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Abstract

In this paper, we summarize current progress on using the observed magnetic fields for magnetohydrodynamics
(MHD) modeling of the coronal magnetic field and of solar eruptions, including solar flares and coronal mass ejections
(CMEs). Unfortunately, even with the existing state-of-the-art solar physics satellites, only the photospheric magnetic
field can be measured. We first review the 3D extrapolation of the coronal magnetic fields from measurements of the
photospheric field. Specifically, we focus on the nonlinear force-free field (NLFFF) approximation extrapolated from
the three components of the photospheric magnetic field. On the other hand, because in the force-free
approximation the NLFFF is reconstructed for equilibrium states, the onset and dynamics of solar flares and CMEs
cannot be obtained from these calculations. Recently, MHD simulations using the NLFFF as an initial condition have
been proposed for understanding these dynamics in a more realistic scenario. These results have begun to reveal
complex dynamics, some of which have not been inferred from previous simulations of hypothetical situations, and
they have also successfully reproduced some observed phenomena. Although MHD simulations play a vital role in
explaining a number of observed phenomena, there still remains much to be understood. Herein, we review the
results obtained by state-of-the-art MHD modeling combined with the NLFFF.

Keywords: Sun, Magnetic field, Photosphere, Corona, Magnetohydrodynamics (MHD), Solar active region, Solar flare,
Coronal mass ejection (CME)

Review
Introduction
Solar flares are explosive phenomena observed in the
atmosphere of the Sun (the solar corona). These events are
observed as sudden bursts of electromagnetic radiation,
such as extreme ultraviolet radiation (EUV), X-rays, and
even white light; some examples are shown in Fig. 1a–c.
The scale is classified as soft X-rays, using the 1–8 Å band
obtained by the GOES-5 satellite (one of the Geostation-
ary Orbiting Environment Satellites), as shown in Fig. 1d.
The Sun is known to be a magnetized star. Figure 2a
shows the line-of-sight component of the magnetic field,
and the positive and negative polarities cover the whole
sun. Figure 2b shows the three-dimensional (3D)magnetic
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field lines traced from the positive to the negative polar-
ities; these have been extrapolated under the assumption
of the potential field approximation (this will be discussed
below). Solar flares often occur above the sunspots cor-
responding to a cross section of strong magnetic flux.
In addition, because the solar corona satisfies the low-β
plasma condition (β = 0.01–0.1) (Gary 2001) in which the
magnetic energy dominates that of the coronal plasma,
solar flares are widely considered to be a manifestation of
the conversion of the magnetic energy of the solar corona
into kinetic and thermal energy, culminating in the release
of high-energy particles and electromagnetic radiation.
Figure 2c is an enlarged view of the region that is marked
by an arrow in Fig. 2b; here, the field lines are responsible
for the current density accumulation, which initiates the
flare. These field lines are extrapolated using the nonlin-
ear force-free field (NLFFF) approximation; this is one of
the main topics of this paper.

© 2016 Inoue. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-016-0084-7-x&domain=pdf
mailto: inoue@mps.mpg.de
http://creativecommons.org/licenses/by/4.0/


Inoue Progress in Earth and Planetary Science  (2016) 3:19 Page 2 of 28

Fig. 1 Observations of the solar flare. a–c The solar flares in the EUV images for different wavelengths observed on the solar surface or in the solar
atmosphere. From left to right, the wavelengths are 1600, 171, and 94 Å. The flares were observed by SDO/AIA at around 18:00 UT on 29 March 2014.
d Time profile of the X-ray flux measured by the GOES 12 satellite on 29 March 2014. The solar X-ray outputs in the 1–8 Å and 0.5–4.0 Å passbands
are plotted

Furthermore, this causes a huge amount of coronal
gas (a typical mass is 1015 g) with a velocity of 100–
2000 kms−1 to be released into interplanetary space; this is
called a coronal mass ejection (CME; e.g., Forbes (2000)).
The CMEs are sometimes associated with solar flares;
however, the detailed understanding of the relationship
between these two phenomena remains elusive (Chen
2011; Schmieder et al. 2015). It is important to under-
stand these phenomena in order to better understand the
nonlinear plasma dynamics of the processes involving the
magnetic energy or helicity of the solar coronal plasma;
this includes storage-and-release processes as well as the
forecasting space weather (Tóth et al. 2005; Liu et al. 2008;
Kataoka et al. 2014). Investigations of solar flares and
CMEs are thus important in terms of both the elemental
plasma physics and the applied science.
Since the discovery of the solar flares by Carrington

(1859), many studies have been performed (including
observational, theoretical, and numerical studies) for clar-
ifying their dynamics (Benz 2008; Priest and Forbes 2002;
Shibata and Magara 2011; Wang and Liu 2015). Many
new insights on solar flares and related phenomena have
been obtained by analyzing the data collected by satel-
lites. For instance, the Yohkoh satellite obtainedmuch data
on dynamical features of the sun, some of which had not

been predicted; this can be seen in Fig. 3a; this image,
taken by a soft X-ray telescope, shows several important
aspects that have helped our understanding of solar flares.
For example, Tsuneta et al. (1992) discovered the cusp-
shaped structure during the solar flare seen in the lower
right panel in Fig. 3a. A detailed analysis (Tsuneta 1996)
produced evidence of the reconnection, and this lent
support to a theoretical flare model based on reconnec-
tion; this model is named for its developers, Carmichael,
Surrock, Hirayama, Kopp, and Pneumann (CSHKP)
and explains the observations at multiple wavelengths
(Carmichael 1964; Hirayama 1974; Kopp and Pneuman
1976; Sturrock 1966). Masuda et al. (1994) confirmed the
CSHKP model of the solar flare by analyzing the hard
X-ray signals obtained during a solar flare. In addition,
Sterling and Hudson (1997) found a characteristic pattern
of X-rays that are released prior to a flare; this is shown in
the upper right panel of Fig. 3a. This pattern is a sigmoid
(an S- or inverse S-shaped structure) that changes into a
cusp-shaped loop structure after the flare occurs. Su et al.
(2007) and McKenzie and Canfield (2008) demonstrated
the fine structure and topology of the field lines that were
later observed by an X-ray telescope (Golub et al. 2007) on
board theHinode satellite (Kosugi et al. 2007). In addition,
Yokoyama et al. (2001) found evidence of reconnection
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Fig. 2Magnetic fields of the sun. a Full-disk image of a line-of-sight component of the solar magnetic field observed by SDO/HMI at 15:00 UT on 29
March 2014, which corresponds to 2.5 h before an X1.0-class flare. b The magnetic field lines in yellow are superimposed on a. The field lines are
extrapolated under the approximated potential field. This figure is courtesy of Dr. D. Shiota (Shiota et al. 2012). c The active region, corresponding to
the region marked by an arrow in b, is the region in which a sunspot with a strong magnetic field is concentrated. The field lines are plotted
according to the NLFFF approximation, in which they accumulate the strong current density

inflow in extreme ultraviolet observations of the Solar
and Heliospheric Observatory (SOHO). The images of the
coronal loop shown in Fig. 3b are reminiscent of recon-
nection. Because these observations were based on imag-
ing of electromagnetic waves, the data were mapped onto
a 2D plane. Thus, obtaining a 3D reconstruction of these
events is extremely difficult.
Based on this observational evidence, there have been

several attempts to construct the 3D magnetic struc-
ture (e.g., Shibata (1999)). Figure 3c is an image of a
3D magnetic structure inferred from observations dur-
ing the onset of the solar eruption depicted in Shiota
et al. (2005); the reconnection model can be used to
explain various observed phenomena, e.g., the two H-
α flare ribbons, and giant arcades. In addition, various
models have been proposed that predict the onset of
solar flares and CMEs. For instance, Forbes and Priest
(1995) proposed the catastrophic model shown in Fig. 3d;
this shows that the flux tube in the solar corona does
not remain at equilibrium when the boundary conditions
are changed, and this results in a sudden eruption. The
tether-cutting model, proposed by Moore et al. (2001), is

shown in Fig. 3e. They assumed that two sheared field
lines existed along the polarity inversion line (PIL) prior
to the onset of the flare; this is shown in the upper left
panel of Fig. 3e. Note that this has a somewhat sigmoidal
structure. If there is reconnection between the sheared
field lines, then long twisted lines are formed, and an
eruption may occur. The final state shown in the right
bottom panel of Fig. 3e is very similar to that shown in
Fig. 3c.
The dramatic increase in computer power allows us to

perform 3D magnetohydrodynamics (MHD) simulations
and to estimate the 3D dynamics of magnetic fields dur-
ing solar flares. Several studies have modeled sunspots to
be asymmetric or as simple dipole fields and have analyt-
ically obtained the 3D coronal magnetic fields by fitting
appropriate boundary conditions (e.g., Amari et al. (2000)
and Amari et al. (2003a)). Figure 4a shows the results
from Amari et al. (2003b); this shows the formation of a
flux tube, which is initiated by the initial potential field,
through twisted and converged motion on the photo-
sphere. The twisted motion imposed on a dipole sunspot
causes the accumulation of sheared field lines, and the
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Fig. 3 Observations and models of the solar flares. a The solar corona observed by soft X-ray from on board the Yohkoh satellite. The left panel shows
the whole sun; the upper and lower right panels show the sigmoid and cusp-loop structures, observed before and after the flare, respectively. This
figure is courtesy of ISAS/JAXA. b The reconnection process in the solar flare observed by SOHO satellite from Yokoyama et al. (2001). c 3D view of
the magnetic field during the solar flare inferred from the observations from Shiota et al. (2005). d The loss-of-equilibrium model proposed by
Forbes and Priest (1995). The flux tube loses the equilibrium by changing the boundary conditions; as a result, an eruption occurs. e The
tether-cutting reconnection model proposed by Moore et al. (2001). The flux tube is created by the reconnection taking place between the two
sheared field lines formed before onset; eventually, the flux tube can erupt away from the solar surface. The images in (b–e) are copyright AAS and
reproduced by permission

