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Abstract

computational power.

The hybrid dynamical-statistical downscaling approach is an effort to combine the ability of dynamical downscaling
to resolve fine-scale climate changes with the low computational cost of statistical downscaling. In this study, we
propose a dynamical-statistical downscaling technique by incorporating a regional climate model (RCM) with artificial
neural networks (ANN) to downscale rainfall information over the Red River Delta in Vietnam. First, dynamical downscaling
was performed with an RCM driven by the reanalysis to produce nested 30- and 6-km resolution simulations. Subsequently,
the 6-km simulation was compared to rain gauge data to examine the ability of the RCM to reproduce known climate
conditions. Then, in the statistical downscaling step, the ANN was trained to predict rainfall in the 6-km domain based on
weather predictors in the 30-km simulation. Statistical downscaling results were compared with the original output from
RCM to determine the accuracy of the coupling method. A bias correction method to locate no-rainfall events in the ANN
downscaling result was also developed to enhance the credibility of the final results. The outcomes of this study illustrate
that ANN can produce RCM-like results (r> 0.9) at a fraction of the cost, with an 89% reduction in the required
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Introduction

Rainfall is one of the most important meteorological
phenomena on Earth. It not only provides a vital fresh-
water source supporting all lifeforms, but also causes
various types of natural disasters such as floods, land-
slides, storms, and drought. It is important to have a
deep understanding of the rainfall formation mechanism
to forecast the timing, density, intensity, and trends in a
specific region to better manage water resources,
maximize the use of water for economic development,
and minimize the impacts of extreme events. In many
countries, including Vietnam, rainfall is the object of re-
gional planning strategies involving the production and
construction sectors. Since the efficiency of water resource
management depends on the accuracy and detail of

* Correspondence: quantrananh.humg@gmail.com

'School of Natural Science and Engineering, Kanazawa University,
Kakuma-machi, Kanazawa 920-1192, Japan

Full list of author information is available at the end of the article

@ Springer Open

rainfall forecasts, a method to obtain reliable and accurate
predictions of rainfall at high spatial resolution is indis-
pensable (Arritt and Rummukainen 2011; Caldwell et al.
2009; Giorgi and Mearns 1991).

Multiple general circulation models (GCMs) have been
developed by various research groups to provide future
climate predictions using numerical weather simulation.
GCMs represent the physical processes and feedbacks
for the atmosphere and oceans, which can be used to
forecast future climate changes. Although GCM models
can make useful predictions about global large-scale
climate indicators, their spatial resolution of 100-
200 km are too coarse to satisfy the requirements of
regional planning. A GCM simplifies the complexities of
land-sea distribution, vegetation cover, topography, and
terrain. Therefore, downscaling methods, which translate
coarse-scale GCM to finer spatial scales, have been
developed to use on limited-area domains at higher hori-
zontal resolutions.
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Dynamical downscaling works by employing a regional
climate model (RCM), which is based on the same prin-
ciples as a GCM but has higher resolution over a limited
area. An RCM uses large-scale atmospheric conditions
as determined by a GCM for the lateral boundary condi-
tions. Higher resolution topography and land-sea distri-
bution are incorporated to generate realistic climate
information at a much finer spatial resolution (Seaby et
al. 2013). Currently, RCMs are considered the most
helpful method for producing climate information at the
scales required for actionable strategic planning (Kjell-
strom et al. 2016).

Over the years, the applicability of dynamical down-
scaling has significantly improved owing to the continu-
ous development of computing technology and advances
in numerical models. Even though the use of dynamical
downscaling has become easier, it continues to be an ex-
tremely demanding method that requires considerable
computational cost, simulation time, and output storage.
Statistical downscaling is an alternative to dynamical
downscaling for high-resolution climate downscaling
that can overcome the drawbacks of dynamical down-
scaling methods. Statistical downscaling takes into ac-
count the empirical, spatial, and temporal relationships
between large-scale climate indicators (predictors) and
local-scale climate variables (predictands) and are
trained on a historical period. Subsequently, these rela-
tionships are presumed to hold in the future, where they
can be used to determine future predictands. Statistical
downscaling methods are computationally inexpensive
and significantly faster than dynamical downscaling, so
they can be applied for even higher resolutions, up to
station-scale. Since statistical downscaling methods rely
on the assumption of an unchanged statistical relation-
ship, they require long historical climate observation
data for validation, which is not always available for
every region. In contrast, dynamical downscaling oper-
ates based on physical realism with complex local pro-
cesses, which allows it to map important fine-scale
variations in climate that otherwise might not be in-
cluded (Salathé Jr et al. 2008; Pierce et al. 2012; Walton
et al. 2017).

While statistical downscaling and dynamical downscal-
ing methods are widely used in climatology research,
both face drawbacks that limit their applicability. Re-
cently, the approach of combining dynamical downscal-
ing with statistical downscaling has been explored.
Dynamical-statistical downscaling is a blended tech-
nique, where an RCM model is initially adopted to
downscale the GCM output followed by the application
of statistical formulas to further downscale the RCM
output to a higher resolution. Dynamical downscaling
methods can utilize the advantages of RCM to provide
better predictors for use in statistical downscaling
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(Guyennon et al. 2013). Berg et al. (2015) demonstrated
this promising method by using a hybrid of the weather
research and forecasting (WRF) model with the empir-
ical orthogonal function to effectively forecast precipita-
tion changes. In other research, Walton et al. (2015)
introduced a new dynamical-statistical downscaling
method by coupling WRF with principal component
analysis. The statistical-dynamical downscaling method
is another approach for blending techniques where dy-
namical downscaling is applied after a selected statistical
downscale. While statistical-dynamical downscaling is a
more complex blending technique, it is computationally
less expensive. These methods use a statistical approach
to refine the GCM outputs into a few characteristic
states, which can be later used with the RCM models
(Fuentes and Heimann 2000).

Limited efforts have been made to date to combine dy-
namical and statistical downscaling methods for precipi-
tation research. In this study, we have introduced a
combined dynamical-statistical downscaling technique
for rainfall using WRF with an artificial neural network
(ANN). The WRF-ANN method aims to downscale
high-resolution daily rainfall data for a seasonal length
to satisfy the requirements for purposes such as agricul-
ture or water resources planning. This method works by
making statistical relationships between moderate- and
high-resolution WRF outputs using ANN. The statistical
relationships can be used directly to downscale
moderate-resolution WRF outputs to fine-resolution
rainfall. In this method, we first validated the accuracy
of the WRF model to reproduce known climate condi-
tions. Subsequently, the WRF output was downscaled to
a finer spatial resolution using ANN. While this method
used atmospheric variables from WRE, the relationship
between physical and dynamical processes could poten-
tially be included in the ANN. In addition, a bias correc-
tion for the ANN input and output (rainfall) was applied
to reduce error in the final output. Moreover, the sensi-
tivity of each predictor was also considered to examine
their statistical relationships with rainfall.

