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Abstract

Tephra is a product of large and explosive volcanic events and can travel thousands of kilometers before
deposition. Consequently, tephra deposits are common in terrestrial, lacustrine, marine, and glacial environments.
Because tephra deposition is a geologically synchronous event, tephras constitute important isochrones in the
Quaternary sequence, not only in Japan but also throughout the northwest Pacific and its marginal seas. As a
result, establishing the chronostratigraphic order of tephra deposits is an effective tool for assessing local and
regional stratigraphies and for correlating events among sites. For example, tephrostratigraphy can provide precise
chronological constraints for other stratigraphic data, such as magneto- and biostratigraphic data. Spatiotemporal
variability in the occurrence and geochemistry of tephras can also be used to trace the magmatic evolution of
island arcs and their relationships to regional tectonics. In a paleoclimatic context, tephra deposits allow the
correlation of past climate events among terrestrial, lacustrine, and marine environments. Tephrochronology is also
a fundamental element used in reconstructing the marine reservoir effect, where the ages of tephra in marine and
terrestrial settings are compared. Therefore, tephra is a valuable tool not only in stratigraphy, chronology, and
volcanology but also in paleoceanography and paleoclimatology.
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Introduction

Tephra is a product of large, explosive volcanic eruptions,
and distal tephra (volcanic ash) can travel thousands of
kilometers before it is deposited (e.g., Alloway et al. 2007;
Lowe 2011; Costa et al. 2012). As a result, tephra beds
occur in marine sediment sequences adjacent to volcanic
islands and volcanic arcs associated with subduction
zones, such as the Japanese archipelago. Tephra is best
preserved in marine and lacustrine environments charac-
terized by continuous sedimentation with little physical
disturbance. Under such conditions, even thin tephra beds
associated with small, local eruptions or large distal erup-
tions are preserved. In addition to aquatic settings, tephra
beds occur in terrestrial and glacial environments.
Although the duration of volcanic eruptions ranges from
days to decades, tephra beds originating from relatively
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short-lasting explosive eruptions are considered to be geo-
logically synchronous deposits. Consequently, tephras rep-
resent important “key beds”, connecting many different
environments.

Tephras comprise all the explosive products of vol-
canic eruptions. These include both fall deposits and
those from pyroclastic flows (Lowe 2011). Thus, tephras
are mixtures of juvenile and lithic material, where the
juvenile matter can be pyroclastics ranging in size from
ash (grain size <2 mm) to lapilli (2-64 mm) and even
angular blocks or subrounded bombs (>64 mm). In ash
layers, the juvenile particles are mostly made of glass
shards. Some tephras also contain specific minerals, such
as alkaline feldspar and biotite that permit the absolute
age determination of tephra beds using Ar—Ar and
K-Ar dating. In this way, tephras have the potential
to provide the depositional ages of marine sediments.
Each tephra exhibits different petrographic and geochem-
ical characteristics reflecting its magmagenesis including
magma source conditions such as subduction parameters,
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the geotectonic setting whether oceanic or continental,
mantle chemistry, eruption mode, and so on, which are
generally known as its geochemical “fingerprint”. Individ-
ual deposits’ fingerprints can be compared, allowing a
precise correlation of different tephra beds.

Although bulk sediment grain composition by smear
slide observation indicates that glass shards usually
account for less than 10 % of the material (e.g., Fujioka
1983), tephra grains are an important component of
marine sediments. Geochemical analyses of bulk sedi-
ments suggest that dispersed ash commonly accounts
for 15-20 wt% in the Caribbean Sea (Peters et al. 2000)
and ~6-60 wt% and ~30-35 wt% in the northwest
Pacific (Scudder et al. 2009, 2014). Both the primary and
secondary supply of tephra grains to marine environ-
ments exhibit a wide spatial distribution in the world’s
oceans, especially in the vicinity of volcanic islands. In
this paper, I review and explain the benefits of using
marine tephra for stratigraphy, chronology, volcanology,
paleoceanography, and paleoclimatology using examples
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primarily from the Japan Sea. Although invisible tephra
(dispersed ash or cryptotephra) is important in these
applications, I mainly focus on visible tephra in this
review because of the paucity of studies on invisible
tephra in the Japan Sea sediments.

Reviews
The Japan Sea and source volcanoes
The Japan Sea is located between the Japanese islands
and the Asian continent. The Japanese islands are situ-
ated along the confluence of the Eurasian, Philippine,
Pacific, and North American plates and have experi-
enced widespread volcanism (Fig. 1). The Japan Sea is
also flanked by active volcanoes on Ulleung Island (the
Ulleung volcano), Korea, and on the Korean Peninsula
(the Baegdusan—or Baitoshan, Changbaishan—volcano),
on the border between North Korea and China.