motion converging toward the PIL creates a flux tube
composed of highly twisted field lines due to the flux can-
cellation. Aulanier et al. (2012) and Janvier et al. (2013)
constructed similar MHD models, and these generated a
3D view that extended the well-established 2D CSHKP
model. This view produced a 3D feature that was not seen
in the 2D model; their simulations produced strong-to-
weak sheared post-flare loops, which are consistent with
observations (Asai et al. 2003). On the other hand, Kusano
et al. (2012) successfully reproduced an eruption in a dif-
ferent way, as shown in Fig. 4b. They created a linear
force-free field that had shearing field lines as the initial
condition; a small dipole emerging flux was imposed at
a local area on the PIL. They found that only two types
of emerging flux can produce a flux tube; this shows that

the eruption is due to interactions with a pre-existing
sheared magnetic field. Later, this scenario was confirmed
in observations by Toriumi et al. (2013) and Bamba et al.
(2013).
Other MHD models have been derived from an initial-

ized flux tube. Solar filaments are often observed on the
sun; these are composed of a denser plasma than that
in the solar corona (Parenti 2014). It is widely agreed
that the highly helical twisted lines in the filament sus-
tain the dense plasma in the solar corona (Priest and
Forbes 2002). Recent observations clearly show the helical
structure of the magnetic field, i.e., the flux tube and the
dynamics (e.g., Cheng et al. (2013); Nindos et al. (2015);
Vemareddy and Zhang (2014)). In addition to this, the
flux tube/filaments have often been observed to erupt
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Fig. 4 3D MHD simulation of solar flares by pioneers in the field. aMHDmodeling of the solar flare by Amari et al. (2003a). The potential field was
reconstructed from the given simple dipole fields, which were imposed on the twisted and converged motion. Consequently, the potential field
was converted into a non-potential field, leading to the eruption. bMHDmodeling by Kusano et al. (2012) shows that the emergence of small flux
can destroy the initial equilibrium condition of the linear force-free field, leading to the formation of a large flux tube and an eruption. c Inoue and
Kusano (2006) investigated the flux tube dynamics associated with the solar flares and causing a CME. The flux tube was assumed to be infinitely
long and was driven by kink instability, leading to a CME for a certain supra-threshold height. d Fan (2005) employed a more realistic flux tube (Titov
and Démoulin 1999) with footpoints tied to the solar surface. The eruption was first driven by kink instability and later by torus instability (Fan 2010).
All images are copyright AAS and reproduced by permission
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away from the solar surface. Following these observa-
tions, extensive MHDmodeling, focusing on the flux tube
dynamics, has been performed. Inoue and Kusano (2006)
investigated the dynamics of a flux tube that was ini-
tially embedded in the solar corona, as shown in Fig. 4c.
This extended the studies of Forbes (1990) and Forbes
and Priest (1995) showing the dynamics in a 2D space.
This study found that the flux tube eruption was caused
by a kink instability in 3D space, rather than by a loss of
equilibrium in 2D space, as discussed by Forbes (1990).
Recently, a higher-resolution simulation was performed
by Nishida et al. (2013), who reported complex recon-
nections and plasmoid motions associated with flux tube
eruption. Chen and Shibata (2000) numerically confirmed
that a flux tube eruption is triggered by a small emerging
flux that is the result of the reconnection with magnetic
fields lines surrounding the flux tube, and it can reduce the
downward tension force acting on the flux tube. Török et
al. (2009) extended this into 3D space. As shown in Fig. 4d,
Török and Kliem (2005) and Fan (2005) constructed more
realistic MHD models by noting that the flux tube roots
are tied to the solar surface (Titov and Démoulin 1999),
rather than by assuming infinitely long flux tubes as in
Inoue and Kusano (2006) and Nishida et al. (2013). Török
and Kliem (2005) reported that the eruption depends on
the decay rate of the external magnetic field, and later,
this scenario was explained as torus instability (Kliem and
Török 2006). To address this instability, detailed stabil-
ity and equilibrium analyses of flux tubes in the solar
corona were performed by Isenberg and Forbes (2007) and
Démoulin and Aulanier (2010), and the dynamics were
numerically confirmed by Török and Kliem (2007), Fan
(2010), and Aulanier et al. (2010). Attempts are being
made to meet the challenge of simulating a solar eruption
through the emergence of highly twisted flux tube embed-
ded in the convection zone (e.g., An and Magara (2013);
Archontis et al. (2014); Leake et al. (2014)).
Several studies have shown the formation and dynamics

of a large-scale CME in the range of a few solar radii. Anti-
ochos et al. (1999) proposed a breakout model in which a
moving magnetic field surrounding the core fields triggers
the CME; those dynamics were later confirmed in a high-
resolution simulation (e.g., Lynch et al. (2008) and Karpen
et al. (2012)). Shiota et al. (2010) reported that an interac-
tion between the core field (modeled as a spheromak) and
the ambient field is important for determining whether an
ejection will occur.
However, most of the studies presented above assumed

hypothetical and ideal situations. Although these studies
clarified many elementary physical processes related to
the onset and dynamics of solar flares, they did not incor-
porate the data collected by solar satellites (in particular,
they did not incorporate magnetic field data). One of the
reasons for this is that only the photospheric magnetic

field can be measured, and this implies that the coronal
magnetic field cannot be observed directly. Nevertheless,
several models have been proposed in which the photo-
spheric magnetic field is treated as a boundary surface
(.e.g., Török et al. (2011); van Driel-Gesztelyi et al. (2014);
Zuccarello et al. (2012)). Challenging simulations con-
sidered a wide domain that extended from the Sun to
the Earth; their major objectives included the initiation
of a CME, its propagation in interplanetary space, and
ultimately its interaction with the magnetosphere, which
governs the dynamics of the ionosphere (Manchester et al.
2004; Tóth et al. 2005).
On the other hand, most of these models employed only

the normal components of the magnetic field, neglect-
ing the horizontal fields. Horizontal magnetic fields are
very important for explaining the solar flares because
these fields serve as a proxy for the extent to which the
field lines are twisted and sheared, i.e., for determining
the free magnetic energy at the solar surface. The MHD
modeling of solar eruptions, which accounts for the three
components of the photospheric magnetic field, has only
recently been demonstrated, thanks to a state-of-art solar
physics satellite. However, several problems remain open;
these include the uniqueness of the numerical solution
and the mathematical consistency of the MHD equations
on a specified boundary (these questions will be discussed
below).
In this paper, we present state-of-the-art MHD model-

ing, which accounts for the photospheric magnetic field,
and we will focus on applying this to solar eruptions.
In particular, we introduce the modeling of the coro-
nal magnetic field and solar eruptions, based on the
three components of the photospheric magnetic field.
This area of research has been recently revived, begin-
ning with a study by Jiang et al. (2013), and followed by
Inoue et al. (2014a), Amari et al. (2014), and Inoue et al.
(2015). The structure of this article is as follows. We first
introduce a method for 3D reconstruction of the coro-
nal magnetic field, based on the photospheric magnetic
field; this includes a potential field that is easily recon-
structed from one of the components of these fields and
a nonlinear force-free field that is based on all of the
components. Next, we describe recent MHD models that
use a magnetic field that is reconstructed from the mea-
sured photospheric field. Finally, we draw some important
conclusions.

Extrapolation of the coronal magnetic fields
Because we can obtain observations of the magnetic field
components only for the photosphere, it is necessary to
extrapolate to obtain information about the 3D coronal
magnetic fields in 3D. The solar corona is considered to
be in low-β plasma state, where β = P/2B2 is defined to
be the ratio of the plasma gas pressure (P) to the magnetic
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pressure (B2). From this, we have that the force-free
state

J × B = 0 (1)

is a good approximation for describing the state of the
coronal magnetic field, where B is the magnetic field
satisfying the solenoidal condition,

∇ · B = 0, (2)

and J is the current density,

J = ∇ × B. (3)

In this section, we introduce a method for extrapolating
the solar coronal magnetic field given only the photo-
spheric magnetic fields in the force-free approximation.

Potential field
The potential field is the simplest force-free field approxi-
mation:

∇ × B = 0, (4)

where the current density vanishes everywhere. In this
formulation, the magnetic field can be replaced with the
scalar function ψ , as follows:

B = −∇ψ . (5)

If we use the solenoidal condition of Eq. (2), then Eq. (5)
can be rewritten as

∇2ψ = 0. (6)

This corresponds to the Poisson equation, for which a
unique solution is guaranteed for a boundary valueprob-
lem. In this way, we can calculate the solar coronal mag-
netic field, given the normal component of the magnetic
field (Bn) and its Neumann condition,

Bn = ∂ψ

∂n
, (7)

on each boundary. Although the photospheric magnetic
field can be considered to be the bottom surface, con-
ditions are required on the other boundaries in order to
solve Eq. (6). Several such methods have been proposed,
some of which are described below.
One approach is to use Green’s functions (Sakurai 1982;

1989). In this approach, the potential field is created by
monopoles that are located at different points on the
bottom boundary (x′ , y′ , 0), at which the magnetic flux
Bzdx

′dy′ exists. The scalar potential ψ is

ψ = 1
2π

∫
Bn

(
x

′
, y

′)
G

(
x, y, z, x

′
, y

′)
dx

′
dy

′
, (8)

whereG = 1/
√|r′ − r|. The scalar function is determined

automatically by the normal component of the observed
magnetic field, whereas B = 0 is assumed as r approaches
∞. Thismethod can be applied to an isolated active region
that is not influenced by the magnetic fields of other

regions. On the other hand, if the magnetic field lines in
the active region extend into another active region, the
boundary conditions at the sides and top are no longer
appropriate.
The Fourier expansion can be used for deriving the solu-

tion of Eqs. (5) and (6). The solution was presented by
Priest (2014), as follows:

Bx = −
∑
k

kx
|k|Bkeikx+iky−kz,

By = −
∑
k

ky
|k|Bkeikx+iky−kz, (9)

Bz = B0 +
∑
k

Bkeikx+iky−kz,

where the bottom boundary values are expanded into
Fourier components kx and ky. This formulation implies
that all of the components decay exponentially, imply-
ing B = 0 at z = ∞. However, the side boundaries
automatically obey periodic boundary conditions, so this
method is useful only for describing areas far from the side
boundaries.
We can easily extend Eq. (6) in spherical coordinates

(r, θ , φ) and thus obtain a solution for the whole sun, as
shown in Fig. 2b. This overcomes the problem mentioned
above regarding the connectivity of the field lines. In
spherical coordinates, the solution to Eq. (6) can be writ-
ten using Legendre polynomials (Altschuler and Newkirk
1969), as follows:

ψ =
∑
n=1

∑
m=0

[(
1
r

)n+1 (
gmn cosφ + hmn sinφ

)
Pmn (cosθ)

]
,

(10)

where Pmn (cosθ) are Legendre polynomials, and gmn and
hmn are coefficients obtained from spherical harmonics
analysis. The boundary condition is based on the normal
component of the photospheric magnetic field, and the
Neumann condition of ψ is the same as that in Eq. (7).
Using the above calculations, the potential fields can be
expressed as follows:

Br =−
N∑

n=1

n∑
m=0

{
(n+1)

(
1
r

)n+2(
gmn cosφ+hmn sinφ

)
Pmn (cosθ)

}
,

Bθ =
N∑

n=1

n∑
m=0

{(
1
r

)n+2 (
gmn cosφ + hmn sinφ

) dPmn (cosθ)

dθ

}
,

(11)

Bφ =−
N∑

n=1

n∑
m=0

{
m

(
1
r

)n+2 (
gmn sinφ − hmn cosφ

) Pmn (cosθ)

sinθ

}
.

(12)

As an example, one result is shown in Fig. 2b, which can
be used to depict the field lines covering the sun.
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One advantage of the potential field extrapolation
method is that the solution is relatively easily obtained;
there are several techniques for doing this. On the other
hand, the potential field is a minimum energy state that
does not store the free magnetic energy released in the
solar flares. This implies that the observed field lines in the
area close to the PIL cannot be captured by the potential
field. To convert the potential field into the dynamic phase
of the solar flares, it is necessary to obtain the Poynting
flux through the photosphere in order to obtain the free
energy (Feynman and Martin 1995; van Ballegooijen and
PMartens 1989).

Linear force-free field
The force-free Eq. (1) can be rewritten as

∇ × B = αB, (13)

where α is a coefficient. After taking the divergence of this
equation, the left-hand side vanishes, and thus, we have

(B · ∇)α = 0, (14)

which implies that the coefficient α is constant along all
field lines. If the coefficient α is constant everywhere
(not only along the field lines), Eq. (13) becomes a linear
Equation that can be reduced to the Helmholtz equation,

∇2B + αB = 0, (15)

by taking the curl of Eq. (13). We call this solution the lin-
ear force-free field (LFFF), and it is also specified with an
appropriate boundary condition.
For example, (Chiu and Hilton 1977) found the analyti-

cal general solution by using Green’s functions:

Bi = 1
2π

∫ ∞

−∞
dx′dy′ [Gi(x, x′)Bz(x′, y′, 0) + G̃i(x, x′)C(x′, y′)

]
,

(16)

where C(x′, y′) is any finite integrable function (see Chiu
and Hilton (1977)). G̃i(x, x′) is defined as

Gx = x − x′

R
∂	

∂z
+ α	

y − y′

R
,

Gy = y − y′

R
∂	

∂z
− α	

x − x′

R
,

Gz = − 	

∂R
− 	

R
,

where R = (x − x′)2 + (y − y′)2, 	 is

	 = z
Rr

sin(αr) − 1
R
sin(αz),

and r = (x − x′)2 + (y − y′)2 + z2. Using these equations,
if we are given Bz and the force-free α at the photosphere,
then the LFFF is automatically determined.

Unlike the potential field, the LFFF can yield the free
magnetic energy. In general, however, the observed force-
free α measured in the photosphere varies in space. In
particular, in solar active regions, the coefficient α attains
high values close to the PIL and small values far from the
PIL. This implies that the LFFF is inappropriate for mod-
eling solar active regions. Therefore, we need to obtain the
NLFFF extrapolation by using the observed force-free α,
i.e., we need to obtain not only the normal component of
the magnetic field but also the horizontal components at
the photosphere in order to reproduce the magnetic field
of a solar active region.

Nonlinear force-free field
To demonstrate suitable magnetic fields in the solar
active region, we consider solving the force-free Eq. (1)
directly. However, because this equation contains non-
linearities that cannot be solved analytically, numeri-
cal techniques are necessary (i.e., Schrijver et al. (2006)
or Metcalf et al. (2008)). Since important information
can be obtained from observed photospheric magnetic
fields, this becomes a boundary value problem. Below, we
briefly describe several numerical methods that have been
developed.
Vertical integration method. The algorithm of the ver-

tical integration method is quite simple. The magnetic
fields are integrated upward in the z direction, as origi-
nally proposed by Nakagawa (1974) and further extended
by Wu et al. (1990). Under the force-free assumption, the
current densities of the horizontal components along the
solar surface can be calculated as follows:

Jx0 = α0Bx0,
Jy0 = α0By0, (17)

where Bx0 and By0 are the horizontal components of the
photospheric magnetic field, Jx0 and Jy0 are the horizontal
components of the current density, and α0 is the force-
free alpha obtained from Jz0/Bz0. Using Ampere’s law,
Eq. (3), and the solenoidal condition, Eq. (2), the follow-
ing equations are obtained for the z-derivatives of the
magnetic field:

∂Bx
∂z

= Jy0 + ∂Bz0
∂x

,

∂By
∂z

= ∂Bz0
∂y

− Jx0, (18)

∂Bz
∂z

= −∂Bx0
∂x

− ∂By0
∂y

.

The integration, in which the information about the pho-
tospheric magnetic field is extended upward, is repeated,
and the coronal magnetic field can be calculated in 3D.
However the above algorithm is mathematically ill-posed,
i.e., the calculation is not robust, as has been reported in
several papers (e.g., Wiegelmann and Sakurai (2012)). For
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instance, once the nonphysical phenomena due to numer-
ical errors appear during the integration, the magnetic
field increases exponentially. One reason for this is that no
restrictions are imposed on the top and side boundaries.
The Green’s function method. A similar mathematical

approach that uses the Green’s function was developed
by Yan (1995) and Yan and Sakurai (2000) but the mag-
netic field is assumed as follows: B = O

(
1
r2

)
, i.e., B = 0

as r => ∞. They found the NLFFF solution based on
Green’s second identity, as follows:

ciBi =
∫
S

(
Y
dB
dn

− dY
dn

B0

)
dS, (19)

where ci = 1 and ci = 1/2 correspond to points in the vol-
ume and at the boundary, respectively, B0 is the measured
photosphericmagnetic field, and Y is a reference function,

Y (r) = cos(λir)
4π |r − r′| , (20)

where r′ is a fixed point and λ(r′) is a parameter
that depends on r′. The reference function satisfies the
Helmholtz equation,

∇2Y + λ2Y = δi, (21)

where δi is the Dirac delta function. The parameter λi can
be obtained by solving∫

V
Yi(λ2i Bi − α2Bi − (∇α × Bi))dV = 0. (22)

Although it has been pointed out that this technique is
slow (Wiegelmann and Sakurai 2012), recently, the calcu-
lation speed has been dramatically accelerated by using a
GPU (Wang et al. 2013).
Grad-Rubin method. Sakurai (1981) was the first to

use the Grad-Rubin method for calculating the magnetic
field in solar active regions, and this method was later
extended, e.g., Amari et al. (2006). This technique fol-
lows directly from the force-free field property. First, the
potential field is calculated based only on the normal com-
ponents of the magnetic field. The force-free α can be
measured at the bottom surface as α = Jz/Bz, and it can
be distributed in 3D according to the following equation:

Bk · ∇αk = 0, (23)

where k is the iteration number and B0 corresponds to the
potential field. The magnetic field is updated according to

∇ × Bk+1 = αkBk , (24)

and

∇ · Bk+1 = 0. (25)

Since the vector potential Ak satisfying ∇ × Ak = Bk can
be written as

Ak+1 =
∫ Jk√

(x − x′)2 + (y − y′)2 + (z − z′)2
dx′dy′dz′,

(26)

the updated B automatically satisfies the solenoidal con-
dition, and it is then substituted back into Eq. (23). This
process is repeated until the magnetic field reaches a
steady state. Although the force-free α can be determined
at positive or negative polarity and will satisfy Eq. (23),
the single-polarity information is neglected. Nevertheless,
Régnier et al. (2002) and Canou and Amari (2010) were
able to reconstruct magnetic fields that agree with the
observations.
Recently, the Grad-Rubin method has been improved

by Amari et al. (2010); Wheatland and Régnier (2009),
and (Wheatland and Leka 2011), who have obtained the
unique solution by using two different solutions derived
from different polarities, i.e., by changing the distribution
of the force-free α at the bottom surface.
MHD relaxation method. In the MHD relaxation meth-

ods, the MHD equations are solved directly (in particular,
this is the zero-beta MHD approximation (Mikić et al.
1988)); they solved