Methods/Experimental

Numerical weather simulation

The model chosen to deploy the simulations in this
study was WREF version 3.6 (Skamarock et al., 2008).
The WRF model is widely used by both operational and
research communities, and represents up-to-date tech-
niques in mesoscale model development. WRF is a non-
hydrostatic model developed to inherit many of the
dynamical and physical algorithms from the fifth-
generation mesoscale model (MM5) and was introduced
by the National Center for Atmospheric Research at
Pennsylvania State University (PSU/NCAR).
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WRF has a wide range of physical options for
parameterization, which can be combined in various
ways. In the context of this study, the physical
parameterization settings were selected based on the op-
timal combination of schemes used in various studies
across Asia. Cloud microphysics was used from the
WREF Single-Moment 5-class scheme (Hong et al. 2004).
The Kain-Fritsch scheme was used for cumulus
parameterization. For surface layer physics, the ETA
models based on Monin-Obukhov, with a Carlson-
Boland viscous sub-layer, were used. As a land surface
model, the Noah land surface model (Chen and Dudhia
2001) was applied. The Bougeault and Lacarrere (Bou-
Lac; Bougeault and Lacarrere 1989) scheme was used for
the planetary boundary layer. Dudhia’s scheme (Dudhia
1989; Mlawer et al. 1997) and the rapid radiative transfer
model (RRTM) were selected for short- and long-wave
radiation conditions, respectively. The spectral nudging
option was enabled to include global-scale effects at a
smaller scale to ensure the simulated result would be
more consistent with observations (Storch et al. 2000).
An outline of the model configuration is provided in
Table 1.

Since this research focuses on the rainfall season, dy-
namical downscaling was applied to each JJA period of
the research duration. For the initial and boundary con-
ditions, downscaling simulations used JRA-55, NCEP-
ENL, and NOAA OI SST datasets. The research area
used for downscaling by WREF is shown in Fig. 1a. The
two-domain nesting method was applied with 30- and 6-
km horizontal grid resolutions for the outer and inner
domains, respectively (hereafter, D1 and D2). While D1,
placed in Southeast Asia, covers the entire Vietnam re-
gion, D2 was selected over the northern part of the
country. D2 has complex topography, including alternat-
ing mountain ranges, midlands, lowlands, and a small
section of the East Sea (Fig. 1c). The target area for pre-
cipitation estimation using ANN was placed inland in-
side D2 (hereafter, D2T; Fig. 1b), between latitudes 20.5°
N-22.5 °N and longitudes 104°E-107°E, covering the
large Red River Delta region and Hanoi City, the capital.

Table 1 Configuration of WRF model

Version 3.6

Version of model

Microphysics WRF Single-Moment 5-class scheme

Cumulus parameterization Kain-Fritsch scheme
Land model Eta similarity
Land surface scheme Noah land surface model
Long-wave radiation Rapid radiative transfer model (RRTM)
Short-wave radiation Dudhia’s scheme
Planetary boundary condition Boulac scheme

Length of simulation 92 days and 5 days for spin-up
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The area defined by D2T is not only the most important
municipal area in Vietnam, but it also has the longest
and most reliable climatological records. The weather in
northern Vietnam is characterized by the tropical cli-
mate system (Fig. 2) and is distinguished by a hot, rainy
season from Jun to August (JJA) followed by a cold, dry
season from December to February (DJF). The average
rainfall during JJA ranges from 750 to 1100 mm, which
accounts for over 70% of the annual precipitation. Rain-
fall is a vital water source for development in the region
and also the cause of many disasters. In this study, we
focused on precipitation during the JJA period.

The goal for the WRF model was to accurately repro-
duce detailed information about rainfall in the D2T.
Here, we evaluate the ability of WRF to reproduce daily
rainfall by comparing model output to surface observa-
tion data (see Fig. 1c) for the spatial distribution of rain
gauges). The downscaling experiments were imple-
mented for each JJA period in 1996, 1997, 1998, and
2006. While evaluating the reproducibility of the WRF
model, we omitted the results from the first 5 days,
allowing a spin-up period from May 27 to May 31. After
the spin-up period, the 92-day simulation was carried
out from the first day of June to 18Z (midnight local
time) on August 31. Model performance was evaluated
by computing a series of statistical measures for simu-
lated rainfall against observed rainfall, including the
mean absolute error (MAE), Pearson’s correlation (R),
root mean square error (RMSE), and index of agreement
(IOA). The statistical measures were defined as follows:

1 N
MAE = ﬁzizl |0i-Si] (1)

_ S, (0i-0)(S:-5)
V2N (0-0) /S, (5-5)

1 N 2
RMSE = m (3)

Zf\;(oi_sif
> (/00| + [si-0)”

(2)

IOA =1-

(4)

where N is the number of grid observation sites O; O
and S correspond to the average rainfall as measured by
the rain gauges and from the simulation result, respect-
ively. IOA returns the degree of model prediction error,
varying between 0 and 1, with a higher value indicating
better agreement between the model predictions and ob-
servations, while a lower value indicates worse agreement.

WRF outputs have higher precision than do observa-
tions, which may cause biases in WRF output. Rain
gauge sensors currently in use can only detect accumu-
lated rainfall of more than 0.5 mm per day. In contrast,
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Fig. 1 Target areas for downscaling with WRF and ANN. a The outer (D1) and inner (D2) domains are indicated by gray shade and white, respectively.
The spatial resolution was 30 km for D1 and 6 km for D2. b The target area for ANN downscaling (D27) is indicated by a rectangle inside D2. ¢
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the frequency of wet days with very low rainfall, for ex-
ample, 0.0001 mm per day, can be projected by WREF.
This means that the WRF rainfall output might not be
consistent with observations, even if the projection
matches perfectly with reality. To reduce bias in the
WRF output while negating the accumulation effect
when downscaling with ANN, all rainfall output values
less than 0.5 mm (wet day threshold) were treated as dry
day events (hereafter, DDE). This wet day threshold was
applied to all WRF output in this research.

Data

In situ rainfall data was collected from the rain gauges
operated by the Vietnam National Centre for hydro-
meteorological forecasting (NCHMEF). Rain gauge re-
ports are prepared and recorded every 6 h, being further
processed by the NCHMEF for monitoring climate anom-
alies. Rainfall data for the JJA season covering the years
1996, 1997, 1998, and 2006 provided the basis for this
research. Four specific criteria were applied to select
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Fig. 2 Averaged rainfall in JJA and DJF in northern Vietnam from
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weather station data: (i) Selected rain gauge stations
must be located inside D2, and all stations must use the
same monitoring techniques to minimize biases in the
recorded data. (ii) A month during JJA is considered to
have sufficient data if the number of missing days is less
than or equal to 5. (iii) A year is considered complete if
all months in JJA satisfy item (ii). (iv) All stations that
cover every year of the research period, without missing
any year, are considered to have complete data. After
screening through these criteria, 38 stations were se-
lected for the validation of WRF output (Fig. 1c).