The Quaternary Japanese volcanoes can be divided
into two major belts, the east and west Japan volcanic
belts (Sugimura 1960). The east Japan volcanic belt is
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further subdivided into three zones along the Kuril,
Northeast Japan, and Izu—Mariana arcs. The west Japan
belt comprises volcanoes in western Honshu and Kyushu.
Machida (1999) also described two volcanic zones in
Japan; the east and west Japan volcanic zones. In the
northern part (from Hokkaido to northern Honshu) of the
east Japan volcanic zone, large-scale explosive volcanism
has been recorded at caldera volcanoes, producing exten-
sive tephra beds. In central Honshu in the east Japan
volcanic zone, the volcanoes are stratovolcanoes, both
with and without calderas, which have also produced a
large volume of tephra and lava. In the west Japan zone,
there are abundant large caldera volcanoes in central and
southern Kyushu, which have produced ignimbrite flows
and widespread tephra deposits, and stratovolcanoes
occur in western Honshu. Most volcanoes on the Japanese
islands produce lava and tephra with a rhyolitic and an-
desitic composition. In contrast, both the Ulleung and
Baegdusan volcanoes display explosive alkaline to trach-
ytic volcanism, which has resulted in the deposition of
numerous distal tephra beds on the floor of the Japan Sea
and on the Japanese islands. These tephra beds constitute
important the Quaternary—Neogene isochrones in the
Japan region (Machida 1999; Nagahashi and Satoguchi
2007; Satoguchi and Nagahashi 2012).

A catalog of the Quaternary volcanoes in Japan was
compiled by the Committee for a Catalog of Quaternary
Volcanoes in Japan (1999). This work has been extended
and presented as a database called “Volcanoes of Japan”
(https://gbank.gsj.jp/volcano/index_e.htm). Kuno (1966)
proposed a zonal arrangement of volcanic rock series
across the Japanese islands, namely the tholeiite, high-
alumina basalt, and alkali olivine basalt series, respect-
ively, from east to west, and suggested a possible rela-
tionship between the depth of the Benioff zone and the
volcanic rock series. Aramaki and Ui (1978) collected
about 1600 major element analyses from the Japanese
Quaternary volcanic rocks and indicated the differences
among the volcanic arcs in Japan based on volume-
weighted histograms of each element. They also suggested
that the generation and ascent modes of caldera-forming
felsic magma are different from those of ordinary cone-
and dome-building basalt—andesite—dacite magma series.
Ui and Aramaki (1978) indicated a positive correlation be-
tween the K value (% K,O at a given % SiO, on a Harker
variation diagram: Dickinson and Hatherton 1967;
Dickinson 1975) and the depth of the Benioff zone.
The elemental compositions of the major Quaternary
tephras with some petrographic characteristics were
compiled by Machida and Arai (2003). The following
are other studies in the literature describing the major
elemental composition of volcanic glass shards of the
Quaternary—Neogene tephras: the Holocene to the late
Middle Pleistocene: Aoki and Arai (2000), Aoki et al.

Page 3 of 14

(2000, 2008), Nagahashi et al. (2004, 2007), Aoki and
Machida (2006), and Nagahashi and Ishiyama (2009); the
Middle Pleistocene to the Pliocene: Nagahashi et al.
(2000), Tamura et al. (2008), Kotaki et al. (2011), and
Suzuki et al. (2011); and the Miocene: Hiranaka et al.
(2007). Major marine tephra studies around the Japanese
islands in locations other than in the Japan Sea include
the following: general: Machida and Arai (1983, 1988,
2003) and Furuta et al. (1986); NW Pacific: Fujioka (1983),
Cambray et al. (1990), Aoki and Arai (2000), Aoki et al.
(2000, 2008), Aoki and Machida (2006), Aoki and Ohkushi
(2006), Suganuma et al. (2006), Aoki (2008), and Ikehara
et al. (2013); Izu—Bonin: Fujioka et al. (1992a, 1992b) and
Nishimura et al. (1992); South of Japan: Ikehara et al
(2006, 2011) and Kutterolf et al. (2014); East China Sea:
Cambray et al. (1990) and Moriwaki et al. (2011). Re-
cently, Kimura et al. (2015) determined 10 major and 33
trace elements and Pb isotope ratios for dacitic to rhyolitic
glass shards from 80 widespread tephras erupted during
the past 5 Ma.