∂v
∂t

= −(v · ∇)v + J × B + ν∇2v, (27)

∂B
∂t

= ∇ × (v × B − ηJ), (28)

and

J = ∇ × B (29)

to find the force-free solution while keeping the photo-
spheric magnetic field as the boundary condition. Here, v
is the plasma velocity, and ν and η are the viscosity and
resistivity, respectively. The zero-beta MHD is an extreme
approximation of the low-beta solution. However, since a
force-free state can be assumed in the zero-beta approx-
imation, this method is valid. Several studies (Mikić and
McClymont 1994; McClymont and Mikic 1994; Jiang and
Feng 2012; Inoue et al. 2014b) have employed the poten-
tial field as the initial condition; consequently, the mag-
netic twist on the bottom surface is obtained by replacing
the tangential components of the photospheric magnetic
field above which the magnetic fields relaxes toward the
force-free state through the MHD relaxation process.
This process is called the stress-and-relaxation method
(Roumeliotis 1996). In a simpler treatment, known as the
magnetofrictional method, the equation of motion (27) is
replaced with

v = μ J × B, (30)
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where μ is a coefficient. This technique can also be used
to find the force-free solution (Valori et al. 2005), and it
has been applied to the photospheric magnetic field.
Note that if the three components of the photospheric

magnetic field are fully satisfied at the solar surface and
if the plasma velocity is zero there, these conditions
are not consistent with the induction equation, which
requires information about the differential value in the
normal direction. Consequently, an error appears in ∇ ·B.
Therefore, the errors arising during the relaxation pro-
cess should be eliminated, and several methods have been
developed for eliminating them (Tóth 2000; Miyoshi and
Kusano 2011). Often, the projection method is used, and
this removes the errors derived from the potential compo-
nent. We decompose the numerically obtained magnetic
field BN into Bp (the potential component) and Bnp (the
non-potential component), as follows:

BN = Bp + Bnp. (31)

In general, a vector field B can be described as

B = ∇ψp + ∇ × Anp, (32)

where ψp and Anp are the scalar and vector potentials,
respectively. Taking into account Eq. (5), ∇ψp and ∇ ×
Anp correspond, respectively, to the potential and non-
potential components of the magnetic field. Taking the
divergence of Eq. (32), the equality∇·∇×Anp = ∇·Bnp=0
is automatically satisfied. However, it is not guaranteed
that ∇ · ∇ψp = ∇ · Bp= 0. If Bp contains a numerical
error, we further decompose it into Bp′ , which satisfies the
solenoidal condition, and Berror, the error, as follows:

Bp = Bp′ + Berror, (33)

where, in general, Berror does not meet the solenoidal con-
dition. However, taking the divergence of Eq. (33), the
equation can be reduced to the Poisson equation,

∇ · Berror = ∇ · BN = ∇2ψp. (34)

Consequently, this equation can be solved, and the mag-
netic field satisfying the solenoidal condition B′ can be
updated as follows:

B′ = BN − ∇ψp. (35)

This technique has been widely used for eliminating
errors (Tanaka 1995; Tóth 2000); however, solving the
Poisson equation is computationally demanding. There-
fore, numerical techniques for improving the calcula-
tion speed, e.g., a multigrid technique, are required
(Inoue et al. 2014b).
Another technique was proposed by Dedner et al.

(2002), who introduced a modified induction equation,
∂B
∂t

= ∇ × (v × B − ηJ) − ∇φ, (36)

and a convenient equation for eliminating the errors
derived from ∇ · B,

∂φ

∂t
+ c2h∇ · B = − c2h

c2p
φ, (37)

together with the equation of motion (27) and Ampere’s
law (29). Using Eq. (36), Eq. (37) can be changed to

∂2(∇ · B)

∂t2
+ c2h

c2p
∂(∇ · B)

∂t
= c2h∇2(∇ · B), (38)

where ch and cp correspond to the advection and dif-
fusion coefficients; this plays a role in propagating and
diffusing the numerical errors of ∇ · B. The main advan-
tage of this method is that it can be implemented very
easily without significantly changing the numerical code.
Another advantage is that this method is less computa-
tionally demanding than the projection method. These
advantages were demonstrated by Inoue et al. (2014b).
The vector potential is specified to maintain the

solenoidal condition. Using the vector potential, the
induction equation can be written as

∂A
∂t

= −E − ∇�, (39)

whereE = ηJ−v×B and� is the gage. Several papers have
used the NLFFF extrapolation (e.g., van Ballegooijen et al.
(2000) and Cheung and DeRosa (2012)). In this case, the
solution is sought under the proper boundary conditions
and gage. Simply, Bz and Jz are fixed at the boundary (i.e.,
Ax and Ay are fixed), then Az is obtained from ∇2A = J
under the Coulomb gage ∇ · A = 0. A solution obtained
by this method will completely satisfy the solenoidal con-
dition. On the other hand, there is no guarantee that the
horizontal components at the bottom surface, which are
obtained by iteration, will match observed values.
The constrained transport (CT) method (Brackbill and

Barnes 1980; Evans and Hawley 1988) uses a numerical
differential approach to maintaining the solenoidal con-
dition. When the magnetic field B and electric field E
are defined at the face center and edge centers of each
numerical cell, i.e.,

d
dt

Bxi+1/2,j = −Ezi+1/2,j+1/2 − Ezi+1/2,j−1/2

�y
,

d
dt

Byi,j+1/2 = Ezi+1/2,j+1/2 − Ezi−1/2,j+1/2

�x
, (40)

where symmetry is assumed in the z direction, then the
solenoidal condition is automatically satisfied:

d
dt

(Bxi+1/2,j − Bxi−1/2,j

�x
+ Byi,j+1/2 − Byi,j−1/2

�y

)
= 0.

(41)

However, the solenoidal condition requires consistent
interaction with the boundary condition, and thus, it
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might be difficult to use it with the NLFFF calculations,
which require the three components of the photospheric
magnetic field.
Optimization method. Wheatland et al. (2000) pro-

posed an optimization method that was later improved by
Wiegelmann (2004). This method iteratively minimizes a
function L related to J × B and ∇ · B. First, we define a
function L as

L =
∫ (

1
B2 |(∇ × B) × B|2 + |∇ · B|2

)
dV ; (42)

it is the sum of the Lorentz force and the solenoidal con-
dition, and its value is prescribed to be zero in order
to satisfy the force-free condition. The time derivative is
expressed as

1
2
dL
dt

= −
∫

∂B
∂t

· FdV −
∫

∂B
∂t

· GdS, (43)

where F and G are high-order differential equations in
terms of B. If the function F satisfies

∂B
∂t

= μF , (44)

and if the magnetic fields on the surface vanish at infin-
ity, then the L monotonically decreases. The problem is
then reduced to iteratively finding the steady state the
time-dependent magnetic field B that satisfies Eq. (44).
NLFFF extrapolation using the observed images.

van Ballegooijen (2004) modeled a filament by inserting
a twisted magnetic flux tube, whose axis was along the
observed filament, into a potential field, with the mag-
netofriction (van Ballegooijen et al. 2000) driving the
system toward the force-free state. In this case, although
the horizontal fields were not used, the filament and the
sigmoid structure were satisfactorily reproduced (Bobra
et al. 2008; Su et al. 2009; Savcheva et al. 2012). Rather
than using the methods accounting for the photospheric
horizontal fields, modeling the filaments in the quiet
region would be very useful because the values are very
weak and the directions are random, so this might depend
on the observations. In an attempt to obtain consistent
magnetic fields, several studies have considered the
topology of the coronal loops obtained from images, in
addition to accounting for the photospheric magnetic
field (Aschwanden et al. 2014; Malanushenko et al. 2014).
Unfortunately, the NLFFF does not allow the full calcu-

lation of the coronal magnetic fields. First of all, because,
in general, the photospheric magnetic field cannot sat-
isfy the force-free state, there is a contradiction between
the bottom and inner regions; consequently, the 3D-
reconstructed field also deviates from the force-free state.
Furthermore, although several methods have been devel-
oped for exploring theNLFFF, there are no guarantees that
there is a unique solution that fits the photospheric mag-
netic field applied to a given boundary condition. In the

NLFFF approach, there are several open problems related
to the free magnetic energy or the topologies of the mag-
netic fields (Schrijver et al. 2008; De Rosa et al. 2009).
Thus, there is a need for confirmation of the reliability of
this approach.

