011) observed opposite re-
sponses among two reef-dwelling (large-benthic) foramin-
ifera under different pCO2 culturing conditions, which
may have been due to the different symbiotic algae and/or
biological-calcification system. The shell weights of two
foraminifera, Amphisorus and Calcarina, were controlled
mainly by [CO3

2−] and pCO2, respectively (Fig. 6).
Several studies have suggested size-normalized planktic

foraminiferal shell-weight as a proxy for ambient seawater
[CO3

2−] (e.g., Barker and Elderfield 2002; Bassinot et al.
2004; Naik et al. 2010). Moy et al. (2009) compared the
shell weights of planktic foraminifera (Globigerina
bulloides) from sediment trap samples (i.e., modern
day) with those in Holocene-age sediments. The
modern-day shell weights were 30–35% lower than
those of the Holocene-age sediments in the Southern
Ocean. In addition, the fossil shell weight of this species
(G. bulloides) tracks the Vostok pCO2 record over the last
50 kyr (e.g., Barker and Elderfield 2002; Moy et al. 2009).
However, at the same pressure-normalized [CO3

2−],
Pulleniatina obliquiloculata from the Pacific were consist-
ently 10 μg heavier than those from the Indian Ocean
(Broecker and Clark 2001). de Villiers (2003, 2004)
suggested that Ω is not the only factor controlling the
shell weight of several planktic species, and Marr et al.
(2011) suggested that temperature is a prominent control on
G. bulloides shell weight (negative correlation). Gonzalez-
Mora et al. (2008) proposed both water temperature and
pCO2 as the main controlling factors on shell calcification.
This was based upon the observation that G. bulloides shell
weight followed the opposite trend to Mg/Ca paleothermo-
metry and Vostok pCO2 during 250–160 kyr in the Western
Mediterranean. However, they also reported that the shell
weight of N. pachyderma (dex.) was not related to either par-
ameter, but their optimum growth condition,
Since temperature controls CO2 solubility (i.e., pCO2

and [CO3
2−]) in seawater, both [CO3

2−] and temperature



a c

b d

Fig. 6 Comparison of an acidification condition experiment and the growth weight of foraminifera. Least mean square (± standard error) adjusted for
the rearing tank of (a) the square root of the shell weight of A. kudakajimensis and (b) the cube root of the shell weight of C. gaudichaudii after the
ocean acidification experiment (Hikami et al. 2011). In this experiment, foraminifera were cultured under five different pCO2 conditions, 245 (Low-
[pCO2], comparable to pre-industrial condition), 375 (Control-[pCO2], comparable to modern condition), 588 (High-1-[pCO2]), 763 (High-2-[pCO2]), and
907 (High-3-[pCO2]) μatm, maintained with a precise pCO2-controlling technique. Arithmetic mean (± standard error) of (c) the square root of the shell
weight of A. hemprichii and (d) the cube root of the shell weight of C. gaudichaudii after a constant carbonate ion ([CO3

−2 = 217–218 μmol kg−1])
experiment (pCO2 conditions of 354 μatm for Low-[HCO3

−], 398 μatm for control, 448 μatm for High-1-[HCO3
−], 486 μatm for High-2-[HCO3

−], and
511 μatm for High-3-[HCO3

−]) (Hikami et al. 2011). Typical shapes of Amphisorus and Calcarina individuals are shown in panels (a) and (b), respectively

Kawahata et al. Progress in Earth and Planetary Science             (2019) 6:5 Page 10 of 37



Kawahata et al. Progress in Earth and Planetary Science             (2019) 6:5 Page 11 of 37
affect size-normalized foraminiferal shell weight. There-
fore, further work on these two parameters should be
carried out to confirm the effect on foraminiferal
calcification.
Bleaching of corals and foraminifera in a warm and/or
high CO2 world
Major planktic foraminifera in the tropical/subtropical
ocean, such as G. sacculifer, Globigerinoides ruber, and
Globigerinella siphonifera, bear photosynthetic symbiotic
algae such as dinoflagellates and chrysophycophyte
(Schiebel and Hemleben 2017). Large benthic foramin-
ifera, dwelling in warm shallow coral reefs, harbor sev-
eral microalgae of dinoflagellates, diatoms, red algae,
and others as symbionts (Lee and Anderson 1991).
Many scleractinian corals that inhabit tropical/subtrop-
ical oceans belong to the class Anthozoa of the phylum
Cnidaria. They typically live in compact sessile colonies
of small individual animals (polyps) that produce hard
skeleton structures of aragonite; these are important reef
builders. They maintain a symbiotic relationship with
photosynthetic dinoflagellate. However, young polyps are
not born with dinoflagellate; rather, they obtain algae
from the surrounding water column and local sediment.
Bleaching is a potentially global threat to marine sym-

biotic calcifying organisms, especially corals and foram-
inifera. When stress-caused bleaching is not severe, both
have been known to recover. However, if the algae loss
is prolonged and the stress continued, both will eventu-
ally disappear.
Fig. 7 Left panel shows coral bleaching occurring in the Sekisei Reef (24° N
affected by high temperature, it is known that massive or encrusting corals
panel shows thermal stress sensitive species (Acropora and Pocillopora; losers) an
Coral bleaching
Role of symbiosis in corals An important aspect in re-
lation to the response of coral calcification to environ-
mental changes is the existence of photosynthetic
symbiotic dinoflagellates, zooxanthellae (genus Symbio-
dinium). An association between reef-building corals
and their symbiotic algae is essential for coral survival in
nature (Yellowlees et al. 2008). In addition, coral calcifi-
cation is facilitated by the photosynthesis of symbiotic
algae (Gattuso et al. 1999). Therefore, it is necessary to
consider the existence of symbiotic algae when we evalu-
ate the effects of environmental changes on coral calcifi-
cation. Coral calcification is closely related to coral
growth, which is an essential characteristic of their life
history; thus, a decrease in coral calcification would lead
to negative impacts by causing difficulties in maintaining
coral life histories. In relation to the responses of corals
to environmental changes, the most significant
phenomenon is coral bleaching (e.g., De’ath et al. 2009)
(Fig. 7).

Bleaching due to the collapse of coral–algal symbiosis
The effect of seawater temperature on corals has been
well studied because high seawater temperature is
known to be a main factor causing the collapse of coral–
algal symbiosis, which is followed by coral death
(reviewed in Hoegh-Guldberg 1999). As to the cause of
coral bleaching, it is suggested that higher temperature
induces oxidative stress in corals. In regards to coral cal-
cification, the increase in seawater temperature facili-
tates calcification within a range of mild temperatures
, 124° E), Japan, in September, 2016. Although many coral species are
tend to survive even in mass bleaching events. The top of the right
d the bottom shows stress tolerant species (Porites and Favites; winners)
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(Inoue et al. 2012). Based on the observation of skeletal
oxygen isotope (δ18O) and carbon isotope (δ13C) micro-
profiles in coral cores, Suzuki et al. (2003) reported that
severe coral bleaching inhibited coral calcification of a
massive Porites colony in 1998. Also based on coral
cores, De’ath et al. (2009) suggested that increased
temperature stresses suppressed the coral calcification of
massive Porites on the Great Barrier Reef, although it is
thought that other environmental factors were likely re-
lated to the suppression. Using coral cores of Diploas-
trea heliopore, Cantin et al. (2010) reported that
increased seawater temperature decreased coral growth.
Laboratory rearing experiments have also clarified varia-

tions in the calcification patterns of corals in certain
temperature regimes (Anthony et al. 2008; Inoue et al.
2012). For example, Nishida et al. (2014a) reared coral
nubbins of an encrusting coral, Isopora palifera, under
various temperature treatments and found that calcifica-
tion was suppressed in higher temperature treatments
(> 31 °C). It is known that there are variations in sensitivity
to heat stress among species (namely, the winners and the
losers in coral bleaching; Loya et al. 2001; van
Woesik et al. 2011). Morphological (e.g., branched, flat;
Loya et al. 2001) and/or physiological variations (e.g., sym-
biont type, energy availability; Baird et al. 2009) among
species would contribute to different susceptibilities to
heat stress. However, studies on calcification responses to
seawater temperature among species remain limited.

Culture experiment using aposymbiotic polyps The
difficulty in understanding the complicated responses of
coral calcification is partly attributed to the fact that coral
calcification is closely related to coral–algal symbiosis,
which forces us to consider both the coral host and the
symbiotic algae. Thus, separating the coral host and symbi-
otic algae under experimental conditions would be helpful
to better understand the responses of coral calcification to
environmental changes. Acropora species release their gam-
etes into seawater in a mass spawning event in early sum-
mer. The eggs do not include symbiotic algae but Acropora
species incorporate symbiotic algae mainly after their settle-
ment. Thus, if we culture coral planulae and induce their
settlement under artificial conditions using filtered sea-
water, which does not contain symbiotic algae, we can eas-
ily produce aposymbiotic polyps.
Furthermore, we can also induce the infection of sym-

biotic algae for aposymbiotic polyps by adding symbiotic
algae using an artificial method. Thus, this coral primary
polyp system enables us to experimentally separate the
association of symbiotic algae from their coral host and
also allows us to determine which stage of the calcifica-
tion process is sensitive to environmental changes
(Inoue et al. 2012; Tanaka et al. 2013, 2014; Nishida
et al. 2014b). Using this system, we attempted to
evaluate how seawater temperature and acidification
affect coral calcification from the perspective of both the
coral host and the symbiotic algae. In the case of the cal-
cification responses to temperature, the responses were
clearly different between aposymbiotic and symbiotic
polyps. The peak of calcification in symbiotic polyps was
around 29 °C while that in aposymbiotic polyps was
around 31 °C. Considering the fact that the calcification
of aposymbiotic polyps increased at 31 °C, the tolerance
of the coral host to thermal stress seems to be higher, as
compared with the symbiotic condition. In the case of
calcification responses to seawater acidification, calcifica-
tion tended to decrease according to the increase of
pCO2 in both aposymbiotic and symbiotic polyps; how-
ever, the calcification of adult branches was not de-
creased at higher pCO2 conditions (Ohki et al. 2013).
The fertilization effect of increased pCO2 on coral calci-
fication may differ across life stages.
In addition to the advantage described above, the coral

primary polyp system has certain further advantages for
evaluating the calcification responses of corals, as com-
pared with experiments using the adult branches of
corals. Primary polyps are very small and the calcifica-
tion of primary polyps is visibly fast; therefore, a suffi-
cient number of specimens is easily available. As such,
the application of live tissue imaging to the coral pri-
mary polyp system would facilitate our understanding of
the calcification responses of corals to various environ-
mental factors (Ohno et al. 2017a, b).