In the Japan Sea, the deep-sea floor is covered by muddy
hemipelagic sediments. Their continuous deposition has
sealed the tephra in the sediments and created favorable
conditions for tephra preservation. Consequently, there is
a considerable body of literature on the nature of these
marine tephra deposits. For example, Arai et al. (1981) de-
scribed the occurrence of several tephra beds, including
the Kikai—Akahoya (K-Ah), Ulleung—Oki (U-Oki), Aira—
Tanzawa (AT), and Ulleung—Yamato (U-Ym) tephras, in a
sediment core from the southern Japan Sea and estab-
lished a Late Pleistocene to Holocene tephrostratigraphic
framework for the region. This work was extended by
Machida and Arai (1983). Furuta et al. (1986) described
the major elemental compositions of volcanic glass shards
in marine tephras, and Ikehara et al. (1994) reported the
tephrostratigraphy in the southern Japan Sea and its rela-
tionship to the occurrence of dark layers there. This was
further extended by Nakajima et al. (1996) and Ikehara
(2003) in the central and northern Japan Sea, respectively.
Late Pleistocene to Holocene tephrostratigraphy, includ-
ing invisible tephra, has been studied by Chun et al. (1997,
2006, 2007), Domitsu et al. (2002), Ikehara et al. (2004),
Lim et al. (2008, 2013), and Shiihara et al. (2011, 2013).
The Ocean Drilling Program (ODP) Legs 127/128 col-
lected long drill cores from the Japan Sea (Shipboard Sci-
entific Party, 1990a, 1990b), and Shirai et al. (1997, 1999)
reported the major elemental geochemistry of the glass
shards of some tephra beds in these cores, correlating
them with onshore deposits. Although these reports con-
tain a large amount of Middle Pleistocene tephra in sedi-
ments from the Japan Sea (e.g., Shirai et al. 1997, 1999;
Chun et al., 2004, 2006, 2007), they do not include all the
tephras present in collected the Japan Sea cores. More-
over, no precise, to date, there has been no systematic
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analysis and correlation of tephras in the Early Pleistocene
to the Pliocene sediments of the Japan Sea. The major
Middle-Late Pleistocene to Holocene tephras are listed in
Table 1, and the major elemental geochemistry of glass
shards of selected or potential tephras are shown in
Table 2.

Occurrence of tephra beds in marine sediments

Following a subaerial eruption, primary tephra grains are
transported through the air before falling onto the water
surface and settling through the water column to the sea
floor. During the transportation process, grain separ-
ation can occur, potentially resulting in the formation of
normal and/or reverse grading structures in marine
tephra beds. For example, large pumice grains might
remain afloat on the water surface for extended periods,
settling later, and thus forming the upper part of a
tephra bed. Large pumice grains might also be trans-
ported by ocean currents, forming a drift pumice layer
distal to the main tephra distribution. Examples of drift
pumices occur on marine terrace deposits along the
Japan Sea coastline (Toyokura et al. 1991; Shiraishi et al.
1992). Explosive submarine volcanism has produced
tephra beds (e.g., Yuasa 1995; Chun et al. 2007; Allen
et al. 2010). In addition, some marine tephra beds have
been deposited by primary pyroclastic material flowing

Page 4 of 14

from onshore volcanoes into nearby oceans (e.g., Allen
et al. 2012; Schindlbeck et al. 2013; Kutterolf et al. 2014).

Visible tephra deposits can be thick- or thin-bedded
and are typically lenticular or have a patchy structure
(Fig. 2), depending on factors such as (1) the volume
and grain size of the tephra, which are related to
eruption volume and transport distance; (2) eruption
duration and eruption mode; (3) physical and biological
conditions, such as current/wave action and benthos
activity; (4) the type of marine sediments; and (5) sedi-
mentation rate. Postdepositional disturbance can render
tephra beds invisible.

Secondary (remobilized) volcanic grains are also
called “tephras” (e.g., Nagahashi and Kataoka 2014).
Because there are several pathways by which tephra
grains can be remobilized or reworked, the character-
istics of secondary tephra beds are highly variable.
One principal of remobilization is gravitational remobili-
zation. For example, where subaerial mass movements on
volcanic islands flow into the sea, this material can form
subaqueous debris flows containing large amounts of vol-
canic material (e.g., Masson 1996; Satake and Kato 2001).
Similarly, the collapse of steep submarine slopes close to
volcanic islands can result in subaqueous gravity flow
deposits. Examples of this process are found in the Canary
Islands and surrounding deep-sea basins (e.g., Masson
1996; Hunt et al. 2013). A third process, involving the

Table 1 Major Middle-Late Quaternary tephras in the Japan Sea sediments

Tephra name

Tephra code

Source volcano

Age (reference)

Baegdusan-Tomakomai tephra

B-Tm

Baegdusan volcano

Kikai-Akahoya tephra K-Ah Kikai caldera
Ulleung-Oki tephra U-Oki Ulleung volcano
Asama-Kusatsu Pumice As-K Asama volcano
Daisen—Kusatanihara Pumice KsP or DMs Daisen volcano
Baegdusan-Vladivostok-oki tephra B-V Baegdusan volcano
Aira-Tanzawa tephra AT Aira caldera
Ulleung-Yamato tephra U-Ym Ulleung volcano
Baegdusan-Japan Basin tephra B-J Baegdusan volcano
Ulleung-Sado-oki tephra U-Sado Ulleung volcano
Baegdusan-Sado-oki tephra B-Sado Baegdusan volcano
Baegdusan-Yamato Basin tephra B-Ym Baegdusan volcano
Aso-4 tephra Aso-4 Aso caldera