NLFFF extrapolation applied to a reference field (Low and
Lou 1990)
The above methods for the NLFFF reconstruction have
been applied to the photospheric magnetic field observed
in the solar active region. Most of these methods required
knowledge of the reference magnetic field in order
to determine to what extent the reconstructed field
approaches the force-free state. One of the widely known
solutions is a semi-analytical force-free field that was pre-
sented by (Low and Lou 1990). These authors found a
force-free solution in spherical coordinates, where sym-
metry was assumed in the φ direction:

B = 1
rsinθ

(
1
r

∂A
∂θ

r,−∂A
∂r

θ ,Qφ

)
, (45)

where A and Q are functions of r and θ . The force-free
Eq. (1) can be rewritten as

∂2A
∂r2

+ 1 − μ2

r2
∂2A
∂μ2 + Q

dQ
dA

= 0, (46)

where μ = cos(θ) and α = dQ/dA. It can be further
rewritten as

(
1 − μ2) ∂2P

∂μ2 +n(n+ 1)P+ a2
1 + n
n

P1+2/n = 0, (47)

using a separable solution

A(r, θ) = P(μ)

rn
, (48)

and as

Q(A) = aA1+2/n. (49)

These formulas are obtained under the assumption of a
vanishing magnetic field as r →0, i.e., for positive n.
Although we can write down the 1D differential equation
with respect to P(μ), shown as Eq. (47), it cannot be solved
analytically due to its nonlinearity. The solution of this
equation, therefore, is obtained numerically. The bound-
ary condition is that P = 0 at μ = −1 and 1, which was
originally set by Low and Lou (1990), and the solution is
called the Low and Lou solution. The boundary conditions
are that Bθ and Bφ vanish along the axis, and the differen-
tial equation can be solved as a boundary value problem.
One of the solutions is shown in Fig. 5a; here, the solu-
tion was transformed to Cartesian coordinates, and n = 1
and a2 = 0.425 are assumed (see Low and Lou (1990) for
details). The accuracy of the NLFFF was checked using
this solution as the reference magnetic field.
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Fig. 5 Semi-analytical Low and Lou solution and the NLFFF solution. a The magnetic field lines of the Low and Lou solution with the Bz distribution
are shown in blue and red. b The potential field extrapolated from only the normal component of the magnetic field, using the Low and Lou
solution on all boundaries. c The NLFFF solution based on the MHD relaxation method (Inoue et al. 2014b), extrapolated from all three components
of the magnetic field of the Low and Lou solution on all boundaries. d Distribution of the force-free α from Inoue et al. 2014b, where the horizontal
and vertical axes correspond to the force-free α measured at the field lines footpoints. The green line has a slope of unity (i.e., y = x). The image in (d)
is copyright AAS and is reproduced by permission

Schrijver et al. (2006) estimated the accuracy of the
NLFFF as reconstructed by various different methods;
this included a semi-analytical force-free solution intro-
duced by Low and Lou (1990). Their results suggest that
the reconstruction accuracy is strongly method depen-
dent, i.e., several methods satisfactorily captured the Low
and Lou solution, although other methods failed. On the
other hand, during the past decade, many efforts have
been made to improve the numerical code for the NLFFF
reconstruction (Amari et al. 2006; Valori et al. 2007; He
andWang 2008;Wheatland and Leka 2011; Jiang and Feng
2012; Inoue et al. 2014b).
Below, we review the results based on a recent extrap-

olation method that was proposed by Inoue et al. (2014b)
and is based on the MHD relaxation method. The poten-
tial field was reconstructed, based only on the normal
component of the boundary magnetic field. This result is
shown in Fig. 5b and differs significantly from the Low and
Lou solution. Next, the reconstructed horizontal fields at

the bottom surface were replaced by those of the Low and
Lou solution, following which the magnetic fields in the
domain were iteratively relaxed according to the equation
of motion (27), the induction Eq. (36), Amperes law (29),
and Eq. (37), which was used to correct the errors in ∇ ·B.
During the iterations, at all boundaries, the vectorBwas

fixed to be equal that in the Low and Lou solution, the
velocity was set to zero, and the Neumann condition was
imposed on φ, i.e., ∂φ/∂n = 0, where n is the direction
perpendicular to the boundaries. In order to avoid a large
discontinuity between the bottom and the inner domain,
the velocity field was adjusted as follows. We defined v∗ =
|v|/|vA|, and if v∗ became larger than vmax, the velocity was
modified as follows:

v ⇒ vmax
v∗ v, (50)

where, vmax = 1.0. The resistivity was given as follows:
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η = η0 + η1
|J × B||v|

|B| , (51)

where η0 = 3.75 × 10−5 and η1 = 1.0 × 10−3 (both
are non-dimensional). The second term was introduced
to accelerate the relaxation to the force free field, partic-
ularly in a weak-field region. In this study, c2h and c2p were
set to 5.0 and 0.1, respectively; these values were selected
by trial and error and depend on the boundary conditions,
but it is best if the value of ch is first set to account for the
CFL condition. The viscosity was assumed as ν=1.0× 103;
the viscosity also plays an important role in smoothly con-
necting the boundaries and nearby inner region, which
indirectly helps our MHD calculation. A more detailed
explanation of this was presented by Inoue et al. (2014b).
Eventually, the final state obtained by using this method

almost completely reproduced the Low and Lou solution,
as shown in Fig. 5c. Quantitative results were also pre-
sented. The force-free α was measured at both footpoints
of all field lines, and this is shown in Fig. 5d. The force-
free α must be constant along the field lines, following
Eq. (14), and from Fig. 5d, it can be concluded that this
relation is satisfied. In addition, the authors quantitatively
evaluated the accuracy by following Schrijver et al. (2006),
evaluating

Cvec =
∑

i Bi · bi∑
i |Bi|2 ∑

i |bi|2
,

Ccs = 1
N

∑
i

Bi · bi
|Bi||bi| ,

1 − EM = 1
N

∑
i

|bi − Bi|
|Bi| , (52)

1 − EN =
∑

i |bi − Bi|∑
i |Bi| ,

ε =
∑

i |bi|2∑
i |Bi|2 ,

where B and b are Low and Lou solution (reference solu-
tion) and the extrapolated solution, respectively, Cvec is
the vector correlation, Ccs is the Cauchy-Schwarz inequal-
ity, EM is the mean vector error, EN is the normalized
vector error, ε is the energy ratio, and N is the num-
ber of vectors in the field. Inoue et al. (2014b) obtained
Cvec = 1.0, Ccs = 1.0, 1 − EN = 0.97, 1 − EM = 0.95,
ε = 1.02, and these values were estimated over the entire
region, which was divided into 64 × 64 × 64 grids (see
Inoue et al. 2014b for details). They confirmed that the
NLFFF can be reconstructed with high accuracy. Most of
the recently developed methods allow for the recording
of these values. Thus, it is possible to achieve force-free
field extrapolation if the boundary condition completely
satisfies the force-free condition.

NLFFF extrapolation applied to the solar active region
3Dmagnetic fields in the solar active region
In contrast to the NLFFF extrapolation using the Low
and Lou solution, some problems arise when the bottom
boundary is applied to the photospheric magnetic field.
Schrijver et al. (2008) performed the NLFFF extrapola-
tions by using the photospheric magnetic field observed
by the Hinode satellite, corresponding to the period of 6 h
before the X3.4-class flare that occurred in the solar active
region 10930 on 13 December 2006. Different methods
were applied for the NLFFF extrapolation. The authors
pointed out a method-dependent accumulation of the
free magnetic energy in the NLFFF. According to their
calculations, a single NLFFF could yield sufficient free
magnetic energy to produce an X-class flare. De Rosa et
al. (2009) also performed the NLFFF extrapolation using
different methods and for a different another active region
(AR10953). They reported method-dependent configu-
rations of the magnetic fields. From these results, it
appeared that the NLFFF required further development.
Although the NLFFF remains problematic and does not

enable the complete reproduction of the coronal mag-
netic field on the basis of photospheric data, several recent
studies had roughly captured the field lines observed in
EUV images, as well as processes involving stored-and-
released magnetic energy, helicity, and flares (e.g., Canou
and Amari (2010); Inoue et al. (2013); Vemareddy et al.
(2013); Jiang and Feng (2013); Malanushenko et al. (2014);
Aschwanden et al. (2014); Amari et al. (2014).
In what follows, we describe NLFFF results based on

the MHD relaxation method developed by Inoue et al.
(2014b); note that the above equations are identical to
those used by Low and Lou. The potential field is first
reconstructed as the initial condition, and the boundary
conditions are almost identical to those in the previous
calculation, except that the potential fields are now fixed
at the side and top boundaries. The following procedure
is used to determine the bottom boundary. During the
iterative process, the transverse components(BBC) at the
bottom boundary are evaluated according to

BBC = ζBobs + (1 − ζ )Bpot, (53)

where Bobs and Bpot are the transverse components of the
observational and the potential field, respectively, and ζ

is a coefficient ranging from 0 to 1. R is introduced as an
indication parameter for the force-free state, defined as
R = ∫ |J × B|2dV ; when it drops below a critical value,
denoted by Rmin, then ζ increases as ζ = ζ + dζ , where
dζ is given as a parameter. As ζ approaches unity, BBC
becomes consistent with the observational data. The vec-
tor fields include spurious forces that produce a sharp
jump from the photosphere to the interior domain, and
the above process can help to reduce their effects. In this
study, Rmin = 5.0 × 10−3, dζ = 0.02, and vmax = 0.01. In
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the MHD equations, c2h and c2p are given as constant val-
ues, 0.04 and 0.1, respectively, and ν = 1.0 × 10−3. The
resistivity is included in Eq. (51), with η0 = 5.0 × 10−5

and η1 = 1.0 × 10−3. For further details, see Inoue et al.
(2014b).
Figure 6a shows the photospheric magnetic field 90 min

before the M6.6-class flare that occurred on 13 Febru-
ary 2011. These data were obtained by a helioseismic and
magnetic imager (HMI; Scherrer et al. (2012)) onboard
the solar dynamics observatory (SDO) satellite (Pesnell et
al. 2012). The upper and lower panels in Fig. 6b show

enlarged views of the central area in Fig. 6a; the arrows
derived from the horizontal magnetic fields in the poten-
tial field are shown in the upper panel, and those derived
from the observed one are shown in the lower panel.
Figure 6c, d shows the magnetic field lines in the potential
field and in the NLFFF approximation, respectively, super-
imposed on Fig. 6a. In particular, the central part of the
NLFFF, in which strong sheared field lines build up and
the current density is enhanced significantly, differs from
that of the potential field. Figure 6e shows the 171 Å EUV
images for the time period in Fig. 6a; these were acquired

Fig. 6 NLFFF for AR11158 at 16:00 UT on 13 February 2011 before a M6.6-class flare. a Photospheric magnetic field obtained by SDO/HMI, 90 min
before the M6.6-class flare, with the Bz distribution plotted in red and blue. b The two panels show enlarged views of the central area in a; they show
the Bz distribution and the horizontal fields with arrows, with the PIL in black. The upper and lower panels show the horizontal fields of the potential
field and the observed fields, respectively. c The potential field (in green) is superimposed on the data in a. d The NLFFF based on the MHD
relaxation method (Inoue et al. 2014b) is plotted as in c, except that the strength of the current density is mapped onto the field line. e EUV images
observed at 171 Å from the SDO/AIA at 16:00 UT on 13 February 2011. f The field lines, in the same format as in d, are superimposed on (e)
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by an atmospheric imaging assembly (AIA; Lemen et al.
(2012)) on board SDO. The same field lines as in Fig. 6d
were superimposed on Fig. 6e. Because it can be clearly
seen that most of the field lines roughly correspond to
these obtained from the EUV image, theNLFFF appears to
satisfactory reproduce the field lines in the observed EUV
image.