Foraminiferal bleaching
Bleaching in algal symbiont-bearing large benthic
foraminifera Bleaching in algal symbiont-bearing, large
benthic foraminifera was first observed in laboratory ex-
periments in Amphistegina spp. in the early 1980s, and it
was first noted in 1988 in field populations of Amphiste-
gina gibbosa in the Florida Keys. Since 1991, bleaching in
Amphistegina populations has been observed in subtrop-
ical reefs worldwide (Hallock et al. 2006). Bleaching in
Amphistegina appears as partial “mottling” (small white
spots) that is uniformly pale or extensively white (Hallock
et al. 2006). Cytological studies indicate that bleaching in
Amphistegina is caused by the loss of photosynthetic
microalgae and/or their photopigments; it is due to the di-
gestion of deteriorating symbionts by the host (Talge and
Hallock 2003). Experimental studies suggest that bleach-
ing in Amphistegina is induced by photoinhibitory stress,
in particular by the shorter (300–490 nm) wavelengths of
solar radiation (Williams and Hallock 2004).
Temperature stress is also related to foraminiferal

bleaching. In culture experiments, Talge and Hallock
(2003) found that bleaching in Amphistegina occurred
more intensively when incubated at 32 °C than at 25 °C,
indicating that bleaching was enhanced by elevated
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temperature with photic stress. Later, Schmidt et al.
(2011) demonstrated bleaching (the loss of photopig-
ments) and decreased photosynthetic efficiency in other
diatom symbiont-bearing foraminiferal species (Amphis-
tegina radiata, Heterostegina depressa, and Calcarina
hispida) under high temperature stress (> 30 °C). Subse-
quent similar experimental studies confirmed bleaching
and reduced photosynthetic efficiency in many other
symbiont-bearing foraminiferal species under high
temperature stress (e.g., van Dam et al. 2012; Fujita et al.
2014; Schmidt et al. 2014). As summarized in Sheppard
et al. (2009), bleaching at elevated temperature is related
to the photoinhibition of algal symbionts. Temperature
limits the rate of electron transport in photosystems and
the turnover of associated D1 proteins. As a result, the
rate of excitation (light capture by reaction centers)
exceeds the rate of light utilization (photochemistry).
This excess energy results in a buildup of reactive oxy-
gen species (ROS). The overproduction of ROS causes
damage to the photosynthetic apparatus of symbionts as
well as to host cells.
A meta-analysis of available experimental data up to the

year 2014 (Doo et al. 2014) showed a negative trend be-
tween growth and photosymbiont health under a + 4 °C
warming scenario, as compared with the present-day
Fig. 8 Meta-analysis of the effects of ocean warming on the growth (a) an
foraminifera, performed by Doo et al. (2014) (the figure is modified from D
to the year 2014 were compiled for this meta-analysis, using log-transform
projected future scenario (Representative Concentration Pathway 8.5 from the
+ 4 °C by the year 2100; IPCC 2013). Negative LnRR values represent negative
indicate the mean value, with error bars indicating 95% confidence intervals.
studies as well as those within the same study. The number of data combine
indicates a significant difference compared with the present-day condition. A
foraminifera, Dia/Hya diatom symbiont-bearing hyaline foraminifera, Dia/Por d
bearing porcelaneous foraminifera. Foraminifera representative of each group
condition (Fig. 8). Host foraminifera became inactive,
grew slowly, and tended to have increased mortality
(Fig. 8a). Algal endosymbionts, irrespective of symbiont
type, exhibited (i) decreased concentrations of chloro-
phylls and other photopigments, (ii) a decline in the max-
imum quantum yields of Photosystem II (PSII; Fv/Fm)
and other photophysiological parameters, (iii) reduced
numbers of viable symbionts and high numbers of deteri-
orating symbionts, and (iv) decreased levels of RuBisCO
protein (the enzyme responsible for fixing CO2).

Responses of symbiont-bearing benthic foraminifera
in a warm and/or high CO2 world Foraminiferal–algal
associations (as holobionts) exhibited bleaching, de-
creased net O2 production rates, increased respiration
rates, decreased organic carbon (C) and nitrogen (N)
contents, and decreased molar C/N ratios (summarized
in Fujita et al. 2014). This negative trend in foraminiferal
responses is supported by culturing experimental studies
conducted after that of Doo et al. (2014) (e.g., Sinutok
et al. 2014; Prazeres et al. 2016; Schmidt et al. 2016).
These experimental studies suggest that combined
temperature and light stresses induce the inactivation of
photosystems, bleaching, and reduced energy storage.
This damage to algal symbionts results in a lack of
d photosymbiont health (b) of algal symbiont-bearing large benthic
oo et al. 2014). Eight publications on culturing experimental studies up
ed response ratios (LnRR) comparing the present-day condition and a
Intergovernmental Panel on Climate Change, which projects changes of
impacts, whereas positive values indicate positive responses. Circles
The variability within one group comes from data between different
d per treatment (group) is shown in parentheses on the x-axis. An asterisk
ll all foraminifera, Dino/Por dinoflagellate symbiont-bearing porcelaneous
iatom symbiont-bearing porcelaneous foraminifera, Rho/Por rhodophyte-
are shown in the small images
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movement, reduced growth, changes in symbiont geno-
types, increased susceptibility to bacterial/algal infection,
disease, and finally death of the host foraminifera. Thus,
bleaching and associated photophysiological parameters
in algal symbiont-bearing foraminifera would be useful
as a sensitive bio-indicator of ocean warming.
Results of the meta-analysis also imply that diatom

symbionts appear more resilient than dinoflagellate sym-
bionts under ocean warming (Fig. 8b). A meta-analysis
for OA scenarios also suggests that hyaline taxa with
diatom symbionts appear more resilient than porcelane-
ous taxa with dinoflagellate symbionts (Doo et al. 2014).
These contrasting differences in host growth and photo-
symbiont health between two foraminiferal taxa with dif-
ferent algal symbionts will likely result in the dominance
of hyaline foraminifera over porcelaneous foraminifera
in symbiont-bearing reef foraminiferal communities in
the future, as well as the geographical expansion of the
former taxa to higher latitudes (Weinmann et al. 2013).
The resilience of diatom symbionts over dinoflagellate
symbionts under ocean warming may also partially ex-
plain the dominance of large benthic foraminifera during
the warm period of the Cenozoic. During the Paleogene,
hyaline rotaliid taxa such as Nummulites dominated and
diversified in tropical to subtropical carbonate environ-
ments (Hallock 2000). Based on the fact that their modern
descendants host diatom symbionts, these extinct hyaline
taxa possibly harbor diatom symbionts (Lee 1998). Thus, a
warm, high CO2 world in the geological past was likely fa-
vored by hyaline taxa with diatom symbionts but not by
porcelaneous taxa with dinoflagellate symbionts, as sug-
gested by Hallock (2000) and Fujita et al. (2011).
Biomineralization in corals and foraminifera
In order to estimate future response of corals and for-
aminifera to OA, it is important to understand the basic
mechanism of small-scale calcification.
Fig. 9 Different ion transport hypotheses tested in this study and their sim
only, (H2) paracellular ion transport only, (H3) proton flux hypothesis, and (
upper panels visualize the conceptual models of the different transport hyp
+-channel, whereas it is transported into the calcifying fluid from the cell b
Biomineralization of corals
Hypotheses for the mechanism of coral biomineralization
Screlactinian corals are important in terms of marine
biodiversity and the reconstruction of climate change in
the past. Since the acidification of seawater affects coral
skeletons through physiological coral activities, culture
experiments using screlactinian corals under acidified
seawater have been conducted. In particular, as substan-
tial recruitment is critical for the persistence of coral
reef ecosystems (Hughes and Tanner 2000) and primary
polyps of coral are highly susceptible to the potential ef-
fects of OA (Kurihara 2008; Suwa et al. 2010), investiga-
tions on the growth of the primary polyp skeleton have
been conducted (Albright et al. 2008; Inoue et al. 2011;
Ohki et al. 2013). Before discussing the influence of OA,
we present the latest hypothetical models to make the
process of biomineralization easily understandable.
Hohn and Merico (2012, 2015) classified the many

proposed ideas into four different hypotheses that reflect
alternative realizations of ion transport in corals (Fig. 9).
Hypothesis 1 (H1) states that only transcellular ion
transport of Ca2+ and HCO3

− into the calcifying fluid in-
duces coral calcification (Allemand et al. 2004) (Fig. 9a).
Hypothesis 2 (H2) proposes that Ca2+ and carbon are
supplied only by the paracellular pathway (Gagnon et al.
2012). In hypothesis 3 (H3), protons are removed from
the calcifying fluid to increase aragonite saturation by a
proton pump while Ca2+ is transported into the calcify-
ing fluid passively via the paracellular pathway, known
as the proton flux hypothesis (Jokiel 2011; Ries 2011a).
In hypothesis 4 (H4), a combination of transcellular and
paracellular ion transport can induce coral calcification
(Cohen and McConnaughey 2003; Nakamura et al.
2017). Hohn and Merico (2015) examined the plausibil-
ity of different calcification mechanisms in relation to
OA using a mathematical model. The results suggest
that H4 and a combination of the processes in H1 and
H2 are consistent with changes in calcifying fluid pH
ulation results (Hohn and Merico 2015). (H1) transcellular ion transport
H4) combination of transcellular and paracellular ion transport. The
otheses (H1–H4). Ca2+ is transported into the cell through the Ca2

y the Ca-ATPase pump
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and Ca concentration and with calcein staining experi-
ments. An efflux of Ca2+ and CO3

2− from the calcifying
fluid is generated by the paracellular pathway, which re-
sults in a leakage of ions that counteracts the concentra-
tion gradients maintained by the transcellular pathway.
Future ocean acidity would exacerbate this carbonate
leakage and reduce the ability of corals to accrete
CaCO3. However, this result was obtained by computer
simulation and was not confirmed by observations in
field and culture experiments. Ca isotopic work could
provide some clarification on this issue.