Toya tephra Toya Toya caldera

Aso-3 tephra Aso-3 Aso caldera
Ata-Torihama tephra Ata-Th Ata caldera

Aso-1 tephra Aso-1 Aso caldera
Baegdusan-Oga tephra B-Og Baegdusan volcano
Kobayashi—-Kasamori tephra Kb-Ks Kobayashi caldera

China/North Korea
South Kyushu, Japan
Ulleung Island, Korea
North Kanto, Japan
Chugoko, Japan
China/North Korea
South Kyushu, Japan
Ulleung Island, Korea
Chian/North Korea
Ulleung Island, Korea
China/North Korea
China/North Korea

Central Kyushu, Japan

Hokkaido, Japan

Central Kyushu, Japan

South Kyushu, Japan

Central Kyushu, Japan

China/North Korea
South Kyushu, Japan

10th century (1)
7,165-7,303 (2)
10,177-10,225 (2)
15-16.5 ka (1)
20-22 ka (1)

245 ka (3)
30,009+ 189 (2)

85-90 Ka (1)
112-115 ka (1)
133 ka (5)

240 ka (1)
250-270 ka (1)
448 ka (6)
520-530 ka (1)

References 1, Machida and Arai (2003); 2, Smith et al. (2013); 3, lkehara (2003); 4, Lim et al. (2013); 5, Chun et al. (2004); 6, Shirai et al. (1997)
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Table 2 Major elemental composition of the major or potential tephras in Japan Sea sediments
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Tephra name Tephra code Si0, TiO, AlLO; FeO* MnO MgO CaO0 Na,O K,O Ref.  Remark
Baegdusan-Tomakomai tephra B-Tm 733 029 119 43 008 007 05 50 4.5 1
(Mode 1) 75.7 024 105 4.0 0.02 0.08 03 47 44 1 Bimodal
(Mode 2) 684 040 147 45 0.14 0.12 13 55 5.1 1
Kikai-Akahoya tephra K-Ah 750 053 130 25 0.07 0.50 20 3.6 2.8 1
Ulleung-3c tephra U-3c 6120 058 1920 3.1 0.15 0.36 156 636 748 2
Ulleung-Oki tephra U-Oki 616 044 201 29 02 03 15 6.7 6.3 1
Daisen—Kusatanihara Pumice KsP or DMs 7224 021 1627 144 004 040 217 423 303 3
Aira-Tanzawa tephra AT 784 013 122 1.2 004 014 1.1 33 34 1
Ulleung-Yamato tephra U-Ym 5779 057 1953 387 024 090 405 699 605 4
Baegdusan-Japan Basin tephra B-J 7201 015 1112 479 014 002 045 589 542 5
San'in 1 tephra SAN1 7668 016 1267 093 043 022 134 319 439 5
Ulleung-Sado-oki tephra U-Sado 5919 019 1995 373 023 041 133 922 574 5
Baegdusan-Sado-oki tephra B-Sado 6886 027 1440 390 016 007 069 644 520 4
Baegdusan-Yamato Basin tephra B-Ym 6700 036 1528 463 013 009 092 612 549 4
Aso-4 tephra Aso-4 727 043 149 16 0.1 04 1.2 46 42 1
(Mode 1) 731 043 147 15 0.1 04 1.1 46 42 1 Bimodal
(Mode 2) 723 044 150 17 0.1 0.5 1.5 4.6 38 1
Toya tephra Toya 790 005 126 1.0 0.1 004 04 43 2.5 1
Aso-3 tephra Aso-3 71.0 0.71 15.0 2.5 0.07 03 1.7 3.8 49 1
Ata-Torihama tephra Ata-Th 784 01 124 1.0 0.1 0.2 1.2 34 33 1
Aso-1 tephra Aso-1 65.2 0.6 14.8 32 0.1 06 20 3.1 48 1
- 0.6 15.1 4.0 0.1 0.6 2.1 32 43 1 *ICP
Baegdusan-Oga tephra B-Og 7059 052 1844 454 019 016 128 617 624 6
Kobayashi—-Kasamori tephra Kb-Ks 747 03 14.0 13 0.1 03 1.1 4.0 43 1
- 0.2 12.1 13 0.1 0.2 12 35 3.7 1 *ICP
Hakkoda 1 tephra (0.75 Ma; reference 9)  HKd1 or Hkd-Ku 783 02 12.0 13 0.1 04 12 43 23 1
Shishimuta—-Azuki tephra (0.85 Ma; 9) Ss-Az 723 0.5 14.8 26 0.1 0.0 16 35 47 1
Shishimuta—Pink tephra (1.05 Ma; 9) Ss-Pnk - 02 124 13 0.1 02 12 3.1 40 1 *ICP
Omine tephra (1.65 Ma; 9) Omn 779 0.1 12.8 1.0 0.1 0.1 09 2.7 45 7
- 0.1 10.2 13 0.1 0.1 1.0 3.1 44 1 *ICP
Ebisutoge-Fukuda tephra (1.75 Ma; 9) Ebs-Fkd 76.8 0.1 13.1 15 0.1 0.0 09 29 44 7
- 0.1 9.8 1.7 0.1 0.1 1.0 32 44 1 *ICP
Znp-Ohta tephra (3.9 Ma; 9) Znp-Oht - 003 1226 118 008 001 059 330 446 8 *ICP