This study uses the Japanese 55-year reanalysis dataset
(JRA-55, Kobayashi et al. 2015), as developed by The Japan
Meteorological Agency (JMA), for the WREF initial and
boundary conditions. These simulation outputs serve as the
control run for testing the accuracy of WRF simulations
(hereafter, simulations of climate in the past are called
CTL). JRA-55 was improved from a former JMA reanalysis
(JRA-25; Onogi et al. 2007) by deploying a more sophisti-
cated data assimilation scheme to reduce biases in strato-
spheric temperature, as well as to improve the temporal
consistency of temperature analysis. The spectral resolution
of the global model projection in JRA-55 was maintained at
T319L60 Gaussian grid data (equal to a 55-km horizontal
grid) and 60 vertical layers, where 0.1 hPa represents the
highest level of the model atmosphere. This dataset em-
ploys the advanced four-dimensional variational data as-
similation method, along with the global spectral model, to
generate 6-hourly atmospheric variables and forecasting cy-
cles. The JRA-55 dataset is a third-generation global atmos-
pheric reanalysis, covering the period from 1958 to present.

The WREF control simulation was forced using the as-
similation data obtained from JRA-55 for the years 1996,
1997, 1998, and 2006. The WRF CTL outputs for all tar-
get years were then used for downscaling validation,
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while the outputs for the first 3 years from 1996 to 1998
were used as inputs for training the ANN. The CTL out-
put for the year 2006 was utilized as an independent
testing set for the ANN.

For land-surface boundary conditions, we used the
NCEP Final Operational Global Analysis data (NCEP
ENL; NCEP, 2000). These gridded boundary conditions
are prepared at a spatial resolution of 1°x 1°. For lower
boundary conditions in the WRF simulation over the
ocean, the NOAA Optimum Interpolated 1/4 Degree
Daily Sea Surface Temperature Analysis (NOAA OI
SST) was used (Reynolds et al. 2007). It is a global-scale
reanalysis dataset, constructed by merging observations
from various sources, including satellites, ships, and
buoys. The complete global sea surface temperature
(SST) map was produced by numerical interpolation.
This product provides a spatial resolution of 0.25°x 0.
25°, with a temporal resolution of 1 day. NOAA OI SST
is derived from the Advanced Very High Resolution
Radiometer (AVHRR) infrared SST data, which supports
relatively high-resolution observation data. However, the
AVHRR sensor cannot see through clouds. Therefore,
since 2012, the Microwave Instruments Advanced
Microwave Scanning Radiometer (AMSR) has been used
along with AVHRR to measure SSTs in most weather
conditions.

Artificial neural network
Artificial neural networks are a mathematical concept of
artificial intelligence that mimics the network of billions

of interconnected neurons in the human nervous
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system. The ANN method offers a variety of network ar-
chitectures suitable to different fields of application. In
this study, we adopted the architecture most widely im-
plemented in the climatology field: the feed-forward arti-
ficial neural network (FFANN) (Abhishek et al. 2012), a
multi-layer perceptron trained using the back-
propagation learning algorithm (MLP-BP). We used the
FFANN for downscaling WRF rainfall output from D1
to D2. Figure 3 depicts the simplified architecture of the
MLP-BP network implemented in this study. The net-
work contains a set of neurons organized in layers from
the input layer on the left to the output layer on the
right. All the processing neurons are fully connected
with other neurons in the following layer, while there is
no connection between neurons of the same layer. The
input layer is designed neither for processing data nor
generating inputs of its own. It simply stores the input
values to be processed in the next layer. After the input
layer, one or more processing layers, called hidden
layers, follow. The last layer is the output layer, contain-
ing processing neurons to generate a simulated value.
The connections between neurons are made with the as-
sociated weights. The network illustrated in Fig. 3 repre-
sents a three-layered ANN with an input layer of i input
neurons (Xi, X, ..., X;), one hidden layer with j neurons
(Hy, Hy, ..., H), and k output neurons (Yzi, Yo, ..., ),
with connections from the output of one layer to the
input of the next layer. The superscripts # and o indicate
that the calculations are implemented in the hidden
layer or output layer, respectively. The input values cal-
culated by the model for the m-th neuron in the hidden

Input layer
with i neurons and i inputs

[ I \

Hidden layer with j neurons

Output layer
with k neurons and k outputs

J

e

_f = @
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Fig. 3 Simple multilayer perceptron ANN
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layer are the weighted sum of i inputs to which the bias
value " is added:

neth, = Wh X,+bl im=12.j (5)

where Wﬁ’m is the associated weight matrix for the con-
nection between the input neurons and the neurons in
the hidden layer. Then, the net”, vector is entered into a
non-linear activation function g(), which is essential for
an ANN model to solve nonlinear problems. The most
useful and widely adopted functions for g() are the
hyperbolic tangent or logistic sigmoid (Bodri and Cer-
mdk 2001). In this study, the logistic sigmoid function
was used first, and its simulation results were compared
step-by-step with those produced using the hyperbolic
tangent function. The output of neuron out” in the hid-
den layer subsequently becomes:

out), = g(net},) (6)

The input of the /-th neuron in the output layer is cal-
culated as the weighted sum of those activations plus
the bias neurons bj:

net) =S ) Wy outh + b 1=1,2,..k (7)

The same activation function g() that was applied to
the hidden layer is applied to the input layer. The final
network output out] for the /-th output of the model is
subsequently obtained using the following function:

out} = g(netf). (8)

As the goal of training is to minimize the difference
between the actual (desired) and simulated outputs, the
network error is computed at this stage. This error is
subsequently inserted back into the input layer, where
the initial connecting weights and biases are adjusted
according to the magnitude of the error. The supervised
learning is repeated until the ANN converges to an error
smaller than the threshold. In this study, the connection
weights were updated after each training itinerary. ANN
was trained using the Levenberg Marquardt training
algorithm, which has been proven a fast and efficient
update rule for medium-sized FFANN (Yu and Wila-
mowski 2011).

ANN downscaling experiment

The goal of an optimal ANN architecture is to minimize
error between simulated output and the desired value with
the most compact and simple structure possible. There
are several essential factors affecting the performance of
ANN, including the (1) predictor selection, (2) number of
layers and neuron structure (network structure), and (3)
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specified training algorithm for connecting weights. Input
predictors are usually independent variables, believed to
have some predictive power over the dependent variable
(predictand). Normally, useful predictors could be selected
by looking at correlations and cross-correlations between
the predictors and predictand. However, the combination
of two or more uncorrelated predictors might potentially
become a strongly correlated variable (Castellano and
Fanelli 2000). In contrast, two or more highly correlated
predictors might exacerbate a small change in the model,
potentially increasing the error. With regard to the net-
work structure issue, while an insufficient number of hid-
den neurons might lead to low accuracy in training, an
excessive number of hidden neurons tends to add un-
necessary training time, with marginal improvement or
memorizing instead of learning (overfitting; Castellano
and Fanelli 2000). There is no specific method to find the
optimal number of layers and hidden neurons, except for
the commonly used trial and error approach (Zhang and
Goh 2016). On the last issue related to the training algo-
rithm is that there are several training functions available
to obtain the connection weights, as well as to adjust the
weights. Training algorithm selection is made based on
the type of network, input data, and occasionally, com-
puter power.