Biomineralization of corals based on analyses of Ca
isotopes It has been suggested that acidified seawater
significantly decreases the growth rate of primary polyps,
as reported for adult corals. However, recent studies sug-
gest that corals regulate their internal pH and then
counteract any acidification (Ohno et al. 2017a; McCul-
loch et al. 2012). In fact, the mechanism by which corals
control the transport of Ca2+ and other ions from sea-
water are largely unknown. Corals build their skeletons
using extracellular calcifying fluid located at the tissue–
skeleton interface.
In terms of coral calcification, Ca2+ and CO3

2− must be
constantly supplied to the calcifying fluid to precipitate
aragonite skeletons. It has been suggested that Ca-ATPase
controls the saturation state of aragonite in the calcifying
fluid as the pump transfers Ca2+ in exchange for H+ across
the calicoblastic cells leading to high calcification rates in
the calcifying fluid (Fig. 9; Al-Horani et al. 2003; Cohen
and McConnaughey 2003). Although there is no trans-
porter known for carbonate, carbon can cross the coral
cells via free diffusion of CO2 over cell membranes. Then,
the CO3

2− ion can be resupplied because once CO2 or
HCO3

− reaches the calcifying fluid, a new chemical equi-
librium between CO2, HCO3

−, and CO3
2− is established.

These pathways are called transcellular pathways since
Ca2+ and carbon must pass through the coral cells.
However, there are several reports suggesting that sea-
water may also enter the calcifying fluid directly, mainly
based on experiments using a membrane impermeable
dye (Cuif et al. 2011; Gagnon et al. 2012).
In order to estimate the transport of Ca2+ by the

Ca-channel and Ca-ATPase, Ca isotopes (44Ca/40Ca) in
screlactinian corals (Acropora sp. and Porites australien-
sis) have been measured and + 0.4‰ offset compared to
inorganic aragonite was found (Böhm et al. 2006; Inoue
et al. 2015) (Fig. 10). The offset suggests that Ca2+ is
transported into calcifying fluid mainly via a transcellu-
lar pathway (Fig. 10), although this does not imply that
there is no direct transport (paracellular pathway) of
other ions from seawater to the calcification site. As
mentioned previously, the relative contribution of ion
transport (transcellular or paracellular pathways) to coral
calcification has been estimated (Hohn and Merico
2015), indicating the importance of transcellular trans-
port, which is always directed into the calcifying fluid.
However, there also exists carbonate leakage, which ap-
pears to yield greater difficulty in accreting calcium
carbonate.
Inoue et al. (2015) further investigated the relationship

between the isotope fractionation of Ca in coral skele-
tons and the environment (temperature, seawater pH,
and light intensity) using cultured corals. As a result,
only temperature affected δ44Ca in Porites corals and its
temperature dependence was 0.02‰/°C. Interestingly,
negligible changes in isotopic fractionations of Ca were
found in the pH and light intensity experiments,
whereas significant differences in skeletal growth rate
were observed in both experiments. Therefore, the
transport path of Ca2+ and its activity might have a
minor impact on skeletal growth; instead, carbonate
chemistry in the fluid would predominantly control the
precipitation rate, as suggested by Hohn and Merico
(2015) (Fig. 9).

Biomineralization of foraminifera
Porcelaneous imperforate and hyaline perforate tests
of foraminifera Foraminiferal regulation of Ca2+ and
CO3

2− uptake into calcareous tests are of great interest to
scientists studying OA and its history. The calcareous for-
aminifera consist of two groups, porcelaneous (miliolid)
and hyaline, according to their test structure. Porcelane-
ous species produce calcite in the form of needles with a
length of a few μm in cellular vesicles (Parker 2017). The
walls of these species exhibit an opaque appearance like
porcelain. Hyaline species precipitate chamber walls extra-
cellularly on primary organic sheets. These are con-
structed prior to calcification as a new chamber that
provides nucleation sites for the initial calcite precipitation
(as reviewed by Erez 2003). The crystallography of the
porcelaneous and hyaline species differs from each other,
as do their calcification pathways. The porcelaneous spe-
cies have high Mg-calcite (Toyofuku et al. 2000; Maeda
et al. 2017), whereas most hyaline species produce low
Mg-calcite. The variability in Mg level can be explained by
differences in the cytological pathway of Ca uptake (de
Nooijer et al. 2009a). Porceallaneous species form imper-
forate shells, whereas hyaline species form perforate shells
(Ottway et al. 2018).
Since their solubility differs depending on crystallog-

raphy, the responses of porcelaneous and hyaline species
to OA differ markedly. As a result of culture experi-
ments with large foraminifera, the tests porcelaneous
species were dwarfed, whereas hyaline species showed
no uniform response among the species (Kuroyanagi
et al. 2009; Fujita et al. 2011; Hikami et al. 2011). Among
recent foraminifera, Hoeglundina and Ceratobulimina



Fig. 10 Schematic diagram of coral calcification in terms of Ca2+ transport. δ44Ca values of 1.88‰ and 0.73‰ are reported for seawater (Hippler
et al. 2003) and coral skeletons (as the mean value of all data) (Inoue et al. 2015), respectively. The value of − 1.2‰ represents the typical fractionation
at the Ca-channel (Wiegand et al. 2005; Böhm et al. 2006; Gussone et al. 2006). Typical concentrations of Ca2+ in seawater, calicoblastic cells, and
calcifying fluid are presented based on the reports of Al-Horani et al. (2003) for seawater and the calcifying fluid, and of Carafoli (2004) and Saris and
Carafoli (2005) for the cells
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are known to have aragonitic tests (Bandy 1954). Since
aragonite has greater solubility than calcite, it is pre-
sumed to be strongly affected by acidification; however,
there are apparently no studies to confirm this hypoth-
esis. Evaluation of the influence of OA on these arago-
nitic species is a future research need.

Visualization of extracellular pH distribution to
understand foraminiferal calcification Based on iso-
tope labeling experiments, calcification by foraminifera is
hypothesized to involve intracellular storage of Ca2+ ions
and inorganic carbon (ter Kuile et al. 1989; Erez 2003).
Foraminifera are also considered to manipulate pH (de
Nooijer et al. 2009a; Bentov et al. 2009; Toyofuku et al.
2017), uptake Ca (Erez 2003; Toyofuku et al. 2008), and/
or control Mg (Bentov and Erez 2006) via cytological
functions. The elemental and isotopic composition of fo-
raminiferal calcareous tests has also constrained models
for calcification (Elderfield et al. 1996; Bentov and Erez
2005). Recently, visualization methods using variable
fluorescent indicators have become powerful tools for re-
vealing the biomineralization process of foraminifera
(Toyofuku et al. 2008; de Nooijer et al. 2008, 2009a, b;
Bentov et al. 2009; Ohno et al. 2016; Toyofuku et al.
2017). The variety of results and partly contradicting hy-
potheses and models for foraminiferal calcification make
it essentially impossible to predict their response to OA
and enrichment of dissolved CO2 (de Nooijer et al. 2014).
Indeed, the foraminiferal responses to OA are varied
among species (Kuroyanagi et al. 2009; Fujita et al. 2011;
Hikami et al. 2011; Keul et al. 2013).
Fluorescence observation has revealed that manage-

ment of protons is important for foraminiferal calcifica-
tion and for corals (e.g., Cai et al. 2016). The hyaline
benthic species, Ammonia sp., show a large pH variation
(~ 2 units) between the inside and outside of the site of



Fig. 12 Proton pumping-based model of rotaliid foraminiferal
calcification at the enclosed site of calcification (SOC). a Magnified
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calcification during the chamber formation process
(de Nooijer et al. 2009a; Glas et al. 2012; Toyofuku et al.
2017). Visualization of the extracellular pH distribution
around individuals shows that chamber formation is ac-
companied by a strong decrease in external pH from am-
bient to ~ 7 (Fig. 11). Meanwhile, the highest pH reaches
more than 9 within the site of calcification. This decrease
in external pH was observed over a wide range of pCO2