References: 1, Machida and Arai (2003); 2, Shiihara et al. (2011); 3, Domitsu et al. (2002); 4, Lim et al. (2013); 5, Ikehara et a.l (2004); 6, Shirai et al. (1997); 7,
Nagahashi et al. (2000); 8, Tamura et al. (2008); 9, Satoguchi and Nagahashi (2012). Total iron is shown as FeO*. Elemental composition analyzed by inductively

coupled plasma (ICP) method is shown as *ICP

river transport of terrestrial pyroclastic material to
marine environments, has been invoked to explain
the coarse fraction composition of shelf sediments ad-
jacent to Kyushu and Shikoku (Arita and Kinoshita
1990; Ikehara 2000, 2013). Similarly, the concentra-
tion of bubble-wall-type volcanic glass shards along
the path of the modern Kuroshio Current from south
Kyushu suggests that glass shards are transported by
the Kuroshio Current (Ikehara 2015). Together, these pri-
mary and secondary transportation pathways account for

the broad geographic distribution of tephra grains in mar-
ine sediments and render tephra an important component
of marine sedimentation.

Identification and correlation of tephra

Because the petrographic and geochemical characteris-
tics of tephra grains vary greatly from deposit to deposit,
these characteristics can be used to “fingerprint” individ-
ual tephra units, allowing any tephra bed to be corre-
lated with established terrestrial and marine tephra
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Fig. 2 Variability in tephra occurrence in marine cores (the scale bar is 2 cm). a Tephra patches or spots. b Bioturbated tephra bed. ¢ Fine-grained
tephra bed with sharp bottom and top boundaries. d Coarse-grained and pumiceous tephra bed with sharp bottom and top boundaries e
Tephra bed composed of lower fine-grained (light), middle pumiceous coarse-grained (black), and upper fine-grained (gray) parts. f Reworked
tephra bed including coarse lithic grains

records. Standard parameters for characterizing tephra
include the following: (1) its heavy and light mineral
assemblages; (2) the morphology, color, and grain size of
the glass shards; (3) the refractive indices of the glass
shards and heavy minerals; (4) the major and minor
chemical compositions of the glass shards and heavy
minerals; and (5) the trace elemental and isotopic com-
positions of the glass shards (Machida 1999). Combining
these petrographic and geochemical characteristics with
stratigraphic information is essential for identifying and
correlating the tephras (Machida 1999; Machida and
Arai 2003). Coupling the refractive index of the glass
shards with the glass morphology and heavy and light
mineral compositions is a popular method characterizing
tephras in and around Japan. The thermal immersion
method (e.g., Danhara et al. 1992) is usually used to
measure refractive index. There are some datasets on
the refractive indices of glass shards and some heavy
minerals for Japanese tephras (e.g., Machida and Arai
2003). This is an advantage for using this petrographic
methodology in and around Japan. Measurements of the
major elements in glass shards are done using an elec-
tron microprobe analyzer (EPMA), which is preferable,
or with an energy dispersive X-ray spectroscopy analyzer
(EDS) adjusted to an electron microscope. For trace

elements laser ablation or solution, inductively coupled
plasma mass spectrometry (ICP-MS) and instrumental
neutron activation (INAA) are employed. The major
elemental compositions of glass shards in the widespread
Middle Pleistocene to the Holocene tephras in and around
Japan are also listed by Machida (1999) and Machida and
Arai (2003). Continuous bulk INAA analysis is also used
to detect invisible tephras in marine sediment cores (Lim
et al. 2008).