In this study, we aimed to prepare a reasonable size
for the ANN training data, since sparse or excessive
training data can reduce model accuracy. CTL outputs
of D1 and D2 for JJA from 1996 to 1998 were used for
the ANN training, because these three consecutive years
represent common climate conditions in Vietnam during
the rainy season without any abnormal climate events.
Since the application of ANN for rainfall downscaling
was limited within the D2T region (Fig. 1b), high-
resolution rainfall output in the rectangular region of
D2T was prepared as the predictand variable (RD2T).
Predictor variables, on the other hand, were taken from
the coarser D1. The principles behind selecting the vari-
ables to project RD2T are briefly illustrated in Fig. 4, in
which a grid cell in D2T (predictand grid) is simulated
by the four adjacent grid cells (predictor grids) in DI.
Since the predictors considered in this research were
present in large number, we depended on the correlation
coefficient between RD2T and the proposed predictors.
Correlation coefficients were calculated between RD2T
and the mean value of four predictor grid cells for each
variable. Firstly, the effectiveness of combining several
highly correlated predictors was examined. Screening
would continue with other combinations, including
those uncorrelated with the correlated predictors. This
selective combination of predictors aims to project data
onto a lower dimension space while retaining as much
information as possible by eliminating the correlated in-
formation caused by overlapping input.
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The predictors considered in this study are described
in Table 2, along with their correlation coefficients with
RD2T. Predictor variables were subsequently selected
and tested using the trial-and-error method, from a

Table 2 Predictor variables considered in the preliminary test

simple network of several correlated variables to the lar-
ger sets, including the combination of uncorrelated vari-
ables. To increase the efficiency of the training process,
all selected variables were normalized using the feature

No. Parameter Description Unit Correlation with TG
1 Rd1 Rainfall taken from D1 mm 0.89

2 v10 Vertical wind speed at 10 m ms ! 0.02

3 ul10 Horizontal wind speed at 10 m ms' 0.04
4 hgt Terrain height m 0.01

5 t_diff Temperature different between tk and t2 K -0.12
6 slp Sea level pressure Pa 0.18
7 tk Temperature at 1400 m height K 023

8 2 Temperature at 2 m K 0.08

9 q2 Specific humidity at 2 m kgkg™ -02
10 psfc Surface pressure Pa 0.12
11 Vasso Variance of sub-grid scale orography m -0.04
12 pblh Planetary boundary layer height m —-0.05
13 tslb Soil temperature K -0.19
14 smois Soil moisture m>m> 021
15 grdflx Ground heat flux W.m 2 0.24
16 canwat Canopy water kg.m™ 0.14
17 sfroff Surface runoff mm —-0.05
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scaling method described in Eq. 9 to transform all values
into the range [0:1], where a(g) is the original value be-
fore normalization occurs and z, is the normalized value
of a(g). The reason for normalization is to avoid a very
high resultant value when the original data is entered
into the ANN, which could potentially cause the activa-
tion function to exhibit low performance in resolving
small changes in the input data, thus losing sensitivity.

a(g)- min(a)

h = ..
max(a)- min(a) ywherea = (ay,

oy Oy). (9)

Zg =

In the next step, the number of hidden layers and neu-
rons were determined according to the quantity of vari-
ables, gradually increasing the network size from a small
neuron number until the desired accuracy was obtained.
A common method for ANN training is to separate data
into independent training and testing sets. However, it
has been shown that better-trained models are not ne-
cessarily associated with better estimation capability. An
excessively complex network with a high parameter-to-
observation ratio might lead to overfitting; that is, a
model with very low predictive power even when it was
well trained. A practical way to avoid overfitting while
simultaneously improving the estimation capability of
the network is to create a small set of data from the
training set for cross-validation. The errors in the

Table 3 Distinctive ANN models considered in the preliminary test
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training set and validation set are compared during the
training stage. If error in the validation set continues to
increase, the training process will be stopped, thus
achieving the best network performance. We adopted
the cross-validation approach to train the ANN model
in this study. The data used in the training stage was
randomized to avoid bias, subsequently being divided
into 3 independent datasets: 75% of the data was set as
the training set, 15% as the testing set, and the
remaining 10% was set aside for cross-validation. During
the preliminary stage, numerous ANN models were
tested to find the most effective network design for rain-
fall downscaling. In this section, several distinctive
models, whose structures were considered the most suit-
able for trial-and-error tests, are presented, with the
model details summarized in Table 3.

ANN structures can be modified in various ways to
bring the best fit for the prediction model. Any adjust-
ments in the three factors of ANN architecture, transfer
function, and predictand quantity/type greatly affect net-
work performance. In this research, the processing
methods for each predictand were considered as a fourth
major factor in model selection. The selected predictands
for ANN training were treated in different ways then clas-
sified into three types: normal variables (NV) were those
extracted directly from the CTL result, while predictand
average values (AV) and standard deviation values (SV)
were taken for the four-predictor grid cells. Table 3 lists

Model Architecture® Transfer Training data Training set
function dimension

M1n 16-10-5-3-1 LsP slp, t2, hat, pblh 4 NVs® x 4 grids

M1a 4-4-4-4-1 LS slp, t2, hgt, pblh 4 AVs®

M1s 4-4-4-4-1 LS slp, 12, hat, pblh 4 svsf

M2n 20-12-8-5-1 LS Rd1, slp, t2, hgt, pblh 5 NVs x4 grids

M?2a 5-5-5-5-1 LS Rd1, slp, t2, hgt, pblh 5 AVs

M2s 5-5-5-5-1 LS Rd1, slp, t2, hgt, pblh 5SVs

M2d 20-12-8-5-1 HTS® Rd1, slp, t2, hgt, pblh 5 NVs x4 grids

M2e 20-20-10-5-1 HTS Rd1, slp, t2, hgt, pblh 5 NVs x4 grids

M3n 28-20-10-7-1 HTS slp, tk, hgt, pblh, u10, v10, grdflx 7 NVs x4 grids

M4n 32-25-20-10-1 HTS Rd1, tk, hat, slp, grdflx, psfc, pblh, g2 8 NV x4 grids

M4a 8-6-5-5-1 HTS Rd1, tk, hat, slp, grdflx, psfc, pblh, g2 8 AVs

M4as 16-10-5-3-1 HTS Rd1, tk, hat, slp, grdflx, psfc, pblh, g2 8 (AVs + SVs)