(from 460 up to 9010 μatm /from pH 8.0 to 6.8) and the
reduction in pH compared to that of the ambient seawater
was relatively constant over the experimental conditions.
The observed decrease in pH outside the site implies that
these foraminifera actively pumped out protons via a
physiological process, with the flux independent of initial
external pCO2/pH.
Under observation in the presence of a proton pump

inhibitor (Bafilomycin A1), the external pH gradient dis-
appeared (Toyofuku et al. 2017). Further, the specimens
could no longer accomplish calcification. It is strongly
suggested that proton transport is essential to the fora-
miniferal calcification process. Perhaps this is due to the
conjugation of protons and Ca2+ exchange by an anti-
porter. These findings also suggest that the site of calcifi-
cation of this species is well isolated from the ambient
environment. Recently, these considerations have been
supported by SEM observation on the site of calcifica-
tion of Ammonia (Nagai et al. 2018; Fig. 12). The cover-
age of a thin layer (~ 1 μm) of a pseudopodial sheet
extending over the entire specimen may be a strategy for
maintaining oversaturation close to the chamber sur-
faces. As a consequence, the site of calcification may ex-
tend toward the pre-existing chambers and produce a
thin layer of calcite over the pre-existing chambers to
SEM image of the cross section of SOC. Upper side is the outer side,
whereas the lower side is the cellular side. b Black rectangle indicates
the observed newly calcifying chamber in (a). c Considerable
calcification model based on Toyofuku et al. (2017) and Nagai et al.
(2018). During chamber formation on an organic template (termed
the primary organic sheet, POS), the organic layers isolate the growing
calcite surface from the surrounding seawater. The chemical
composition of the calcification fluid of the SOC is characterized by
active, outward proton pumping coupled with an inward calcium
ion-flux. The transported proton reduced pH around the foraminiferal
microenvironment. Inorganic carbon speciation is shifted by this lower
pH, thereby increasing pCO2 of the surrounding seawater near the site
of calcification. The large gradient in pCO2 around the individual results
in the diffusion of CO2 into the site of calcification. This inbounded CO2

reacts to form carbonate ions due to the high pH at the site of
calcification. This transported carbon source sustains CaCO3

precipitation by reacting with the inward- transported calcium ions

Fig. 11 Planar variability in pH around the calcifying specimen of
Ammonia sp. in seawater with the pH indicator, pyranine. The gradient in
pH, which decreases toward the specimen, is mainly caused by proton
diffusion away from the precipitation site. An image of foraminifera is
superimposed on the pseudocolor pH image. Scale bars indicate 100 μm
construct a unique multi-lamellar structure (Reiss 1958;
Bé and Hemleben 1970; Grønlund and Hansen 1976).

Proton pumping in the calcification of Ammonia sp.
Ammonia sp. are widely distributed in many coastal
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environments, including tidal flats, ports, and brackish
lakes. Because of its resistance to a wide range of envir-
onmental variables, it is a genus popularly employed in
laboratory cultures. It is also used to study geochemical
signatures as a function of physical and chemical condi-
tions. Further, Ammonia sp. serve as model species,
whose chamber wall structure resembles that of many
Rotalid species. The calcification of Ammonia sp. is
characterized by strong gradients in pH and/or pCO2

between the site of calcification and the foraminiferal
microenvironment. The results suggest that foraminif-
eral calcification would be regulated by DIC concentra-
tion rather than the calcite saturation state (Fig. 12).
This uncoupling of saturation state and calcification ex-
plains the moderate response of many foraminifera to
OA and the occurrence of calcareous foraminiferal com-
munities at undersaturated conditions with respect to
calcite but at high DIC concentrations (Keul et al. 2013;
Flako-Zaritsky et al. 2011). The reduction in oceanic pH
by increased oceanic CO2 uptake is relatively small com-
pared with the pH decrease in the microenvironment
during Ammonia’s calcification. Hence, a relatively mod-
erate decrease in pH may not impair foraminiferal calci-
fication. Proton pumping is found to be the fundamental
strategy for a variety of marine calcifiers (Ries 2011a).
The high internal pH and large internal–external pH
gap associated with foraminiferal calcification predicts
that they may well produce more carbonate ions at the
site of calcification even under elevated pCO2.

Deep-sea carbonate dissolution and progressive foraminiferal
shell dissolution
A more severe influence of OA can be found in the deep
sea, where carbonate tends to dissolve due to its higher
solubility. This is controlled by the solubility product,
which increases with depth (pressure), and by the in-
creased acidity caused by the degradation of OM (Figs. 1
and 4, Table 1).

Spatial and vertical heterogeneity in carbonaceous sediments
in the deep sea
The distribution of carbonate in marine sediment is in-
homogeneous (e.g., Archer 1996). For example, regions
with high carbonate content are mostly in the shallow
oceanic ridges, whereas the deep ocean basins are almost
completely devoid of carbonate due to its dissolution as a
result of the high pressure, high [CO2], low temperature,
and hence, low saturation state (Eq. 4 in Fig. 1). These two
realms are separated by a transition zone spanning several
hundreds of meters in water depth, over which the car-
bonate content drops toward zero. The upper limit of the
transition zone is termed the lysocline and lower limit of
the transition zone is termed the carbonate compensation
depth (CCD) (Fig. 4).
In the deep sea, the degree of seawater acidity also in-
creases with the age of the water mass because of accumu-
lating CO2, nitrate, and phosphoric acid derived from
decomposed OM. Therefore, the depth of the transition
zone is essentially influenced by deep water properties via
thermohaline circulation and it becomes shallower as the
age of the deep water increases (Broecker and Takahashi
1977). Actually, the sedimentary carbonate content in the
Atlantic Ocean is generally higher than that of the Pacific
Ocean. In particular, the carbonate content is almost zero
in the North Pacific below 4000 m. Most carbonate is
dissolved in the deep sea in the North Pacific regardless of
the high carbonate export flux (e.g., Kawahata 2002). The
change in depth of the transition zone must be highly cor-
related with DIC and alkalinity contents in the global
ocean (Figs. 2 and 4). Therefore, the dissolution and pres-
ervation of calcite play an important role in the global
carbon cycle.

Conventional proxies for carbonate dissolution
Several proxies for carbonate dissolution have been pro-
posed based on planktic foraminiferal shells. Berger
(1968) proposed a dissolution index based on empirically
ranked species of planktic foraminifera because they have
a variety of morphologies and some of them are fragile
and prone to dissolution. Similarly, benthic foraminifera
normally have thick and smooth shells that are more re-
sistant to dissolution than those of planktic foraminifera.
Therefore, the planktic to benthic foraminiferal ratio in
the sediment has been suggested as a dissolution proxy
(Peterson and Prell 1985). However, the results depend on
the initial makeup of the foraminiferal population in the
sediment at the regional scale. The ratio of foraminiferal
fragments to whole shells has been widely used as a calcite
dissolution index (Peterson and Prell 1985). The advantage
of the fragment ratio is its simplicity; however, its deter-
mination is often subjective. These methods are not cali-
brated against present-day pressure-normalized [CO3

2−].
The size-normalized shell weight of planktic foramin-

ifera, which was first proposed by Lohmann (1995), is the
most widely used method to reconstruct past [CO3

2−].
Shell wall thickness and shell bulk density can be esti-
mated using this method. A linear relationship between
size-normalized shell weight and bottom-water calcite sat-
uration state has been suggested (Broecker and Clark
2001, 2002). This method is based on an empirical calibra-
tion of bottom water [CO3

2−] or Ωcal, with the average
weight of clean shells of selected species picked from nar-
row size ranges in core-top samples (e.g., de Villiers 2005).
However, Barker and Elderfield (2002) showed that thick-
ness of the foraminiferal shell walls varies with growth
conditions. Spero et al. (1997) found strong correlations
between shell weight and both water temperature and
[CO3

2−]; the warmer the water and the higher its [CO3
2−],
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the thicker the shells. Therefore, size-normalized shell
weight techniques have uncertainties owing to the initial
shell weight variation depending on Ω in the surface
water.

Developing proxies for carbonate dissolution using X-ray
micro-computed tomography analysis
Recent progress in X-ray micro-computed tomography
(XMCT) has allowed researchers to observe the internal
structures of foraminiferal shells and to evaluate shell
dissolution intensity. Johnstone et al. (2010) used an
XMCT scanner to observe the dissolution of foraminif-
eral shells from core top sediments and suggested that
foraminiferal shells dissolve from the inner chamber
walls and that the initial dissolution cannot be observed
from outside of the shells. Furthermore, they divided the
dissolution process of foraminiferal shells into five stages
and proposed a new empirical dissolution index, XDX,
based on the appearance of the CT images, and they
provided a calibration to estimate ΔM (the loss of test
mass due to dissolution) from XDX.
In addition, XMCT makes it possible to quantitatively

estimate shell density, and to observe a high-resolution
density distribution in an individual shell. Iwasaki et al.
(2015) used an XMCT scanner to estimate foraminiferal
shell density and performed time series dissolution experi-
ments with tests of planktic foraminifera, G. bulloides, in
pH-controlled undersaturated seawater in order to ob-
serve the initial stages of the dissolution process of G. bul-
loides tests (Fig. 13). They employed an XMCT system
(ScanXmate-D160TSS105/11000, Comscantecno Co. Ltd.,
Kanagawa, Japan) to investigate the internal structure and
density distribution of the shells. A high-resolution setting
(X-ray focus spot diameter of 0.8 μm, X-ray tube voltage
of 80 kV, detector array size of 2000 × 1336, 1500
projections/360°, 2.5 s/projection) was used for three-
dimensional (3-D) quantitative densitometry of small fora-
miniferal shells. The CT number, which is the normalized
value of the calculated X-ray attenuation coefficient of a
voxel in a computed tomogram, was used as an indicator
of calcite density. In their study, comparison of CT and
SEM images of the cross section of the outermost cham-
ber of G. bulloides revealed that the inner calcite layer has
a porous microgranular crystalline structure (low-density)
and the outer calcite layer has a euhedral crystalline struc-
ture (high-density).
From their time series dissolution experiment, dissol-

ution of the G. bulloides shell started from the central
area of the shell and then spread to the porous inner cal-
cite layer. In contrast, the outer calcite layer with a eu-
hedral crystalline structure was resistant to dissolution
and was well preserved (Fig. 13a, b). Such selective dis-
solution of the porous inner calcite layer was also evi-
dent as changes in the histogram of the CT numbers.
Using changes in the CT number histogram with the
progression of shell dissolution, a quantitative proxy that
allows quantitative measurements of carbonate loss from
foraminiferal tests prior to carbonate dissolution was
provided, which is not influenced by initial shell condi-
tion. Selective dissolution of the inner calcite layer and
changes in the CT number histogram were also ob-
served in G. bulloides shells from marine sediment sam-
ples (Fig. 13c, d), suggesting that the dissolution proxy
based on XMCT scanning might be applicable to estimate
the amount of carbonate dissolution at the deep-sea floor.
Furthermore, characteristics of the shell dissolution
process, accompanied by changes in the micro-scale crys-
talline structure, should be applicable to various species
other than G. bullloides. Although several problems re-
main to be addressed (e.g., the time required for scanning
and the imperfect understanding of the dissolution mech-
anism in the water column and in deep-sea sediments), a
dissolution proxy utilizing the CT number histogram
based on XMCT scanning has the potential to be the first
viable method for accurately estimating the actual amount
of calcite in seawater [CO3

2−].