Tephra as a stratigraphic tool

As mentioned above, tephra beds constitute “key” strati-
graphic horizons for correlating events among numerous
cores and sites. Correlation of tephra beds that are
present in different cores can be used to identify the
same stratigraphic horizons exactly, even when the
tephra is unknown. The recent development of a tephra
catalog for the Japan region, mainly based on terrestrial
investigations (e.g., Machida and Arai 2003), allows
accurate identification and correlation of offshore and
onshore tephra beds over a broad area.

The Late Pleistocene to the Holocene sediments in the
Japan Sea are characterized by alternations of fine light
and dark clayey layers, reflecting variability in the
paleoenvironment (e.g., Oba et al. 1991; Tada et al. 1992,
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1999; Ikehara 2003; Kido et al. 2007). The broad occur-
rence of these changes is indicated by the synchronous in-
cidence of dark layers among the three sites of ODP Legs
127/128 (Tada et al. 1992). To facilitate crucial intercore
correlation, one known tephra (Aso-4) and several un-
identified deposits were used as “key” beds, together with
the occurrence of dark layers. The relationship between
the tephras and dark layers was investigated in detail by
Nakajima et al. (1996) and Ikehara (2003), who studied
the visible tephras of the central and northern Japan Sea,
respectively. Lim et al. (2013) extended the investigation
in the central Japan Sea to also include invisible tephra
(cryptotephra) beds, and thereby confirmed the basin-
scale synchronicity of the dark layers during marine
isotope stages (MIS) 3-5 (Fig. 3). These examples demon-
strate the utility of tephra bed identification and
characterization in intercore and intersite correlations.
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The combination of dark-layer stratigraphy and tephra
characterization has also helped to distinguish tephra
beds, originally believed to be the same tephra, as separ-
ate tephras originating from the same volcano. Some
tephras from the same source volcano but from different
eruptions have similar petrographic and geochemical
characteristics, so it is very difficult to distinguish
between them based solely on these attributes. However,
because the dark layers in the Japan Sea sediments are
synchronous across the whole basin, each individual
tephra should always occur in the same position relative
to the dark layer stratigraphy. For example, in their re-
cent study of a core collected from the southern Japan
Sea, Chun et al. (2007) identified two alkaline tephras in
the MIS 3 sequence. While geochemical fingerprinting
was able to correlate the upper tephra to the U-Ym bed
reported by Arai et al. (1981), the lower tephra occurred
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within a horizon corresponding to the dark-layer stra-
tigraphy where the U-Ym tephra can be found in an-
other basin, described by Nakajima et al. (1996). This
discrepancy indicates that the U-Ym tephra reported
by Nakajima et al. (1996) was not identical to the original
unit described by Arai et al. (1981). Therefore, Chun et al.
(2007) renamed the lower tephra “SKP-II,” whereas Lim
et al. (2013) recently revised the name to “U-Sado.” In
summary, the dark-layer stratigraphy of the Japan Sea
sediments continues to help us refine the Late Pleistocene
to the Holocene tephrostratigraphy in this region. The
relationship of the Late Pleistocene to the Holocene
tephrostratigraphy with dark-layer stratigraphy is summa-
rized in Fig. 4.

Tephra correlation also provides important strati-
graphic information on highly bioturbated and massive
hemipelagic units. For example, the U-Oki tephra, which
erupted from Ulleung Island (Arai et al. 1981), is a well-
known feature of the last deglacial sequence in the
southwestern Japan Sea and adjacent land areas. This
tephra was first identified and described in marine sedi-
ments (Arai et al. 1981) and then correlated with the U-
2 tephra on Ulleung Island itself (Machida et al. 1984).
The majority of deglacial-age Ulleung tephras in the
Japan Sea have since been correlated with the U-Oki
tephra bed, largely on the basis of their petrographic
characteristics (e.g., Machida et al. 1984; Yoshikawa and
Inouchi 1993; Takata et al. 2006; Danhara et al. 2010).
Recently, however, Shiihara et al. (2011, 2013) analyzed
the major geochemistry of the glass shards and identified
two types of Ulleung tephra in the deglacial sediments
from the Japan Sea. They concluded that there are two
deglacial Ulleung tephras: one is the U-Oki tephra, which
correlates with the onshore U-3 bed, and the other is a
new tephra that correlates with the onshore U-4 bed. This
finding indicates that detailed characterization of each
tephra bed using several methodologies is essential for ac-
curate tephra correlation.