M5n 32-25-20-10-1 HTS Same as M4n but for rainfall events

“Model architecture indicates the number of neuron in each layer of a 5-layer MLP network, wherein first number is neurons of input, the following three numbers

are neurons of hidden layers, and the last one is neurons of the output layer
BLS logistic sigmoid
°HTS hyperbolic tangent sigmoid

defny, AV, and SV correspond to normal variable, averaged variable, and standard deviation variable, respectively; in which:
-NVs are directly extracted from the 4-predictor grids, so the actual number of variable are multiplied to 4;

-AVs are the new features created by computing the mean of each variable in the 4-predictor grids;

-SVs are the new features created by computing the standard deviation of each variable in the 4-predictor grids



Tran Anh and Taniguchi Progress in Earth and Planetary Science (2018) 5:28

13 ANN models in 5 groups with different adjustments
based on the four criteria mentioned above. The M1
model series includes the simplest MPL network design,
with a logistic sigmoid (LS) transfer function and four pre-
dictor variables. The M2 model series aimed to further
test the network by increasing the number of predictor
variables to five and adopted both LS and hyperbolic tan-
gent sigmoid (HTS) functions. The M3n and M4 model
series focused on examining the importance of predictor
factors by changing the combination of variables as well
as increasing the number of variables. In all models, the
MLP structure was adjusted with respect to the network
size adjustment. The M5n models used the same setup as
the M4n, but were trained for rainfall events (RE) only. In
line with the DDE criteria, daily precipitation larger than
0.5 mm were considered RE events.

ANN models developed using the 1996-1998 datasets
were applied to the WRF output for 2006. The aim of
this application was to study the stability and applicabil-
ity of WRF coupled with ANN for rainfall downscaling.
Since the testing stage targets model reproducibility for
any weather condition, the model that was designed to
train with rainfall events only (RE-ANN, ie., the M5n
model) was expected to experience difficulty in reprodu-
cing DDE cases. Therefore, its simulation output was
calibrated to minimize bias. We tested the correlation of
DDE cases in both D2T and D1, finding a very strong
connection between DDE cells at the high-resolution
scale with the DDE cells at the coarse scale. Spatially, 99.
44% of the DDE cells in D2T were located completely
inside DDE cells in D1. Additionally, any cell in D2T
partly overlapping with a DDE cell in D1 also had a 98.
27% chance of being labeled as a DDE cell. This result
demonstrates that any cell in D1 has a significant simi-
larity in rainfall condition to the child cells within and
around it. Therefore, any cell in the RE-ANN model out-
put with a spatial connection to a DDE cell in D1 was
treated as a DDE. This treatment process for DDE cells
in the model output was called the RE-ANN calibration
and was also applied to the M5n model during the pre-
liminary test.
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Results and discussion

Dynamical downscaling experiment

This section evaluates WRF’s ability to reproduce weather
conditions in D2T. Table 4 shows evaluation statistics for
the spatial distribution of mean rainfall from CTL for D1
and D2 as compared with observed rainfall at 38 rain
gauges in 1996, 1997, 1998, and 2006, along with the statis-
tical measures R and IOA. According to Table 4, the JJA
rainfall in CTL was noticeably underestimated in both D1
and D2, as illustrated in the average accumulated values of
784 mm in D1 and 799 mm in D2, versus 1107 mm in the
observation data. Furthermore, the rainfall projections at all
observation locations were lower than the observed values.
The summarized statistic indicated that simulated rainfall
in D2 was slightly closer to the observation data than it was
in D1. Both spatial correlation and IOA between observa-
tion data and CTL results exhibited slightly better values in
D2 than in D1. This finding indicates that, in addition to
the spatial resolution advantages, D2 can better resolve the
finer resolution than can the D1. In D2, the ratio of the pre-
cipitation average for D2T between CTL and the observed
value was consistently lower than 1, ranging from 0.65 to 0.
82, with an average of 0.72. Both spatial correlation and
IOA between D2 and the observations were relatively high,
from 0.66 to 0.77 and 0.71 to 0.78, respectively. This indi-
cates reasonable accuracy for the CTL in reproducing the
spatial distribution of JJA rainfall. Regarding the underesti-
mated rainfall in the CTL output, several studies (Bukovsky
and Karoly 2011; DeMott et al. 2007) have experienced the
same problem. A common insufficiency of climate models
is that they often underestimate extreme precipitation
events, while overestimating the occurrence of light precipi-
tation events. In this study, we focused on the rainfall sea-
son of a tropical country, where intense rainfall is a regular
occurrence. Thus, it is not surprising to find that rainfall is
underestimated in our simulation.

In addition to the spatial distribution of JJA accumu-
lated rainfall, the temporal variations of daily rainfall be-
tween CTL and observations for D2 were examined at 38
locations using the metrics of temporal R, MAE, and
RMSE (Table 5). The CTL results for JJA during the

Table 4 Statistical measures for WRF simulated rainfall over JJA periods

Year Mean D1 D2

Obs (mm) Mean CTL® (mm) CTL/Obs R OA Mean CTL (mm) CTL/Obs R I0A
199 1078 679 063 077 065 701 065 078 066
1997 983 764 075 073 075 772 078 074 077
1998 1167 903 077 071 075 893 077 071 074
2006 1198 974 081 071 07 983 082 071 07
Average 1107 784 0.74 0.73 0.71 799 0.76 0.74 0.72

“Mean CTL was calculated by averaging the simulated rainfall from 38 location in CTL corresponding to the locations of rain gauges
I0A index of agreement, Obs observation

R spatial correlation (Pearson)
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Table 5 Temporal correlation, RMSE, and MAE between CTL
and Observation daily rainfall averaged for 38 locations for the
JJA period in 1996, 1997, 1998, and 2006

D2 RRD NMR
Number of rain gauge 38 12 14
R 0.63 0.7 0.5
RMSE (mm) 14.53 9.12 17.98
MAE (mm) 467 352 721

RRD Red River Delta, NMR northern mountainous regions

research period suggest a moderate temporal agreement
with observations, in which the average correlation coeffi-
cient for all 38 locations was 0.63. However, there was
substantial variation in the correlation coefficients across
the study site. While the temporal correlations for daily
rainfall in midland and lowland areas, ie., the Red River
Delta, were high (average 0.7), the CTL output for the
high mountainous regions was in low temporal agreement
with the observations (average 0.5), especially in the areas
between alternating high mountain ranges (as in the west-
ern part of D2T, see Fig. 1c). This finding highlights the
limitation of WRF in resolving micro-climatological con-
ditions and covering complex topography effectively. The
same conclusion was arrived at by Li et al. (2016) in their
research on the influence of topography on precipitation
distribution.