Stability analysis of the NLFFF
Magnetic field stability is an important issue in the stud-
ies of solar eruptions. Unfortunately, the photospheric
magnetic field and the EUV or X-ray images do not allow
for a quantitative stability analysis. On the other hand, the
NLFFF might allow a quantitative analysis if we are given
the 3D space information. One of the possible instabilities
that can drive an eruption under the zero-beta assumption
is a current driven, and one type current-driven instabil-
ity is kink instability (Ji et al. 2003), which is determined
by the magnetic twist of the poloidal field generated by
the current in the flux tube (Kruskal and Kulsrud 1958).
Themagnetic twist (Tn) is related to the magnetic helicity;
that is, the flux tube helicity is described by the following
equation (Berger and Field 1984):

H = (Tn + Wr)�
2, (54)

where H is the magnetic helicity, � is the magnetic flux
of the flux tube, and Wr is the magnetic writhe corre-
sponding to the helical structure of the field line axis. The
magnetic twist Tn indicates how much of the magnetic
helicity is generated by the currents parallel to the flux
tube (Berger and Prior 2006; Török et al. 2010); thus, Tn
can be written as

Tn =
∫ dTn

ds
dl =

∫ J||
4π |B|dl, (55)

where || indicates the component parallel to the field line,
and the line integral

∫
dl is taken along the magnetic field

line of the flux tube. Using J|| = J · B/|B|, Eq. (55) can be
further rewritten as

Tn = 1
4π

∫ J · B
|B|2 dl. (56)

If the magnetic fields meet the force-free condition, the
magnetic twist can be written as

Tn = 1
4π

∫
αdl = 1

4π
αL, (57)

where α is the force-free alpha, and L is the length of the
field line (Inoue et al. 2011; Inoue et al. 2012a). Inoue et
al. (2012b) and Inoue et al. (2013) performed a stability
analyses on the NLFFFs of AR10930 and AR11158, both
of which produced X-class flares. Below, we describe the
results of one of these twist analyses (for AR11158). AR
11158 produced an X2.2-class flare at 01:50 UT on 15
February 2011; it exhibited a quadruple field, as shown in

Fig. 7a. The NLFFF based on the MHD relaxation method
is shown in Fig. 7b; strong twisted lines were formed in
the central region. The twist Tn was calculated for all field
lines according to Eq. (56), and the result is shown in
Fig. 7c. According to this result, most of the field lines
were less than one turn, and none reached the critical
twist of Tn = 1.75, which is required for kink instabil-
ity (Török et al. 2004). Therefore, it was concluded that
the twisted lines prior to the X2.2-class flare produced by
AR11158 would be stable with respect to kink instability.
In another study, Jiang et al. (2014a) successfully repro-
duced a large twisted filament and checked its stability.
It was reported that the twist did not reach the critical
value required for kink instability. However, note that Tn
in Eq. (56) is the local twist of an infinitesimal flux tube;
this is not the same as the global twist of a macroscopic
flux rope. In addition, there is no guarantee that the the-
oretical criteria are directly applicable to the NLFFF. In
order to more strictly confirm the stability, a numerical
stability analysis (Kusano and Nishikawa 1996; Inoue and
Kusano 2006) and an MHD simulation would be useful.
Torus instability (Kliem and Török (2006); tested against

observations by Liu (2008)) is also important for driving
the flux tube into the upper corona, e.g., for triggering
a CME (Isenberg and Forbes 2007; Aulanier et al. 2010;
Démoulin and Aulanier 2010; Kliem et al. 2014). This
instability is induced by a broken force balanced against
the hoop force (Chen 1989), due to the flux tube cur-
rent and the magnetic field suppressing the flux tube. The
decay index,

n(z) = − z
|B|

∂|B|
∂z

, (58)

is a convenient parameter (Kliem and Török 2006)
because the location where this instability takes place is
specified by n = 1.5, which was already confirmed by sev-
eral numerical studies (Török and Kliem 2007; Aulanier et
al. 2010; Fan 2010). This stability analysis can be applied
to the NLFFF analysis. For example, Guo et al. (2010)
reconstructed the NLFFF using the optimization method
(Wiegelmann 2004). In contrast to Inoue et al. (2011),
they found strongly twisted lines over the critical twist of
the kink instability and its writhe motion during the flare
while a confined eruption was observed. They pointed
out that even though the twisted lines in the NLFFF were
not stable with respect to the kink instability, they were
stable with respect to the torus instability, i.e., the flux
tube remains within the magnetic field satisfying n ≤1.5
during the eruption. Regarding the AR11158 studied by
(Inoue et al. 2014a), the decay index at the twisted lines
formed in the NLFFF cannot reach the critical value of
the torus instability, as shown in Fig. 7d. Thus, the authors
pointed out that the NLFFF was stable with respect to
both torus instability and kink instability. On the other
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Fig. 7 NLFFF for AR11158 at 00:00 UT on 15 February 2011 before a X2.2-class flare. a The Bz distribution of the photospheric magnetic field,
approximately 2 h before the occurrence of the X2.2-class flare observed by SDO/HMI. bMagnetic field lines from the NLFFF are superimposed on a;
the format of the field lines is the same as in Fig. 6d. The small inset corresponds to an enlarged view of the central area. c The magnetic twist
distribution from Inoue et al. (2014a), where the vertical and horizontal axes are the twist and Bz , respectively. The dashed line corresponds to Tn =
1.0. The image is copyright AAS and reproduced by permission. d The magnetic field lines are plotted together with the surface corresponding to
the critical height of the torus instability

hand, for a different event, Jiang et al. (2014b) estimated
the temporal evolution of the flux tube height obtained
from the NLFFF in solar active region 11283, focusing
on the X2.1-class flare that occurred at 22:20 UT on 6
September 2011. They found that the decay index at the
flux rope axis reached the critical value for torus instabil-
ity at the time at which the flare was generated, resulting
in an instability-driven eruption.
As seen from these studies, the NLFFF enables us to

quantitatively perform a stability analysis, which would be
difficult to do based only on observations. Recently, highly
accurate measurements of photospheric magnetic fields
became available from two space satellites and ground
observations; these have made the NLFFF a very useful
tool for understanding the coronal magnetic field as well
as for speculating on the onset and dynamics of solar
flares.

MHD simulations of the solar eruptions based on the
observational data
Necessity of MHD simulations combinedwith the NLFFF
Numerical modeling of the coronal magnetic field (poten-
tial field, LFFF, and NLFFF) successfully clarified many
unknown issues with 3Dmagnetic fields that had not been
revealed by observation. On the other hand, these mod-
els consider only the force-free equilibrium state, and they
are thus not able to model dynamic states (in particular,
energy-released processes) that occur during flare events,
even though the buildup of energy occurs at a rate much
slower than the Alfven time scale and thus can be handled
by the NLFFF. MHD simulations can be used to reproduce
such dynamic states.
The potential field does not strongly contribute to the

magnetic field in the solar active region because there
is no free energy available to induce dynamic behavior.
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For instance, Zuccarello et al. (2012) performed MHD
simulations of solar eruptions, using the potential field
as the initial condition. To obtain the solar eruption,
the Poynting flux through the boundary was determined,
and the authors provided the hypothetical shear and the
convergence of the plasma on the solar surface. Con-
sequently, the non-potential field was built up, and the
sheared and converging motions helped to form the flux
tube, resulting in an eruption (Figure 6 and Figure 8 in
their paper). The hypothetical motions are important fac-
tors for building up the non-potential field, but these
are much different from the observed ones. This means
that there is a different process for the building up of
energy, i.e., the magnetic field just prior to the onset of
a flare deviates from the observed one. In contrast to
this process, several studies inserted an analytical flux
rope with a strong current and non-potentiality in a
local area close to the PIL into the reconstructed poten-
tial field. Unfortunately, these flux tubes did not agree
exactly with the observations, i.e., the boundary condi-
tion of the flux tube deviated greatly from the observa-
tions.
It might be possible to overcome the above prob-

lem by using MHD simulations with the NLFFF because
the NLFFFs are constructed on the photospheric mag-
netic field, including the observed horizontal mag-
netic field on the solar surface. The motivations for
using these simulations rather than the previous one
are as follows: (i) It is likely that the artificial energy
buildup process is not required by the existence of
twisted motions because it already accounts for the
observed twisting in the NLFFF. Although an addi-
tional process is required (discussed below) to cre-
ate a new state that deviates from the NLFFF and
produces eruptions, compared to the previous simu-
lations, that process does not greatly deform the ini-
tial state. Therefore, MHD simulations can be per-
formed under the photospheric magnetic field con-
straint. (ii) These simulations allow for the study of
complex nonlinear dynamics, which could not be done
previously. (iii) The results obtained from these sim-
ulations can be compared more exactly with obser-
vations, even indirect ones. Thus, these results con-
tribute to confirming the reliability or to improving the
MHD model. This field of study is emerging (Jiang et
al. 2013), and only a few papers have yet been pub-
lished. Below, we briefly discuss several of the pioneering
studies.