Tephra as a chronological tool

The eruption ages of several widespread tephras have been
estimated using magneto-, bio-, and isotopic stratigraphy.
Therefore, identifying these tephras in marine cores pro-
vides a basis for constructing robust age models in those
marine sediments. At the same time, well-dated marine
cores with high-resolution oxygen isotope stratigraphies
can provide the depositional ages of marine tephras (e.g.,
Oba 1991; Aoki and Arai 2000; Chun et al. 2004; Aoki
2008; Aoki et al. 2008). The majority of well-dated tephras
are concentrated in the Late Pleistocene to the Holocene
sequences, although there are several reports of the
Middle Pleistocene tephras in the Japan Sea sediments
(e.g., Shirai et al. 1997, 1999). Some Middle Pleistocene
tephras are preserved in uplifted onshore marine
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sequences throughout the Japan Sea basin (Shirai et al.
1997). Widespread tephras of Plio—Pleistocene age have
also been reported in onshore marine and lacustrine se-
quences in Japan (Nagahashi and Satoguchi 2007; Tamura
et al. 2008; Satoguchi and Nagahashi 2012). Correlating
samples with such tephras is crucial to establishing the
robust ages of long marine sequences, such as cores from
the International Marine Global Change Study (IMAGES)
and ODP/Integrated Ocean Drilling Program (IODP).
These correlations can be useful for dating and correlating
homogeneous hemipelagic sequences that have fewer age
controls, as in the case of lithostratigraphic unit 2 (a heav-
ily bioturbated homogeneous diatom ooze and diatom-
aceous clay: 6.5-2.5 Ma) from the ODP cores in the Japan
Sea as reported in Tada (1994). Some extremely large
eruptions have also supplied tephra to pelagic environ-
ments located several thousands of kilometers from the
source volcano (e.g., Aoki et al. 2000; Suganuma et al.
2006). In such environments, where there are few bio-
stratigraphic signals because the water depth is so great,
tephra is even more valuable as a tool for determining the
sedimentation age. Ultimately, in combination with high-
resolution and high-accuracy stratigraphic methods, such
as magneto-, bio-, isotopic, and lithostratigraphy, tephros-
tratigraphy can provide more reliable and detailed age
constraints for marine sediment sequences.

Some tephras contain specific minerals that can be
used for absolute age determination. For example, alka-
line tephras derived from the Ulleung and Baegdosan
volcanoes contain alkaline feldspar, while several Plio—
Pleistocene tephras, such as the Znp-Ohta (3.95 Ma)
and Omine (or Omine-SK110: 1.65 Ma) tephras (Tamura
et al. 2008), contain biotite phenocrysts. Both are target
minerals for Ar—r and K—Ar dating. Zircon and apatite
minerals are also suitable for fission track dating (e.g.,
Iwano and Danhara 1998; Danhara and Iwano 2001).
Therefore, depending on the mineralogy, tephras them-
selves can provide absolute ages.

Tephra as a signal of volcanic evolution

The geochemical and petrographic characteristics of
tephra grains provide valuable insight into the nature of
the source magma. Therefore, the spatiotemporal variabil-
ity in tephra characteristics can reflect the magmatic evo-
lution of volcanic islands and island arcs. For example,
several researchers have inferred volcanic—tectonic rela-
tionships from the spatiotemporal changes in the geo-
chemistry of the Neogene to the Quaternary volcanic
rocks (Kimura et al. 2003, 2005; Yoshida et al. 2014).
Moreover, because of the high degree of preservation of
volcanic glass in deep-sea sediments, the marine tephras
from long ODP/IODP cores are potentially amenable to
similar analysis.
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Marine tephra records also provide information on
long-term changes in volcanism, such as eruption fre-
quency and intensity, both of which can be influenced
by regional tectonics. For example, Machida (1987) used
tephras to reconstruct the history of large eruptions
from Japanese caldera volcanoes over the last 120 ka. In
contrast to onshore sequences where erosion can com-
promise the integrity of depositional sequences, preclud-
ing their use in long-term reconstructions, marine
records are generally continuous in nature. Furthermore,
although it may not be practicable to collect long marine
cores from all Japanese waters, the use of marine records
can provide considerable insight into the frequency and
volume of each volcano’s eruptions (e.g., Fujioka 1983).
An example of this type of reconstruction is found on the
Pacific seafloor offshore Central America. Kutterolf et al.
(2008a) correlated marine tephras with Central American
eruptions using 56 marine cores and 213 tephra beds.
Kutterolf et al. (2008b) recalculated the erupted volumes
and masses and related them to changes along the arc.

The long-term occurrence of tephra in the Japan Sea
ODP cores was reported by Pouclet and Scott (1992).
Based on the number and thickness of the tephra beds
per 100 ka at ODP Site 798 and Hole 799A, they estab-
lished six stages of tephra deposition. Both the number
and thicknesses of the beds were high during the last
1.2-1.3 Ma (stages V1 and V2), suggesting that modern
volcanic conditions commenced around this time. Before
1.2-1.3 Ma, the number of tephra beds was relatively
low (Pouclet and Scott 1992), although deposition of
rare but thick tephra beds occurred during this period.
Referring to the respective data of Pouclet and Scott
(1992), we also see that minor differences between the
investigated core sites may reflect spatial differences in
volcanic activity. Ultimately, comparing tephra occur-
rences among drilling sites will yield important informa-
tion on the spatial variation of volcanism throughout the
Japanese islands.