The average MAE for the testing locations was 4.
67 mm, while the average RMSE was significantly higher
at 14.53 mm. Since the RMSE tends to amplify large
biases, the large gap between the two values reflected
the underestimation of heavy and extreme rainfall cases
in the CTL, which partly resulted in underestimation of
the accumulated rainfall mentioned above. The average
correlation coefficient for all 38 locations indicates a
moderate agreement, but there was large variation in
correlation coefficients between the locations (detail not
shown). JJA accounts for over 70% of the annual rainfall,
which begins in June, peaks in late July, and decreases
through August. The correlation coefficient results indi-
cate that the proposed WRF setup can reproduce sea-
sonal variation in rainfall relatively well, especially for
the lowland region where D2T is located.

To examine the significance of the calibration method
for DDE (omitting values less than 0.5 mm per day), we
directly compared DDE during the JJA period from the
CTL results, CTL calibrated results, and observed values
for each observation location. The maximum, minimum,
and average DDE percentages in D2T at the 38 locations
are presented in Table 6. The summarized results clearly
show miscalculation of DDE by CTL. The percentage of
DDE in the CTL results ranged from 4.5 to 8.6% of the
total grid cells in D2, which were 4 to 6 times lower than
the actual data across all years. The application of a wet
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Table 6 Comparison of the percentage of DDE in JJA among
38 rain gauge locations

Year Observation (%) CTL (%) Calibrated CTL%(9%)
Max® Min® Average® Max Min Average Max Min Average
1996 512 18 325 86 45 56 431 175 2649
1997 565 185 286 73 45 53 38.7 125 2653
1998 564 186 314 6.5 48 51 451 163 3027
2006 521 162 325 66 45 63 459 104 28.18

2 b Max, min, and average correspond to the maximum, the minimum, and
the averages of DDE cases during JJA among 38 rain gauge

locations, respectively

dCalibrated CTL, the CTL daily rainfall was calibrated with wet day threshold

day threshold showed a good result in eliminating the
biases between simulated and observed data, with a large
improvement in the calibrated CTL results. Even when
the ranges of maximum and minimum percentage DDE
did not perfectly match the observations, the average
DDE results for JJA in the calibrated CTL were very
close to the observed average. However, quantitative as-
sessment of the reduction in total rainfall owing to DDE
calibration indicates that the mean total rainfall decrease
is 0.28% for D1 (detailed result not shown here). Thus,
the calibration helps WRF better capture DDEs, with a
negligible effect on total rainfall. WRF simulation results
for D2T after calibration were expected to be a good
predictand for the ANN training stage.

Results of the ANN preliminary training stage

This section describes the training stage results of rain-
fall downscaling, using the MLP-based ANN on different
model configurations as mentioned in Table 3. To com-
pare the predicted model outputs with the desired out-
put, various statistical measurements were adopted.
Their results are presented in Table 7, while regression
plots for the testing set are shown in Fig. 5. Results of
the training stage show substantial variations in perform-
ance among the models. The training results improved
with regard to higher model complexity; however, there
was clear consistency in network performance, with most
models exhibiting similar correlation coefficients in the
training and test sets. The cross-validation method was
proven to be effective in detecting the best generalization
point and stopping the training process before the model
shifted to over-learning.

The simplest designs in the M1 model series provided
the worst results (very low accuracy and large RMSE) and
were unable to forecast DDE cases. Figure 5 indicates that
the M1n, M1a, and M1 s models heavily underestimated
RD2T, which might be attributed to the low predictive
power of the combination of variables sea level pressure
(slp), temperature at 2 m (t2), geographical height (hgt),
and planetary boundary layer height (pblh). However, the
R* coefficient indexes suggest that Mln was a better
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Table 7 RMSE and R’ for training and test sets of different ANN model configurations
M1n M1a M1s  M2n M2a M2s  M2d  M2e M3n  M4n M4a Mdas  M5n RD2T

R* of training set 0.32 0.25 0.19 091 0.92 0.85 091 091 0.62 092 0.92 0.93 092

R? of test set 0.29 0.23 0.13 0.85 0.85 0.76 0.85 0.88 0.51 092 0.91 0.92 092

RMSE for all dataset (mm/day) 3253 3553 3594 1324 1295 1849 1452 1293 2847 944 8.67 8.94 1042

DDE in full dataset (%) 0.01 0.01 0.04 1034 324 2194 1104 1184 232 1453 1159 2053 2743 2774

E 400 Test:R=0.13 | m1s

Test: R=0.29 Miln M2n

ﬂ Test:R=0.23 | Mia || E
Y =T) ~
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Fig. 5 Correlation coefficients for the ANN model test sets
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model than Mla and M1s. While the Mln setting used
the NV input features, which might be better than AV and
SV, the accuracy levels of the M1 model series were too
low to determine any differences. The M2 model series
showed significantly better fitting and bias results
compared to the M1 series. Except for M2s, with R* for
the test data of 0.76, the other M2 models yielded at least
0.85 for R* in the test set. The large improvement in the
M2 series was achieved by incorporating the rainfall in D1
(RD1), which is highly correlated to RD2T (Table 2). The
sudden drop in the predictive power of the M3n model
also indicates the significance of RD1 in model design,
since M3n eliminated the RD1 variable in the training
stage. With the same settings, the M2n and M2a models
showed significantly better correlation to RD2T than did
M2 s, thus indicating a lack of signal strength in SV
features. Although M2s appears to be weaker, its
simulated DDE percentage was 21.94%, which was close
to that of RD2T (27.74%). The ability of M2s to resolve
DDE was significantly better than those of M2n and M2a,
whose DDE percentages were 10.34 and 3.24%,
respectively. The reduction of DDE percentage in M2a
reflected the drawback of the AV features, compared to
the NV features, since the average value reduces the
variation signal in the predictors. On the other hand, M2d
and M2e exhibited slightly better results than did M2n,
especially with regard to the reproducibility in DDE cases
(11.14 and 11.84%). The large number of neurons and the
high rescaling range—[- 1:1] of HTS to [0:1] of LS—made
it more convenient for the network to detect very small
rainfall values.

The M4 series and M5n were clearly better than
the other models, as their predictions were close to
that of RD2T, yielding significantly lower RMSE. Add-
ing more predictor variables have proven to be help-
ful in increasing model accuracy. There was variation
in the behaviors between the models in the M4 series,
despite their skillful results. Even though the RMSE
of M4a was lowest at 8.67 mm/day, its ability to map
small rainfall signals was significantly lower than
those of M4n and M4as. M4a indicated 11.59% DDE,
while M4n and M4as indicated 14.53% and 20.53%,
respectively. Compared to the DDE percentage of 27.
74% in RD2T, M4as was clearly the best at forecast-
ing small rainfall values. The study results indicate
that a combination of AV and SV features might be

Table 8 The second stage testing results of ANN models
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better in detecting DDE. The higher RMSE values in
M4n and M2n, as compared to the other M2 models,
might be attributed to the interaction of highly correlated
inputs among the NV features. The same behavior was
also demonstrated by Wendemuth et al. (1993), who
found that the combination of correlated inputs poten-
tially adds more weight not only to the predictive informa-
tion, but also to the biases. M5n discarded rainfall event
information during the training stage, which understand-
ably resulted in higher RMSE than the M4 model series.
The RE-ANN calibration method was employed for the
M5 model to successfully map a total of 27.43% DDE grid
cells, which was smaller than that of RD2T by a small
margin.