MHDmodels of the solar eruptions, combinedwith the NLFFF
Overview of the recent studies. Jiang et al. (2013) were the
first to perform the MHD simulation using the NLFFF
to reproduce the X2.1-class flare in solar active region
11283. Their NLFFF, which was reconstructed by using

the MHD relaxation method constructed in the modern
MHD scheme (Feng et al. 2010), successfully captured the
sigmoid structure of the magnetic field observed before
the flare and demonstrated that the eruption was driven
by the torus instability (Fig. 8a). An important advan-
tage of this study seems to be that the same algorithm
was used in both the NLFFF and MHD simulations.
Kliem et al. (2013) also studied this eruption by setting
the NLFFF as the initial condition of their MHD sim-
ulation (Fig. 8b). The NLFFF was reconstructed using
the magnetic field observed on 8 April 2010, using the
flux rope insertion and the magnetofrictional method.
The NLFFF of this active region was thoroughly stud-
ied by Su et al. (2011). Kliem et al. (2013) found a
critical value of the axial flux in the flux rope deter-
mined the stability. They reported that the criteria for
the onset of a flare is that the axial flux be in the range
of 5 × 1020 to 6 × 1020 Mx; in this case, the decay
index is in the range of 1.3 to 1.8. For this eruption, the
simulation results were in good agreement with some
of the observations, such as those during the initial ris-
ing phase leading to the eruption. Amari et al. (2014)
also successfully demonstrated a flux tube eruption in
their MHD simulations, as shown in Fig. 8c. The flux
tube was reconstructed by using the Grad-Rubin type
method (Amari and Aly 2010) combined with the pho-
tospheric magnetic field observed by the Hinode solar
optical telescope (SOT; Tsuneta et al. (2008)) 6 h before
the X3.4-class flare in AR10930 at 02:40 UT on 13 Decem-
ber 2006. The authors found that 6 h before the flare,
the NLFFF was destabilized with flux cancellation, the
gas motion in characteristic of a sunspot moat flow or
photospheric turbulent diffusion, and this resulted in the
eruption. On the other hand, 2 days before the flare, the
NLFFF predicted no eruption for the same situation. The
authors pointed out the importance of the formation of
a significantly large flux tube and the moving out from
equilibrium.
MHD modeling of the solar eruption on 15 February

2011. Inoue et al. (2014a) and Inoue et al. (2015) stud-
ied the magnetic field dynamics during the X2.2-class
flare produced by solar active region 11158 on 15
February 2011 (Schrijver et al. 2011; Janvier et al. 2014;
Yang et al. 2014), by using MHD simulations combined
with the NLFFF. Figure 7b shows the NLFFF struc-
ture approximately 2 h before the X2.2-class flare on 15
February 2011; note that strongly sheared magnetic fields
lines are clearly visible at the PIL of the central sunspot.
The stability analysis was discussed in a previous section.
Based on these results, the NLFFF was quite stable, which
implies that an additional process is required to drive
the twisted lines. For instance, in a detailed data analysis,
(Bamba et al. 2013) observed an increase in the small flux
emerging at the PIL before the flare, and they suggested
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Fig. 8 3D MHD simulation based on the photospheric magnetic field. a The MHDmodeling of the solar eruption from AR11283 associated with an
X2.1-class flare observed on 11 September 2011 performed by Jiang et al. (2013). The image is copyright AAS and are reproduced by permission. b
The MHDmodeling of the solar eruption from AR11060 associated with a B3.7-class flare observed on 8 April 2010, performed by Kliem et al. (2013).
The image is copyright AAS and reproduced by permission. c The MHD modeling of the solar eruption from AR10930 associated with an X3.4-class
flare observed on 13 December 2006, performed by Amari et al. (2014). The images are from Nature reprinted by permission from Nature Publishing
Group

that this could destroy the stable magnetic field, as in the
scenario described by Kusano et al. (2012).
The dynamics were investigated in the zero-beta MHD

approximation, i.e., the density, pressure, and gravity

were neglected. In such a situation, although the ther-
modynamics during the flare cannot be investigated, the
magnetic field dynamics can be considered (Inoue et al.
2014a). This is the case because, during the flare, the
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magnetic energy converts into kinetic energy and thermal
energy, which are the main factors for the energy store-
and-release process in the solar corona. Therefore, in the
early phase of a solar eruption that is not strongly com-
pressible, zero-beta plasma is a good approximation, as
demonstrated by Inoue and Kusano (2006). An advan-
tage of this approximation is that it can neglect the sound
waves, which often highly influence the rarefied CFL
condition.
As discussed in the previous section, the NLFFF recon-

structed 2 h before the X2.2-class flare shows a stable
equilibrium state, and the dramatic dynamics that appear
in observations are not evident. Therefore, some addi-
tional process is required to break the stable equilibrium.
Here, Inoue et al. (2014a) and Inoue et al. (2015) intro-
duced an anomalous resistivity imposed on the strong
current region, and the MHD relaxation was performed
by using the NLFFF as the initial condition where the
velocity adjustment defined in Eq. (50) was removed. We
would expect the anomalous resistivity to induce recon-
nection in the region of strong current density (Yokoyama
and Shibata 2001) and to produce long twisted lines in
the NLFFF. After an additional iteration, since there is no

guarantee that this new state can remain in equilibrium, a
newly created flux tube might escape from the solar sur-
face, as was shown in Amari et al. (2014). The anomalous
resistivity was

η =
{

η0 J < jc,

η0 + η2
(
J−jc
jc

)2
J > jc,

(59)

where η0 is the background resistivity and jc is the thresh-
old current necessary to excite the second term in Eq. (59)
(Yokoyama and Shibata 1994). In this study, η0 = 1.0 ×
10−5, η2 = 1.0 × 10−4, and Jc = 30. It can initiate and
enhance the reconnection in the strong current region
when the current is greater than the critical value, Jc. This
value depends on the normalized value of the coronal
magnetic field defined in each study.
Figure 9a shows two bundles of the twisted lines formed

in the NLFFF; a strong current region was formed and
sandwiched by these bundles. The side view is shown in
Fig. 9b. We expect that reconnection takes place between
the two bundles of the twisted lines, and long, strongly
twisted lines are formed, which might break the equi-
librium. After additional iterations with the anomalous

Fig. 9 Twisted lines in the NLFFF and magnetic fields after further MHD relaxation process a The twisted lines in the NLFFF, reconstructed for 00:00
UT on 15 February 2011, together with the Bz distribution. The green surface corresponds to the isosurface of the current density J = 30, which is
sandwiched by the twisted lines of the NLFFF. b The side view of a. c Strongly twisted lines are formed after the subsequent MHD relaxation process,
which includes the anomalous resistivity. The small inset shows the contour (yellow) of one turn twist superimposed on the Bz map. d The side view
of (c)
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Fig. 10 3D dynamics of the flux tube during an X2.2-class flare. 3D dynamics of the flux tube during an X2.2-class flare obtained from our MHD
simulation; the field lines with more (less) than one turn at t = 0 are depicted in orange (blue). The Bz distribution is shown in red and blue. The inset
at t = 0 shows the top view of the field lines; the number of field lines with less than one turn has been reduced

Fig. 11 Comparison with observations, two-ribbon flares and the EUV image. a 3D magnetic field at t = 4.0 in the MHD simulation of Inoue et al.
(2014a), showing the large flux tube with post-flare loops under it. These simulations tried to reproduce the observed sheared two-ribbon flares by
using this initial launching phase. b Two-ribbon flares observed by Hinode/FG at 01:51 UT on 15 February 2011 during an X2.2-class flare from (Inoue
et al. 2014a). The gray scale encodes the Bz distribution. c Two-ribbon flares reproduced by the MHD simulation of Inoue et al. (2014a) at t = 4.0 in a,
in accordance with Eq. (60). d 3D magnetic field at t = 15 in the MHD simulation of Inoue et al. (2014a), showing the large ascending flux tube with
post-flare loops under it. e The EUV image after an X2.2-class flare at 02:29:50 UT on 15 February 2011, at 94 Å, obtained by SDO/AIA. f The field lines
obtained from the MHD simulation by Inoue et al. (2014a) are superimposed on the data in e. Panels b, c, e, and f are copyright AAS and reproduced
by permission
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resistivity, the single long bundle of strongly twisted lines
shown in Fig. 9c, d was produced by the reconnection
between the twisted lines formed in the NLFFF (shown in
Fig. 9a); which is reminiscent of the tether-cutting recon-
nection shown in Fig. 3e. The small inset shown in Fig. 9c
shows the contour of one twist superimposed on the Bz
map, where the footpoints for the part of the selected
field lines plotted in Fig. 9c, d are anchored inside this
contour. Note that there is no guarantee that this new
state can remain in equilibrium because a flux tube com-
posed of strongly twisted lines can escape from the solar
surface (Amari et al. 2000; Kusano et al. 2012; Kliem et al.
2013).
Next, an MHD simulation was executed using this new

state, as shown in Fig. 9c; note that at the boundary,
all components of the velocity are fixed to zero, and
the normal component of B is fixed, while the horizon-
tal one may vary, i.e., it is determined by the induc-
tion equation according to the dynamics. Consequently,
as shown in Fig. 10, the equilibrium was broken, and
a larger flux tube was formed and launched into the
upper corona. Note that, in this process, the strongly
twisted lines (in orange) that were formed during the
initial state do not extend directly into the upper corona.