Response of marine calcifiers to different environments
The Earth’s surface has previously experienced a high
pCO2 environment, which was generally associated with
“hot house” conditions. Carbonate in the deep-sea was
abruptly dissolved at the Paleocene/Eocene boundary
due to severe OA. However, especially in the warm Cret-
aceous, abundant carbonate precipitated at the seafloor.
These observations clearly demonstrate that high pCO2

alone did not always result in OA.

Extreme warmth in the Cretaceous greenhouse system
The mid-Cretaceous is widely accepted as the archetypal
ice-free greenhouse interval in Earth’s system history. To
understand the greenhouse climate system, the Cret-
aceous paleoclimate has been widely discussed in relation
to geological, geochemical, and paleontological records.
Since early reports of mid-Cretaceous tropical and
subtropical plants from the northern high latitude
(e.g., Nathorst 1911), many paleontological studies
have described a warm climate even at high latitudes
(e.g., Tarduno et al. 1998). This warm climate is attributable
to high pCO2 and possibly methane levels, in association
with the high production rate of oceanic crusts, enhanced
continental rifting, formation of large igneous provinces
(LIPs), and metamorphic decarbonation (although volcanic
activities releasing volcanic dust sometimes act as cooling
events) (e.g., Larson 1991; Kuroda et al. 2007; Moriya 2011;
Scudder et al. 2016; Brune et al. 2017).
The extensive warmth observed during the

mid-Cretaceous is also supported by the oxygen isotopic
paleothermometry of well-preserved planktic foraminifera
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Fig. 13 (See legend on next page.)
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(See figure on previous page.)
Fig. 13 X-ray micro-CT cross-section images and histogram of CT number for G. bulloides shells: a original fresh shell before dissolution and b a
partly dissolved shell after a low-pH condition in a 6-day dissolution experiment. c Relatively preserved shell and d relatively dissolved shell collected
from the surface sediment at a water depth of 1362 m and 3135 m of the North western Pacific, respectively. As dissolution progressed, the inner side
of the foraminiferal shell was selectively dissolved, and the mode of the CT number histogram gradually decreased. This CT image was obtained by
scanning using a X-ray micro-CT system (ScanXmate-D160TSS105/11000, Comscantecno Co. Ltd., Kanagawa, Japan) at the Tohoku University Museum.
Data are cited from Iwasaki et al. (2015)
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(so-called glassy foraminifera) (e.g., Wilson et al. 2002;
Moriya et al. 2007; Bornemann et al. 2008; Friedrich et al.
2008). However, the Cretaceous equatorial sea surface
temperature (SST) estimated in twentieth-century studies
was less than 25 °C, which is much lower than it should
be and even lower than the modern equatorial
temperature. The highest SST of 29 °C in the modern
ocean is observed in the Western Pacific Warm Pool
(WPWP) (Fig. 14). From the surface, water temperature
decreases vertically downward to ~ 1 °C at the bottom of
the modern equatorial Pacific, with a steep thermocline at
100–300 m, indicating that the water column is well
stratified in the modern equatorial ocean. Compared with
the SST in the WPWP in the last glacial maximum, a
value of ~ 25 °C in the Cretaceous greenhouse world is
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surprisingly cool. This cool equatorial condition in the
greenhouse world is termed the Cool Tropic Paradox
(D'Hondt and Arthur 1996).
At the beginning of the twenty-first century, Pearson

et al. (2001) found that early diagenesis on or just under
the sea floor lowers the isotopic temperatures recorded in
foraminiferal fossils. While many authors in the twentieth
century utilized foraminiferal fossils with minor
recrystallization for isotopic thermometry, new data gener-
ated from extremely well-preserved “glassy” foraminifera
conclusively indicated that SSTs of the Cretaceous green-
house were extremely high. Isotopic records show that
mid-latitude SSTs of ~ 25 °C were higher than the modern
mid-latitude temperature (Fig. 14). The difference between
the modern and Cretaceous SSTs becomes prominent in
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the Cenomanian–Turonian (~ 95 Ma), which appears to
have been the warmest interval on Earth for at least the last
100 million years (e.g., Wilson et al. 2002). Background
equatorial SSTs in this interval were ~ 35 °C and the high-
est SST exceeded 37 °C, indicating the cirrus cloud
negative-feedback hypothesis proposed for the modern
ocean might not be valid, or that it had another steady state
in the ice-free greenhouse system. Although SSTs became
cooler in the late Cretaceous, equatorial and mid-latitude
SSTs were still higher than those of the modern ocean.
The other notable disparity was a significantly weak

meridional SST gradient in the Cretaceous. This was es-
pecially obvious in ~ 90 Ma (Fig. 14). While the Cret-
aceous SST gradient between the equator and 60° in
latitude is ~ 14 °C, the gradient in the modern ocean is
~ 25 °C. This observation indicates enhanced heat trans-
port from the equator to the poles in the Cretaceous
greenhouse system. However, since numerical examina-
tions (e.g., general circulation models) cannot simulate
this weak SST gradient with reasonable pCO2, unknown
heat transporting mechanisms in the greenhouse system
or high concentrations of other greenhouse gases, such
as methane, are expected (Bice et al. 2006). On the other
hand, fully coupled models (e.g., CCMS [Community
Climate System Model], MIROC [Model for Interdiscip-
linary Research on Climate], etc.) have been addressing
this important problem. Upchurch et al. (2015) first suc-
ceeded in describing the weak meridional SST gradient
without unreasonable artificial tuning. This significant
advancement is opening the door to understanding the
greenhouse climate system in collaboration with
multi-site and -depth proxy archives.

Stratified ocean in the Cretaceous greenhouse system
It is well known that in the mid-Cretaceous, the green-
house period, oceanic anoxic events (OAEs) occurred
several times (e.g., Jenkyns 2010) due to the lower solu-
bility of oxygen into the seawater at higher SST and
lower ventilation of the water mass. One of the most in-
teresting features of the anoxic sediments is that large
quantities of organic carbon were often deposited in as-
sociation with carbonates (e.g., nannoconid, foramin-
ifera). In fact, well-preserved planktic foraminifera have
been discovered from the black shale collected from
ODP Site 1049 in Tethys (Norris and Wilson 1998), in-
dicating that carbonate was not significantly dissolved
even in suboxic or anoxic waters.
The oceanic redox state is a critical determinant in the

evolutionary history of life on Earth (Raup and Sepkoski
1982). High turnover rates of fossil planktic species
(planktic foraminifera and calcareous nanofossils) and
radiolaria dwelling in the mid-water column have been
observed at or near these OAEs (Leckie et al. 2002; Itaki
2016), although the critical boundary conditions for the
survival of planktic foraminifera under low-oxygen con-
centrations remain obscure.
Culture experiments have examined the direct effects

of dissolved oxygen concentration on planktic foramin-
ifera. Kuroyanagi et al. (2013) cultured planktic foramin-
ifera (both symbiont and non-symbiont species) under
different oxygen levels. These foraminifera can survive,
add chambers, feed, and undergo gametogenesis even
under dysoxic conditions (~ 0.7 mg O2 L

−1 or ~ 22 mmol
O2 m−3). Furthermore, the gametogenesis rate and time
to gametogenesis did not show any obvious trends
across oxygen levels (Fig. 15). On the other hand, other
results from the culture experiments showed that no
planktic foraminifera could survive for more than 48 h
in the presence of H2S (~ 2 and ~ 9 mg H2S L−1)
(Kuroyanagi et al. 2019). Thus, critical boundary condi-
tions for the survival of planktic foraminifera under
low-oxygen concentrations are still unknown due to the
difficulty of maintaining extremely low oxygen levels
throughout a culture. Several studies have reported
changes in oxygen-minimum zone conditions correspond-
ing to planktic foraminiferal disappearance in Quaternary
sediments (Fenton et al. 2000; Reichart et al. 2004). Under
a “business-as-usual” scenario, modeling results have re-
vealed a dramatic 50% increase in the suboxic water vol-
ume due to more stratified surface water with higher CO2

levels until 2100 AD (Oschlies et al. 2008). Therefore, cul-
turing planktic foraminifera under suboxic water condi-
tions (0 to ~ 20 mmol O2 m−3) might provide essential
information and contribute to estimating changes in the
future global carbon cycle.