Results of WRF-ANN downscaling for an independent
dataset

The second testing stage in this study aimed to further as-
sess the applicability of coupling ANN to WRF output for
high-resolution rainfall downscaling and compare it with
the interpolated data using a bilinear interpolation
method. We selected the ANN architectures that
demonstrated the most promising global approximation
abilities during the training stage (the M4 model series
and Mb5n) to apply for an independent dataset for the year
2006. In addition, we also used bilinear interpolation to
downscale RDIT from 30 to 6 km (denoted BIP-RD1).
The summarized results of the tests are presented in
Table 8, while regression plots for the target and forecast
rainfall are plotted in Fig. 6. All models in the second stage
continued to show predictive consistency in performance
with the 2006 dataset (Table 7). Differences in correlation
coefficient metrics were observed, although they were in-
significant. The correlation coefficients (>.9) for simula-
tion outputs in this stage were comparable to results from
the preliminary stage, indicating good model reproducibil-
ity. However, in the 2006 dataset, the simulation results
also exhibited more prediction errors, as can be seen in
the RMSE. The unexpected reduction in model stability
may be due to imperfect model design or a lack of repre-
sentative information in the training dataset (Sdnchez
Lasheras et al. 2010). Sometimes, the incomplete nature of
model development may also contribute to the problem
(Tu 1996). The models that adopted NV variables, includ-
ing M4n and Mb5n, were observed to have higher biases
than those that adopted AV and SV variables, including

M4n M4a M4as M5n BIP-RD1 2006-RD2T*
Spatial correlation for 2006 dataset 09 0.91 091 091 0.84
RMSE for 2006 dataset (mm/day) 14.21 11.27 10.24 1242 1693
DDE in 2006 dataset (%) 9.54 15.94 1948 23.84 1743 23.78

92006-RD2T RD2T of the 2006 dataset
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M4a and M4as. Highly correlated NV inputs seemed to
yield more error than their generalized features. Both M4a
and M4as proved better than M4n at predicting the DDE
percentage, with 15.94 and 19.48%, respectively, compared
to 9.54%. Between the two, the M4as model, which inher-
ited the predictive power of both SV and AV features, out-
performed M4a in every measure. However, Mb5n is the
model that delivered the best forecast of DDE percentage,
at 23.84%, which was within 0.1% of the 2006-RD2T of 23.
78%. Since M5n was designed with the same setting as
M4n, the RE-ANN calibration method was proven effect-
ive in locating DDE cases. Results of the bilinear
interpolation method, BIP-RD1, on the other hand,
showed noticeably lower spatial correlation coefficients
and higher RMSE values than did the ANN downscaling.
DDE percentage determined by BIP-RD1 was 17%, much
lower than the observed value of 24% in 2006-RD2T. The
bilinear interpolation method generates estimated values
between grid points. It is a simple and fast method, but
lacks important embedded dynamical processes that are
contained in the WRF models. The ANN method, on the
other hand, performs downscaling by creating statistical
relationships between high- and intermediate-resolution
WREF outputs. ANN incorporates the dynamical processes
given by WRF during the training processes. This added
value provided by ANN helped to capture fine-scale

variations in the downscaling results. It is therefore rea-
sonable to find that downscaling with ANN outperformed
the bilinear interpolation method.

Comparisons between the ANN models and target
data with regard to the frequency of dry days, wet days,
and extreme rainfall events is shown in Fig. 7. The rain-
fall frequency illustrated by all models was similar to
that of RD2T, wherein the dry day and low rainfall (less
than 20 mm) cases accounted for most of the days dur-
ing JJA. Regarding the distribution of very low rainfall
cases (less than 5 mm) and extreme rainfall cases (higher
than 100 mm), the M4n and M4a models showed weak-
ness in their underestimation of low rainfall cases. These
two models failed not only in resolving the DDE cases as
illustrated in Table 8, but also in projecting small rainfall
values. BIP-RD1 exhibited better DDE percentages than
did the M4n and M4a models, but these were still much
lower than the observed values. Meanwhile, the M4as
and M5n were nearly identical, with rainfall frequencies
in these two models being similar to the observed values.
Both M4as and M5n showed significant improvement
over M4n and M4a in locating small rainfall ranges.

The distribution maps for cumulative JJA rainfall in
2006 by M4n, M4a, M4as, Mb5n, and BIP-RD1 are
depicted in Fig. 8, in comparison with RD2T (2006-RD2T)
and RD1 (2006-RD1). Owing to the high correlation with
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2006-RD2T (Table 8), ANN downscaled the rainfall in all
models, clearly demonstrating a good pattern-correlation.
The highest rainfall areas were accurately located in the
southwestern corner of D2T, and rainfall gradually de-
creased towards the northeast. While the spatial correla-
tions of cumulative rainfall were similar among the
models, the rainfall distribution results indicate an abso-
lute strength of NV input features over AV and SV
features, as pertains to the downscaled detail. We can
explicitly recognize the smoother transition of rainfall
withdrawal from higher to lower rainfall areas in the M4n
and M5n models than is demonstrated in the M4a and
M4as models. Compared to the 2006-RD2T distribution
pattern, the rainfall transition patterns in M4n and M5n
showed a loss in detail; even so, its resolution was suffi-
ciently high to distinguish minor changes. The essence of
the WRF-ANN downscaling method was the use of four
D1 grid cells to predict one spatially overlapped grid cell
in D2. When the resolution of D2 was too high for com-
parison with D1, it was unavoidable that some adjacent
cells in D2 would have the same predictor values. This
problem results in predicted values repeating for some
cells. Less detail was expected in M4n and Mb5n than in
2006-RD2T, since increasing resolution from 30 to 6 km
is a large jump. As expected, both the M4n and Mb5n
models showed significantly higher resolution than that of
the 2006-RD1. In contrast, M4a and M4as had signifi-
cantly lower resolution and coarse rainfall patterns. The
differences between M4a and M4as were too small to

indicate any advantages from combining both AV and SV
features for prediction. Even with their higher resolution,
neither M4a nor M4as demonstrated better changes in
the minor rainfall pattern. In this test, simulation results
suggest that generalized features might be more effective
in bias control. However, this approach loses essential in-
formation for examining the spatial distribution of pre-
cipitation, which leads to similar generalized results. On
the other hand, while the original NV predictor exhibited
a larger bias, it better mapped the variability in rainfall.
BIP-RD1 showed larger increase in spatial resolution than
did RD1T, but failed to generate the wide range of rainfall
variation present in RD2T. It tended to overestimate rain-
fall in light rainfall grid cells and underestimate rainfall in
heavy rainfall grid cells.