Rather, they reconnect with the ambient field lines (in
blue) that convert into the large flux tube. Interestingly,
the strongly twisted lines in the initial state appear to
convert into the post-flare loops often observed after a
flare.
These simulation results were compared with obser-

vations. The authors first confirmed that their simula-
tion captures the shape of the two-ribbon flares. Follow-
ing the CSHKP model, two-ribbon flares are generally
considered to be due to the distribution of the foot-
points of the reconnected field lines. Therefore, those
could be reproduced to trace the reconnected field
lines during a simulation. To achieve this, the authors
traced the reconnected field lines by using the following
equation:

δ(x0, tn) = |x1(x0, tn+1) − x1(x0, tn)|,

where tn+1 is the next time step after tn, and x1(x0, tn) is
the location of one footpoint of each field line at time tn,
which is traced from another footpoint at x0. Eventually,
we calculate

Fig. 12 Enhancement of Bt during an X2.2-class flare. a The observations of Bt enhancement in the photosphere during an X2.2-class flare, reported
by Wang et al. (2012). b The Bz distribution for which the Bt enhancement was measured in the MHD simulation by Inoue et al. (2015). The white
contour line corresponds to the PIL. c Bt enhancements as observed in the MHD simulation by Inoue et al. (2015). All images are copyright AAS and
are reproduced by permission
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�(x0, t) =
∫ t

0
δ(x0, tn)dtn, (60)

where �(x0, t) is a location where the length of a field
lines is changed, meaning that the enhanced region corre-
sponds to one in which there was a dramatic reconnection
in the twisted lines. Figure 11a shows a 3D view of the
field lines at t = 4.0, when the large flux tube has
been formed during the initial launching phase. We first
confirmed that the sheared two-ribbon profiles observed
initially were reproduced in our simulation. Figure 11b
shows the two-ribbon flares during the X2.2-class flare,
observed by Hinode/SOT, at 01:50 UT, corresponding to
the initial phase of the flare. Figure 11c shows the numer-
ically calculated two-ribbon flares, following Eq. (60), at
t = 4, reproduced in this simulation where � is cho-
sen from the region in which Tn > 0.3. The shape of

the numerically calculated two-ribbon flares matches the
observed one.
These simulation results were further compared with

the EUV image data obtained from SDO/AIA. Figure 11d
shows the 3D magnetic structure at t = 15, clearly reveal-
ing the post-flare loops above which the large eruptive flux
tube is ascending. We confirmed that the post-flare loops
can capture the field lines in the EUV image, using sim-
ulation data at t = 15. Figures 11e shows the EUV image
observed after the flare by 94 Å of SDO/AIA, and Fig. 11f
shows the field lines at t = 10 superimposed on the EUV
image. The field lines observed in the EUV image were
successfully captured.
Finally, enhancement of the horizontal magnetic field

Bt was discussed by Inoue et al. (2015). As shown in
Fig. 12a, Wang et al. (2012) found a rapid enhance-
ment of the horizontal field on the PIL in the pho-
tosphere, and they suggested that this was due to the

Fig. 13 Summary of the dynamics of the magnetic field during an X2.2-class solar flare. Summary of the magnetic field dynamics during an
X2.2-class solar flare, obtained from Inoue et al. (2014a) and Inoue et al. (2015)
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reconnection. The simulation of Inoue et al. (2015) also
indicated this enhancement, and the result is shown
in Fig. 12c calculated for the area shown in Fig. 12b.
It was pointed out that the post-flare loops can be
observed even during an early phase in which the hori-
zontal fields are enhanced, and the new post-flare loops
are subsequently produced through the above reconnec-
tion. Consequently, it was suggested that this enhance-
ment is due to the accumulation of post-flare loops sup-
pressing the pre-existing loops. Therefore, this enhance-
ment would be strongly related to the reconnection.
However, since this simulation was performed in the
zero-beta MHD, to support this conclusion, it is nec-
essary to have a more detailed analysis and discus-
sion under more realistic assumptions, including high-β
regimes corresponding to the chromosphere and the pho-
tosphere.
A summary of the dynamics is shown in Fig. 13. (i)

The NLFFF is quite stable for the current-driven ideal
MHD instability, so it is necessary to have a trigger pro-
cess (here, the tether-cutting reconnection) to break the
equilibrium. (ii) The tether-cutting reconnection creates
strongly twisted lines in the NLFFF. Consequently, it
breaks the equilibrium and reconnects with the ambient
field lines. The result is that a large flux tube is formed as
it ascends. (iii) Eventually, the flux tube will grow into a
CME if the threshold of the torus instability is exceeded or
equilibrium is lost.

Conclusions
The solar physics satellitesHinode and SDO, together with
modern ground-based telescopes, provide photospheric
magnetic field data with unprecedented accuracy. This
enables us to reconstruct the 3D coronal magnetic field
with high accuracy, such that it includes the potential field
from the normal component not only of the photospheric

magnetic field but also of the NLFFF, which contains both
the normal and the horizontal magnetic fields. Because
the NLFFF is reconstructed to include information about
the horizontal magnetic fields at the photosphere, it can
yield a 3D magnetic field close to that observed in the
active regions instead of the one similar to that of the
potential field, and it can show the accumulation of free
magnetic energy and helicity that is required to produce
a flare. In addition, the force-free α is given as a function
of space, and so it is not an LFFF approximation. There-
fore, the NLFFF can yield the magnetic configuration both
before and after the flare, and several papers have reported
various important physical quantities obtained from the
NLFFF, including the free magnetic energy (Sun et al.
2012; Jiang et al. 2014b), the magnetic helicity (Thalmann
et al. 2011; Valori et al. 2012; Pevtsov et al. 2014), and the
magnetic twist and topology (Inoue et al. 2011; Guo et al.
2013; Inoue et al. 2013; Zhao et al. 2014). These quantities
quantify the NLFFF stability, which cannot be obtained
from observations.
On the other hand, there is a problem in the NLFFF

itself. Using the same format as in Fig. 5d, Fig. 14 shows
the distribution of the force-free α measured at both
footpoints of each field line for the NLFFF in Fig. 7b and
the temporal evolution of

∫ |∇ · B|2dV during the itera-
tion of the NLFFF. Although the value of

∫ |∇ · B|2dV is
reduced to fourth order, the distribution of the force-free
α is scattered. Therefore, an unexpected physical element,
the residual force, remains; this is inevitably produced
near the boundary in the NLFFF, due to the contradic-
tion between the boundary and the inner domain. In
addition, it should be noted that the coronal magnetic
fields cannot be correctly reproduced only by the NLFFF.
Peter et al. (2015) pointed out several limitations on
the free energy and accumulated currents. Furthermore,
reconstruction of the geometry of bright loops requires

Fig. 14 Force-freeness of the NLFFF. a Distribution of the force-free α measured at both footpoints of each magnetic field line for the NLFFF in
Fig. 7b, that is from Inoue et al. (2014a). The image is copyright AAS and reproduced by permission. b The temporal evolution of

∫ ∇ · BdV during
the iteration in which the NLFFF is attained
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methods more advanced than the NLFFF (Aschwanden et
al. 2014; Malanushenko et al. 2014). Therefore, a model
more advanced than the NLFFF is required to construct
the equilibrium state with high accuracy and overcome
these limitations.
Although the NLFFF yields the 3D properties of the

magnetic field, this method does not reveal the dynam-
ics of the solar flares. To determine the dynamics in a
realistic situation, NLFFF results have been used as ini-
tial conditions for MHD simulations (Jiang et al. 2013;
Kliem et al. 2013; Inoue et al. 2014a; Amari et al. 2014;
Inoue et al. 2015). Because these simulations were con-
strained by the photospheric magnetic field, there are
large artificial processes causing the buildup of energy;
these likely yield twist and sheared motions, which were
not assumed. Important and realistic physical processes
are also being revealed, including the critical value for
the flux of the flux tube for an eruption (Kliem et
al. 2013) or the formation of a large flux tube pro-
ducing a CME (Inoue et al. 2014a; 2015). Further-
more, the reliability of these simulations can be con-
firmed because they can be more precisely compared
with the observations likely by Inoue et al. (2014a) and
Inoue et al. (2015), in contrast to previous simulations
that described hypothetical situations. Note that sev-
eral can be indirectly compared, e.g., the two-ribbon
flares discussed in this study. In order to provide a strict
confirmation, however, a direct comparison is required
(e.g., (Mikić et al. 2013)).
Some problems and questions related to these simula-

tions still remain to be answered. For instance, as dis-
cussed above, the reconstructed field does not completely
achieve a force-free state, and so the residual force must
be treated carefully. If these residual forces are sufficiently
strong, they may affect the magnetic field dynamics, and
the interpretation of the dynamics becomes difficult. In
addition to this, as Inoue et al. (2015) pointed out, the
magnetic twist accumulated in the NLFFF might be grad-
ually reduced throughout the numerical diffusion and also
on the solar surface because the NLFFF returns to a lower
energy level without retaining the observed horizontal
magnetic fields. Furthermore, it is important to account
for the observed process that triggers the solar flares in
order to understand the conversion of the stable mag-
netic field into a dynamic one. Recently, the triggering
was observed by using state-of-art data (e.g., Green et al.
(2011); Bamba et al. (2013); Louis et al. (2015)). These data
must be incorporated into simulations. Although most
simulations start from an NLFFF that is already composed
of twisted and sheared field lines, some studies attempted
to recover the processes leading from the buildup to the
release of energy; in this data-driven simulation, the coro-
nal magnetic field was driven by the time-dependent pho-
tospheric magnetic field e.g., Cheung and De Rosa (2012).

Work in this direction is currently underway, and this will
be extended in the future.
With advanced computational resources now more

readily available, more-refined 3D numerical MHD mod-
els of solar eruptions are being developed and improved.
Recently, techniques combining simulations with highly
resolved temporal and spatial data from state-of-the-
art solar satellites have been developed, and these have
yielded some preliminary results. In the future, it is
likely to be necessary to further develop simulations of
solar flares in order to more closely correspond to these
observations.
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