Warmth in the middle Eocene climatic optimum event and
foraminiferal photosymbiosis
The Eocene epoch is characterized by overall warmth,
with a gradual cooling trend and short-term hyperther-
mal events. The SST at low latitudes was estimated to be
as high as 30–35 °C (Pearson et al. 2007). Especially dur-
ing the extreme warmth of the middle Eocene climatic
optimum (MECO) event, pCO2 increased by a factor of
2 to 3, and SST rose by 3–6 °C to exceed 28 °C even in
southern high latitudes (Bijl et al. 2010). Such conditions
might be disastrous to photosymbiotic organisms based
on our current knowledge on modern coral “bleaching,”
i.e., a collapse of photosymbiosis, via heat stress. It is
pointed out that symbiont “bleaching” might have also
occurred in planktic foraminifera.
The photosymbiotic ecology of planktic foraminifera

can be detected even from fossils with stable isotopic
signatures of symbiont photosynthesis recorded in fora-
miniferal tests (Oppo and Fairbanks 1989; Norris 1996).
A characteristic carbon isotopic signature has been used
as an indicator; the δ13C value of symbiont-bearing spe-
cies is more 13C-enriched than the non-symbiotic



Fig. 15 Gametogenesis rates (left) and days to gametogenesis (right) in Orbulina universa (solid red line) and Globigerina bulloides (broken blue
line) at different dissolved oxygen (DO) saturation levels (figure modified from Kuroyanagi et al. 2013). Although DO environments are classified
differently in different studies (e.g., Jorissen et al. 2007), a DO of 10% (~ 0.7 mg O2 L

−1 or ~ 22 mmol O2 m
−3) was generally classified as “dysoxic”
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species, reflecting a selective incorporation of 12C during
symbiont photosynthesis (“photosymbiotic effect”); the
greater the symbiont photosynthesis, the larger the ef-
fect. Therefore, the effect is enhanced as the host grows
its body size and progressively increases the number of
the symbionts. This results in a positive relationship be-
tween test size and δ13C. Based on this concept, many
authors have studied the size-related δ13C profiles of fos-
sil foraminiferal tests of extinct species to identify their
photosymbiotic ecology (e.g., Norris 1996; Bornemann
and Norris 2007; Birch et al. 2012). Moreover, the δ13C/
size positive gradient has been used as an indicator of
the intensity of the photosynthetic activity of symbionts
(Kelly et al. 1996; Wade et al. 2008; Edgar et al. 2013).
The δ13C/size positive gradient of some photosymbio-

tic species deteriorated during the peak MECO condi-
tions, as compared with pre-event and post-event levels
(Edgar et al. 2013). This deterioration could be attrib-
uted to symbiont “bleaching” during the higher SSTs in
the peak MECO period. Despite these possible crises of
photosymbiosis, many Eocene planktic foraminifera are
thought to have been photosymbiotic (Pearson et al.
2006). The chamber-by-chamber isotopic profiles of
three representative Eocene genera, Morozovella, Acari-
nina (both known as symbiotic), and Subbotina (known
as non-symbiotic), recovered from IODP Site U1407 ex-
emplify these ecologies. As expected, the results revealed
a clear contrast in δ13C profile between the symbiotic
and non-symbiotic species (Fig. 16a, b).
A notable finding here is that the last chamber of the
two symbiotic species showed remarkably low δ13C values,
comparable with that of the non-symbiotic Subbotina.
This may indicate that at the time of calcification of the
last chamber, these two symbiotic species became virtually
“non-symbiotic” with the loss of their symbionts. This
may have been caused by the digestion or dissolution of
the symbionts, as seen in cultured modern photosymbiotic
species (Bé et al. 1983; Takagi et al. 2016a). The modern
and fossil examples of symbiont loss mentioned above
should be part of the natural life processes of foraminifera.
Such lack of a “photosymbiotic effect” in only the last
chamber cannot be identified using conventional δ13C/size
methods. However, it can be distinguished in
chamber-by-chamber δ13C profiles (Fig. 16a). Therefore, a
change in photosymbiotic activity, or even a “bleaching”
phenomenon, can theoretically be identified by precise
δ13C analyses of individual chambers.
Although the possibility of “bleaching” in the Eocene

warm period cannot be denied, caution should be used
when interpreting the δ13C profiles. Following the rule of
metabolic rates, an elevation of SST enhances both photo-
synthetic rates and respiration rates with different
temperature sensitivities. Temperature sensitivity is higher
for respiration than for photosynthesis (e.g., Lombard
et al. 2009). This means that deterioration of the δ13C gra-
dient can also be caused by elevation of the respiration
rate under high SST conditions because the effect of res-
piration on test δ13C shows the opposite trend. When



a b

Fig. 16 Comparison of isotopic results for Eocene species and modern cultured photosymbiotic species. a Chamber-by-chamber δ13C versus
cumulative test mass of Eocene species. The same shade is used for symbols of the same species (black: Morozovella crater; gray: Acarinina
cuneicamerata; white: Subbotina eocaena). Data for the same individual are connected in ontogenetic order. Error bars represent analytical errors
(± 0.1‰). Each individual test was dissected into chambers using a micro-blade (e.g., Takagi et al. 2015; 2016b), then analyzed by a customized
continuous-flow mass spectrometry system that can measure micro-volume carbonate as small as a single chamber (Ishimura et al. 2004, 2008).
Symbiotic species Morozovella and Acarinina tended to show slight positive shifts until the penultimate chamber and then the final chamber showed
drastically more 13C-depleted δ13C (values 0.5–1.0‰). In contrast to these species, Subbotina showed comparatively 13C-depleted δ13C values through
its ontogeny, which is in good agreement with the known non-symbiotic nature of this species. b Growth and test isotopic results for the modern
symbiotic species Globigerinoides sacculifer cultured in a laboratory (Takagi et al., 2018). Chlorophyll-a content of the individual was estimated using an
active chlorophyll fluorometry in a non-destructive manner. After the gametes release, chambers precipitated during culture were dissected and δ13C
and δ18O were analyzed. Data are partly from Takagi et al. (2016a). The decrease of δ13C was accompanied by a decrease in (or almost zero)
photosynthesis at the final stage, indicating that the lack of photosynthesis could be clearly depicted from the chamber-by-chamber isotopic profiles
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comparing the δ13C/size gradient at different time slices
with different climates, attention must be paid to the bal-
ance of photosynthesis and respiration under each SST. In
any case, to our best knowledge, no “bleaching”
phenomenon due to high temperature has been reported
for modern planktic foraminifera under laboratory culture.
Interestingly, through the macroevolutionary history of

Cenozoic planktic foraminifera, the proportion of photo-
symbiotic species to the total number of species corre-
sponds well to the pattern of Earth’s climate change
(Fig. 17). This proportion became larger during hyperther-
mal events like the Paleocene/Eocene thermal maximum,
Early Eocene climatic optimum, and MECO. This suggests
that the photosymbiotic association with algae would make
foraminifera more adaptive to such hot climates and accel-
erated their speciation. In addition to such adaptivity in the
evolutionary scale, it is important to understand the
individual-scale mechanism of photosymbiosis. Since an in-
dividual holobiont is involved with photosynthesis,
respiration, and calcification, the net fitness of the photo-
symbiotic system is difficult to evaluate.

Perturbation in global carbon cycle at the Paleocene/Eocene
boundary
The P/E transition event at 55.5 Ma is often referred to as
the Paleocene/Eocene thermal maximum, characterized
by a huge concomitant perturbation in the global carbon
cycle (Zachos et al. 2001). Large δ13C anomalies observed
in deep-sea sediments, terrestrial soil carbonates, and
mammal teeth (associated with a major turnover in land
mammal assemblages), was − 3‰ (up to − 6‰) over an
interval of ~ 100–200 kyr near the end of the Paleocene
(Kennett and Stott 1991; Norris and Röhl 1999; Pagani
et al. 2006). The duration of these events was estimated to
be no more than 10 kyr, with P/E transition conditions
with a total duration of about 215 ± 5 kyr for δ13C excur-
sion (Röhl et al. 2000) (Fig. 18). Benthic foraminiferal δ18O
values indicate that oceanic deep waters warmed



a
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Fig. 17 Cenozoic climate changes and paleodiversity dynamics of planktic foraminifera. a Cenozoic climate change reconstruction from the
stable oxygen isotope profile of deep sea benthic foraminifera (Zachos et al. 2008). b Changes in species number and proportion of
photosymbiotic species (original data and categorization of photosymbiotic group are from Aze et al. 2011). PETM Paleocene Eocene thermal
maximum, ETM2 Eocene thermal maximum 2, EECO Early Eocene climatic optimum, MECO Middle Eocene climatic optimum, EOT Eocene
Oligocene transition, MMCO Middle Miocene climatic optimum, Paleo Paleocene, Oligo Oligocene, P Pliocene, Q Quaternary. After the rapid
emergence of photosymbiotic species in the Paleocene, the proportion of photosymbiotic species fluctuate with a good correspondence to the
climate. The proportion increased during warmer periods like PETM, EECO, and MECO, which indicate the advantage of photosymbiotic ecology
during such a hot climate
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substantially worldwide, from ~ 10 to ~ 18 °C in high lati-
tudes (Kennett and Stott 1991) and from ~ 10 to ~ 16 °C in
the tropics (Bralower et al. 1997). SSTs, as recorded by
planktic foraminiferal δ18O and/or Mg/Ca values, showed
little change (from ~ 26 to ~ 28 °C) at low latitudes but lar-
ger increases at high latitudes, leading to diminished
vertical and latitudinal thermal gradients (e.g., Kennett and
Stott 1991; Kelly et al. 1996).
Actually, the declines in coral reefs could be attributed

to an SST in the tropics that was beyond the maximum
temperature range of corals (Scheibner and Speijer 2008).
In terrestrial environments, a widespread increase in