The differences between cumulative JJA rainfall simulated
by M4n, M4a, M4as, M5n, and BIP-RD1with RD2T are in-
dicated in Fig. 9. All models exhibited larger estimation er-
rors in the northwestern part of D2T, especially in the high
terrain and surrounding area. However, these large errors
were not a surprise because this area accounts for the high-
est JJA rainfall (Fig. 8). The BIP-RD1 model showed slightly
larger error than did the other models, while both M5n and
M4n overestimated the total JJA cumulative rainfall, with
M4n having the larger overestimation, as reflected in its
RMSE. Since M5n neglected very small rainfall values dur-
ing calibration, it potentially avoided bias intensification by
small rainfall values during training. Moreover, in a com-
parative study on software estimation efforts, Nassif et al.
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(2012) also found an overestimation tendency by MLP-
ANN, especially for an MLP trained with a complicated
range of inputs. The model behavior suggests that small
rainfall values, which accounted for 10 to 40% of the data-
set, were difficult to reproduce by ANN. However, they can
be addressed using the RE-ANN calibration methods.

Predictor sensitivity analysis

To obtain a comprehensive view on the applicability of
coupling WRF and ANN to downscaling, the influence of
each input predictor on the output should be investigated.
Normally, variables with a higher correlation to the pre-
dictand are expected to be more helpful in forecasting.
However, an unusual combination of correlated or uncor-
related variables might also be useful. In this study, we
considered 17 variables (Table 2), gradually fine-tuning
their combination through the trial and error method. Al-
though we could not cover all possible combinations, our
best effort so far—as used in the Mb5n model—

demonstrated promising results. Sensitivity analysis was
conducted for each variable input for the M5n model to
examine their significance to the ANN outputs. The sensi-
tivity analysis method used in this study was introduced
by Hung et al. (2009), in which each input parameter in
the M5n model was alternately removed from the ensem-
ble, subsequently comparing the performance statistics
with the original. Since the M5n model utilized eight
variables, including RD1, atmospheric temperature at
1400 mm (tk), hgt, slp, ground heat flux (grdflx), surface
pressure (psfc), pblh, and humidity at 2 m (q2), there were
eight models included in the sensitivity test. The results of
the sensitivity test are presented in Table 9.

As can be seen in Table 9, RD1 has the largest impact
on the predictand. Excluding RD1 substantially reduced
network performance. Meanwhile, the model indicated
the second largest impact by q2, while the third and fourth
most important parameters were tk and slp, whose results
were very similar to each other. Among the remaining
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Fig. 9 Differences between simulations in cumulative rainfall (mm) in JJA of 2006 results and RD2T. The purple contour dash lines indicate the
areas with terrain height of over 1,000 m

variables, grdflx differed from the others by a higher
RMSE, achieving the fifth position. The remaining vari-
ables pblh, psfc, and hgt were the least important, since
the models trained without them were comparable to the
original M5n model.

Apart from input variables, it is also important to con-
sider sensitivity to the treatment methods used for the
input variables, which classify the variables into NV, AV,
and SV features. While NV features tend to yield more
error, they can resolve the spatial variability of rainfall.
Meanwhile, generalized features such as AV and SV can
better control the bias in prediction values, but have
lower effective resolution. NV features were concluded
to be the best fit for making WRF-ANN models.

Computational cost

The expected results when adopting WRF-ANN over
WREF include a comparable downscaling quality with re-
duced computational load and time. Since the step of
downscaling from 30- to 6-km resolution using ANN
gives results instantly, the advantage of using WRE-

ANN methods was measured by comparing the time
consumption needed by WRF to downscale rainfall to 30
or to 6 km. Our measured results indicate that WRF
downscaling to 6-km resolution took 9.3 times longer
than downscaling to 30-km resolution. Rainfall down-
scaling using the WRF-ANN method can therefore save
up to approximately 89% of the computational cost, as
compared to downscaling using WREF alone.

Conclusions

The possibility of coupling WRF and ANN for high-
resolution rainfall downscaling was investigated with a
case study from the Red River Delta in Vietnam. The
evaluation shows that the WRF modeling system can
reproduce temporal variation in the JJA daily rainfall rea-
sonably well, but underestimates the total precipitation.
Owing to the higher precision of WRE, the region appears
to have more drizzle, resulting in significantly fewer dry
days than were observed. However, by implementing a
wet day threshold of 0.5 mm, we were able to correct this
issue.

Table 9 Performance statistics for ANN sensitivity analysis for 1996-1998 dataset

M5n W/o Rd1 W/o tk W/o hgt W/o slp W/o grdfix W/o psfc W/o pblh W/o g2
R? of training set 092 048 0.88 0.92 0.88 09 091 091 0.86
R? of test set 092 047 087 091 0.86 0.89 0.89 0.88 0.85
RMSE for all dataset (mm/day) 1042 24.52 15.29 10.82 15.24 1348 11.37 10.98 1743

W/o without
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The best performing ANN model, M5n, produced high-
resolution rainfall patterns that are highly correlated with
WRE (r=0.91) and have low RMSE (12 mm/day). High-
resolution rainfall in each grid cell was downscaled by tak-
ing the climatological variables from the four grid cells in
the coarse domain. The M5n model was configured as an
MLP-BG network with three hidden layers using the
hyperbolic tangent sigmoid activation function. The opti-
mal predictors for M5n were rainfall in D1 (RD1), atmos-
pheric temperature at 1400 mm (tk), geographical height
(hgt), sea level pressure (slp), ground heat flux (grdflx),
surface pressure (psfc), planetary boundary layer height
(pblh), and humidity at 2 m (q2). In addition to having
high accuracy, applying WRE-ANN is also expected to re-
duce computational costs. Running 30-km WRF and using
ANN to downscale to 6 km is 89% less expensive than
running nested 30- and 6-km WRF simulations. We de-
veloped a calibration method (RE-ANN) to help ANN
better capture dry days. This method treats a grid cell in
D2T as dry if it was touching a dry grid cell in D1. This
improved our simulation of dry days with ANN. The net-
work trained for RE events and calibrated with the RE-
ANN calibration method delivered the best prediction for
our study area and period. Statistical relationships created
by ANN can be used to directly downscale climate infor-
mation from 30-km WREF output to a 6-km grid with rea-
sonable accuracy. The application of ANN with WRF was
effective for rapidly downscaling daily basic rainfall data in
a season at low computational cost.

To further improve predictive skill of the WRF-ANN
model, an additional analysis of the model biases will be
required, e.g., sources of overestimated cumulative rainfall
during JJA. Such analysis will require more detailed and
extensive comparison of the various model configurations
and predictor combinations in ANN. Using the coupling
methods, we plan to extend the applicability of WRE-
ANN to an ensemble of climate models, in which the
principal components of the model ensemble can be con-
sidered as inputs for ANN downscaling. This approach
will potentially help facilitate the use of ensemble model
prediction, without the need for excessive time and com-
putational power. Additionally, we plan to experiment
with even higher resolution (finer than 6 km) downscaling
using WRF-ANN.
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