Fig. 18 Effect of methane release with a δ13C of − 60‰ over 10 kyr on the δ13C value of present-day preindustrial carbon reservoirs. a Response
of δ13C in deep water of the Atlantic, Indian, and Pacific Oceans. Initial values are 0.996‰, 0.620‰, and − 0.508‰, respectively. b Response of δ13C
in warm surface water, cold surface water, and the atmosphere (shifted by + 8‰). Initial values are 2.577‰, 1.355‰, and − 6.367‰, respectively
(modified from Dickens et al. 2017)
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kaolinite was interpreted to herald a warm and wet cli-
mate. In association with these environmental changes,
ocean circulation, primary productivity, carbonate dissol-
ution, and the hydrologic cycle showed severely disturbed
wide-ranging environments (Ernst et al. 2006; Stassen
et al. 2012). In order to explain the large negative shift in
δ13C value, the dissociation of a large amount of methane
hydrate (with a δ13C of − 60‰) is considered to be
the most plausible mechanism (e.g., Dickens et al.
1997). The amount of carbon required to explain the
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negative δ 13C shift is estimated to be as large as
2000 PgC (1 PgC = 1015 g of carbon) (Dickens et al. 1997;
Zachos et al. 2005).
In oxygenated condition, the injected methane is easily

converted to CO2 within a few years. Carbon dioxide is
weakly acidic; therefore, it would lead to a reduction in
deep-sea pH, possibly triggering a rapid (< 10 kyr) shoaling
of the global CCD by > 2 km, followed by gradual recovery
(> 100 kyr) (Zachos et al. 2005). The δ 13C anomaly also
coincides with the most dramatic extinction of 35–50% of
cosmopolitan benthic foraminifera in the past 100 million
years and an apparent change in the dominance of calcar-
eous to agglutinated benthic fauna at some deep seafloor
sites (Kawahata et al. 2015). Carbonate saturation level was
more reduced by the higher pressure in the deep-sea.
Such characteristics make the P/E transition event a

possible analog of the modern human perturbation to the
ocean–atmosphere carbon system. At the P/E transition,
methane was rapidly released to the ocean and atmos-
phere at an average rate of ~ 0.2 PgC year−1 of CO2 over
10 kyr (Dickens et al. 1997; Zachos et al. 2005). This rate
is approximately 1/30 of the current global emission rate
(~ 7.8 PgC year−1) of anthropogenic carbon input.

Long-term neutralizing process against enhanced pCO2

Terrestrial waters stimulate physical and chemical
weathering of both silicate and carbonate rocks and
transport HCO3

− as well as other forms of dissolved and
particulate carbon from land to the ocean (Eqs. 2 and 3)
(e.g., Hecht and Oguchi 2017). In particular, silicate
chemical weathering is one of the most important pro-
cesses working as a net sink of CO2. Therefore, it also
functions as neutralizing process against OA.
It is generally assumed that one of the most active

chemical weathering scenarios globally occurs in the high
Himalaya, as a result of the ongoing uplift of the Hima-
layan–Tibetan Plateau and the heavy rains associated with
the Indian–Asian monsoon, which is also linked with the
North Pacific monsoon (e.g., Tada and Murray 2016; Tada
et al. 2016; Clift 2017; Dado and Takahashi 2017).
Gaillardet et al. (1999) compiled dissolved major ion data
in Himalayan Rivers and reported high chemical weather-
ing rates for silicate in the Ganges–Brahmaputra and
Ayeyarwady Rivers, and for carbonate in the Yangtze
River. Raymo et al. (1988) and Raymo (1991) focused on
the Sr isotope record in marine sedimentary cores and
found that active silicate weathering in this area may have
triggered global cooling during the Eocene. However, the
importance of a long-term CO2 sink by silicate weathering
in this area has been questioned in recent studies. Bickle
et al. (2001, 2003) reported that Sr isotopes cannot be
used as a proxy for silicate weathering owing to regional
metamorphism in this area. Manaka et al. (2015a) noted
that the silicate weathering rate reported in previous
studies for the Ayeyarwady River were largely overesti-
mated, and they recalculated the CO2 consumption rates
by silicate and carbonate weathering in the entire Hima-
layan river basin, reporting values of 0.012 PgC year− 1

and 0.024 PgC year−1, respectively. In contrast, France–
Lanord and Derry (1997) proposed that erosion of organic
carbon and its burial in the Bengal Fan may have con-
trolled the global carbon cycle and climate change in this
era.
The estimated global CO2 consumption rates by silicate

and carbonate weathering are 0.13 PgC year−1 and 0.15
PgC year−1, respectively, based on the chemical composi-
tions of major world rivers given by Gaillardet et al. (1999)
and modified data for the Ayeyarwady Rivers by Manaka
et al. (2015a, b). Hartmann et al. (2009) highlighted ex-
tremely high silicate weathering rates in small areas such
as the Pacific islands (so-called hyperactive areas and hot
spots), based on a high-resolution global lithological map
and the calculated weathering rate of each rock types.
Current global warming will continue to be a pressing

problem over timescales of decades to centuries because
the anthropogenic CO2 release rate from fossil fuel use
and cement production is 7.8 PgC year−1 (IPCC 2013a),
much larger than the CO2 consumption rate of chemical
weathering (Table 2). Anthropogenic land use changes
such as deforestation also lead to a carbon release of 1.1
PgC year−1 to the atmosphere. Currently, a half of
anthropogenic CO2 release remains in the atmosphere
(average atmospheric increase: 4 PgC year−1), while ap-
proximately a quarter is absorbed into the terrestrial bio-
sphere and the ocean. Terrestrial photosynthesis absorbs
123.0 PgC year−1 CO2, most of which (118.7 PgC year−1)
is returned to the atmosphere via the respiration process.
Net CO2 uptake by the terrestrial biosphere is only 4.3
PgC year−1.
The pCO2 in the global terrestrial waters of lower al-

luvial basins with well-developed soils and active agri-
culture is often over several thousand μatm, much
higher than the atmospheric level (400 μatm) (Cole et al.
2007; Raymond et al. 2013; Manaka et al. 2015b). Ter-
restrial waters can receive 1.9 PgC year−1 of soil carbon,
which was originally fixed by the photosynthesis
process (Regnier et al. 2013). The global riverine flux of
carbon to the ocean is 1.06 PgC year−1 (Li et al. 2017),
which could enhance pCO2 in coastal regions.
Soil-derived carbon, mainly dissolved organic carbon, is
decomposed in the water and released directly to the
atmosphere in the form of CO2 (Rasilo et al. 2017). The
global CO2 degassing rate from water is 1.1 PgC year−1,
which is comparable in magnitude to that from fossil
fuel and cement. One of the largest CO2 evasions is re-
ported for the Amazon River; the estimated flux is as
high as 0.47 PgC year−1 from the entire basin (Richey
et al. 2002).



Table 2 Global carbon exchange between land, inland waters, ocean, and atmosphere since the industrial era

Pg C year−1 References

CO2 Consumption by chemical weathering of silicates in Himalayan River Basins 0.012 Manaka et al. (2015a, b)

CO2 Consumption by chemical weathering of carbonates in Himalayan River Basins 0.024

Global CO2 consumption by chemical weathering of silicates 0.132 Gaillardet et al. (1999); Manaka et al. (2015a, b)

Global CO2 consumption by chemical weathering of carbonates 0.149

CO2 release to the atmosphere by fossil fuel use and cement production 7.8 IPCC (2013)

CO2 release to the atmosphere by anthropogenic land Use change 1.1

Total terrestrial photosynthesis 123.0

Total terrestrial respiration 118.7

Net atmospheric CO2 uptake by terrestrial biosphere 4.3

Total soil carbon input from land to inland waters 1.9 Regnier et al. (2013)

Global riverine flux of carbon to the ocean 1.06 Li et al. (2017)

CO2 release from inland waters to the atmosphere 1.1 Regnier et al. (2013)
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For future environments, global warming is expected
to enhance both chemical weathering (IPCC 2013a) and
soil respiration (Hashimoto et al. 2015). This warming is
predicted to cause extreme rainfall events, particularly in
the Himalayan lowland alluvium, which may further in-
crease pCO2 of river water (Goswami et al. 2006).
Anthropogenic eutrophication in aquatic ecosystems is
another widespread problem globally (Mackenzie et al.
2002). Cai et al. (2011) reported that large riverine in-
puts of nutrients, as well as OM and dissolved CO2, can
enhance the acidification of subsurface coastal waters. In
contrast, this eutrophication can enhance photosyn-
thesis, and thus CO2 uptake, in enclosed conditions such
as lakes, which may be important to the carbon cycle,
particularly in developing countries (Manaka et al.
2013). Therefore, changes in water composition in re-
sponse to environmental change should be borne in
mind in the future.

Inventory of alkalinity required for the preservation of
deep-sea carbonate
In order to understand the relationship between carbon-
ate dissolution and pCO2 in deep sea, a simple ocean
carbon cycle model was used based on the three-box
model of Toggweiler and Sarmiento (1985). The details
are described in Yamamura et al. (2007) (Fig. 19). The
model has five state variables: phosphate, oxygen, poten-
tial temperature, alkalinity, and DIC. Salinity is fixed to
35 practical salinity units (psu), to which phosphate, al-
kalinity, and DIC are normalized. Gas exchanges of CO2

and oxygen with the atmosphere are driven by the re-
spective partial pressure gradients across the air–sea
interface and a “piston velocity” of 3 m day−1 (Broecker
and Peng 1982). The carbonate saturation depth at the
intersection of [CO3

2−] in the deep box and [CO3
2−]sat

(the carbonate ion concentration that is at saturation
with respect to mineral calcite) is calculated from the
apparent solubility product Ksp for calcite. The produc-
tion rate of organic carbon from the surface ocean is
expressed as the flux of phosphate, which is assumed to
occur with a stoichiometry of P:Corg:-O2 = 1:117:170
(Anderson and Sarmiento 1994). With the production
rate, the global average export ratio is adjusted to
CaCO3:Corg = 0.1 based on Sarmiento et al. (2002).
For initial values, which represent modern conditions,

the model predicts [CO3
2−] of about 94 mol kg−1 and 2 °C

in the deep box (Figs. 19 and 3). The calcium carbonate
saturation horizon under these model conditions is lo-
cated at a depth of about 3700 m. The mid-Cretaceous is
believed to be 6–12 °C warmer than today and had 2–10
times more atmospheric pCO2 (e.g., Berner and Kothavala
2001). The model results also indicate that carbonate dis-
solution in the northwestern Pacific during the Albian
was severe (Fig. 3). However, this is contrary to the geo-
logical observation that carbonate was apparently
present at paleodepths of ~ 1000–2000 m in DSDP/
ODP cores (e.g. Dean 1981). This apparent contradic-
tion may be resolved if there were more alkalinity in
the oceans during the Albian, mid-Cretaceous, than
today. Global warming with high pCO2, like during the
Albian, would have induced intensified hydrological
cycles on the Earth’s surface (e.g., Jenkyns 2010). Subse-
quently, this would have resulted in intensified weather-
ing and increased the supply of nutrients and alkalinity
(Eqs. 2 and 3) (Fig. 2).
To investigate the effect of a higher alkalinity content

in the ocean, a set of model experiments was conducted
with the same range of high latitude surface box temper-
atures and four-times the present atmospheric pCO2

(Fig. 19). In the late Albian, the deep-sea temperature
was estimated to have been ~ 17 °C in the equatorial Pa-
cific (Huber et al. 2002) and pCO2 was suggested to vary



Fig. 19 Three-box model sensitivity of saturation depth and carbonate ion concentration at deep box at a high CO2 concentration (1020 ppm)
(Yamamura et al. 2007). Approximately 15% of the world ocean surface area is represented by the high-latitude box. Variable T represents the
large scale meridional overturning of the world ocean. Polar vertical mixing is meant to represent deep water ventilation and formation around
the Antarctic continent today. Phosphate serves as the main nutrient accounting for organic carbon production. The phosphate concentration in
the low-latitude surface box drives its new production by restoring the phosphate concentration to its initial value. The production rate of organic
carbon from the surface ocean is expressed as the flux of phosphate, which is assumed to occur with a stoichiometry of P: Corg:-O2 = 1:117:170
(Anderson and Sarmiento 1994). In this model, the new production rate at the low-latitude surface box, which is described as Pl, depends on the
upwelling supply flux of phosphate due to the thermohaline circulation. In the high-latitude box, the new production rate is fixed to a prescribed value
since the productivity seems to be affected by factors other than nutrients. With the production rate, we adjust the global average export ratio of
CaCO3/Corg to 0.1 based on Sarmiento et al. (2002). The solid line indicates the carbonate ion concentration (μmol/kg) and the broken line indicates
saturation depth (m). The light-gray shading indicates the saturation depth below 0m. The dark shading indicates the range of the saturation depth,
similar to the interglacial value
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between approximately two and five times more than
present-day atmospheric pCO2 (Bice et al. 2006). In such
a case, the required alkalinity inventory to maintain the
level of saturation depth (deep than 2000 m) at the
interglacial condition is greater than 1.2 times (Fig. 19).
In any case, the model results indicate that under high
pCO2 during the mid-Cretaceous, an increase in the
oceanic inventory of alkalinity is likely necessary to pre-
serve any carbonate on the seafloor (Fig. 2; Table 1).
Otherwise, the entire ocean may be undersaturated with
respect to CaCO3.
Key factors inducing ocean acidification
It is commonly believed that increasing pCO2 will in-
duce an enhanced greenhouse effect and change sea-
water chemistry, resulting in future OA (Figs. 2 and 3;
Table 1) (IPCC 2017). The mid-Cretaceous represents
one of the warmest climate intervals during the entire
Phanerozoic (termed the “hot house”) due to enhanced
pCO2 (e.g., Takashima et al. 2009). Actually, the
mid-Cretaceous is believed to have been a much warmer
environment with much higher pCO2 (e.g., Berner and
Kothavala 2001). The fact that we see relatively better



rapid ocean acidification neutralization bychemical weathering

Modern & P/E boundary Cretaceous

Fig. 20 Schematic diagram of ocean acidification and the buffering system in the Earth’s surface system. Chemical weathering is important and
acts as a neutralizing process. The level of CO2 is a secondarily important factor. The most important factor is “Changing SPEED.” A natural neutralizing
system such as chemical weathering cannot catch up too rapid a global environmental change under modern conditions or at the P/E boundary
(Kawahata et al. 2015)
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carbonate preservation in the mid-Cretaceous suggests
that the ocean surface was sufficiently basic, despite
higher pCO2, to allow the growth of calcifying pro-
ducers. Alkalinity should have been supplied by chemical
weathering on the land. A higher alkalinity inventory in
the ocean is in fact expected according to an enhance-
ment of the chemical weathering of silicate rocks, driven
by pCO2 and intensified hydrological cycles on the
Earth’s surface (Fig. 2) (e.g., Broecker and Sanyal 1998;
Cohen et al. 2004).
The biogeochemical cycle on the Earth’s surface yields

a buffering system for pH and carbonate ion change
(Fig. 20). Therefore “high speed” and “high level” pCO2

are the primary and secondary factors, respectively, lead-
ing to acidification in the Earth surface’s system. Too
rapid a release of anthropogenic CO2 (today and at P/E
boundary) will yield severe OA in deep ocean. In com-
bination with the high solubility of carbonate minerals
(Fig. 1), benthic fauna will thus be threatened.

Concluding remarks and future investigation
In the global carbonate budget, foraminifera and corals
are two major calcifiers contributing to the burial of car-
bonate in sediments/reefs. Our extensive review of these
calcifiers suggests similar, but slightly different, responses
of two representative species to ocean warming and acid-
ification. Both calcifiers generally show negative responses
to OA (increasing pCO2 and decreasing saturation state),
although their responses are dependent upon life stage
and taxa. The response of corals to heat stress is variable
among species. The response of corals to acidified
seawater may depend on the degree of seawater transport
into the site of calcification (calcifying fluid), but this in-
terpretation remains controversial. Foraminifera, which
actively pump protons out from the site of calcification
and are surrounded by a low external pH, may deal with
calcification under elevated pCO2 using an energy cost
approach.
Ocean warming (i.e., higher temperature) likely in-

duces the bleaching of symbiont-bearing marine calci-
fiers, including corals and foraminifera, and results in
the suppression of calcification of both groups; death of
the host organisms may result. However, symbiotic for-
aminifera appear more robust and resilient than symbi-
otic corals at higher temperatures. During warm periods
of the Earth’s history, when SSTs and deep-water tem-
peratures exceeded those of modern oceans, foramin-
ifera survived under extremely warm, high pCO2, and
dysoxic conditions. However, corals and living reefs
never existed during these warm periods, known as the
reef gaps (Veron 2008). Therefore, benthic foraminifera
seemed more adaptive and robust than corals to ocean
warming and acidification over the Earth’s history; they
will likely remain so in the future. On the other hand,
during a possible OA event at 65 Ma at the end
Cretaceous mass extinction, all remaining ammonites
and belemnites became extinct, as did a high percentage
of bivalves, gastropods, and echinoids, and almost all
planktic foraminifera. Scleractinian corals appear to have
just barely survived and 1 (the Faviidae) retained 6 of its
original 16 genera; the others survived with only 1 or 2.
Therefore, in order to pursue the issue of adaption and
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robustness, it is required to further understand the
mechanisms underlying variations in sensitivity to heat
stress and acidified seawater for both corals and
foraminifera.
Since the pCO2 in the atmosphere is currently increas-

ing, pCO2 and DIC in seawater are increasing, while pH
and the saturation state of carbonate minerals are de-
creasing without any change in total alkalinity. However,
over the long-term, it is well known that alkalinity has
fluctuated largely in the Earth’s surface environment.
Therefore, it is important to quantitatively reconstruct
alkalinity, which is another key factor determining the
saturation state of carbonate minerals.

Summary
Global warming and OA are often referred to as the “evil
twins” of climate change due to enhanced pCO2. Both
will yield severe threats to marine calcifiers in the near
future (Fig. 1)

1. CO2 dissolution into seawater increases DIC and
pCO2 and decreases pH, with no change to total
alkalinity. While OA may progress ubiquitously, the
corresponding changes in pH and pCO2 vary locally.
Since pCO2 is sensitive to temperature (~ 4% increase
per 1 °C), OA is more critical in the polar and high-
latitude regions, as compared with temperate and
tropical regions. In addition, older deep-water has
enhanced acidity owing to the addition of CO2 via
the degradation of OM, which promotes carbonate
dissolution via a synergistic effect with high pressure.

2. Anthropogenic CO2-driven OA will pose a severe
threat to marine calcifying organisms because the
calcification rates of organisms generally decrease in
acidified seawater. However, some opposite responses of
reef-dwelling larger benthic foraminifera are reported.

3. In the case of the coral calcification response of
Aropora digitifera to acidified seawater, calcification
tended to decrease according to the increase of
pCO2 in both aposymbiotic and symbiotic polyps,
although the calcification of adult branches was not
reduced markedly in higher pCO2 conditions. This
suggests that OA response may depend upon life
cycle stage.

4. As exemplified by reef-building corals and reef-dwelling
larger benthic foraminifera, photosymbiosis is regarded
as an adaptive ecology for living in warm, oligotrophic,
and well-lit oceans. Bleaching is likely a global threat to
marine symbiont calcifying organisms, especially at high
temperature and enhanced light intensity.

5. Based upon Ca isotope measurements of coral
skeletons, the transport path of Ca2+ and the extent
of its activity would predominantly control the
carbonate precipitation rate. Visualization of the
extracellular pH distribution shows that proton
pumping produces a high internal pH and large
internal–external pH gap associated with
foraminiferal calcification.

6. X-ray micro-computed tomography, which can
estimate shell density, indicates that the dissolution
of Globigerina bulloides shells begins at the central
area of the shell, whereas the outer calcite layer,
with a euhedral crystalline structure, is resistant
to dissolution.

7. Alkalinity, another key factor controlling OA, has a
much longer residence time. The “high speed” and
“high level” of pCO2 are the primary and secondary
factors, respectively, leading to severe OA in the
Earth surface’s system. Too rapid a release of
anthropogenic CO2 (today and at P/E boundary)
would bring severe OA, even in the deep ocean.
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