The volcanic source area for the individual Pliocene—
Middle Pleistocene tephras is unknown (Satoguchi and
Nagahashi 2012). Tamura et al. (2008) estimated the vol-
canic source areas of some Pliocene—Early Pleistocene
deposits from the thickness distributions of the tephra
beds. However, there are too few onshore outcrops in
which each tephra is exposed to determine source areas
from onshore data like composition, grain size, and bed
thickness. However, long marine cores have the potential
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to provide information on the spatial distribution of
tephra composition, grain size, and bed thickness
required to estimate volcanic source areas.

Tephra as a paleoceanographic and paleoclimatological
tool

Because tephra falls in multiple environments, tephra
deposits can be used as key beds to correlate events
among sites (Ikehara and Okazaki 2014). For example,
fluctuations in East Asian monsoons are thought to be
recorded in the sediments of Lake Biwa (Kuwae et al.
2002; Nakagawa et al. 2008), Lake Suigetsu (Nakagawa
et al. 2003), and the Japan Sea (Tada et al. 1999; Ikehara
2003; Tada 2004; Ikehara and Fujine 2012). Because Lake
Biwa and Lake Suigetsu are located close to the Japan
Sea, several tephras found in Lake Biwa (Yoshikawa and
Inouchi 1993; Nagahashi et al. 2004; Satoguchi et al.
2008) and Lake Suigetsu (Smith et al. 2013), such as the
K-Ah, U-Oki, AT, and Aso-4 tephras, also occur in
the Japan Sea (e.g., Arai et al. 1981; Furuta et al. 1986;
Nakajima et al. 1996) and can therefore connect those
different depositional environments.

To better understand the climate system, it is import-
ant to compare the timing of changes recorded in differ-
ent environments. Therefore, paleoclimatologists must
ascertain the leads and lags for each climatic and/or en-
vironmental event, and tephra allows them to do so. For
example, a comparison of the paleoclimatic variability
recorded in Lake Suigetsu and Lake Biwa sediments with
events in the Japan Sea facilitates the assessment of mar-
ine (Japan Sea) and terrestrial (onshore Japan) climatic
interactions, and by extension, the Asian monsoon sys-
tem. When this is coupled to the high-resolution Lake
Suigetsu chronology (Bronk Ramsey et al. 2012), it is
also possible to explore the role of the Asian monsoon
in the global climate system. Furthermore, although the
Japan Sea paleoenvironmental record may differ from
those of the Pacific Ocean and other marginal seas (e.g.,
the South and East China Seas, Okhotsk Sea, and Bering
Sea), the broad distribution of tephras potentially allows
the correlation of past climatic and environmental varia-
tions across a wide area.

Tephras can also be used to reconstruct the magnitude
of the marine reservoir effect. The eruption ages of the
Late Pleistocene to the Holocene terrestrial tephras are
generally determined with radiocarbon dating of (a) tree
trunks buried in pyroclastic and ashfall deposits or (b)
peat beds located above and below the tephra bed. In
these subaerial settings, plants obtain carbon directly
from the atmosphere and are therefore in equilibrium
with atmospheric CO,. In contrast, the eruption ages of
the Late Pleistocene to the Holocene marine tephras are
typically determined with the radiocarbon dating of as-
sociated planktonic foraminifera, which obtain carbon
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from the surface waters. Consequently, because tephra
forms geologically synchronous key beds, the magnitude
of the marine reservoir effect at the time of eruption can
be established by comparing the terrestrial and marine
radiocarbon dates (Fig. 5; Sikes et al. 2000; Siani et al.
2001; Ascough et al. 2004, 2005; Eiriksson et al. 2004;
Hutchinson et al. 2004; Larsen et al. 2006; Ikehara et al.
2011, 2013).

Because the *C concentration of surface seawater dif-
fers from that of the atmosphere, evaluating the marine
reservoir effect is crucial to accurately calibrate marine
radiocarbon dates with calendar ages. The marine reser-
voir effect is composed of the global mean effect (R) and
the local effect (AR) (Stuiver et al. 1986). The global
mean effect is approximately 400 years, based on a sim-
ple box model calculation (Stuiver et al. 1986; Stuiver
and Braziunas 1993), whereas the magnitude of local ef-
fects is influenced by ocean circulation and upwelling.
For example, in the subarctic northwestern Pacific, up-
welling of “old” seawater produces a larger local radio-
carbon offset than in the subtropical western Pacific or
along the Kuroshio Current (Marine Reservoir Correction
Database, http://www.calib.qub.ac.uk/marine/). Today, the
North Pacific is the terminus for global deep water circu-
lation (Broecker et al. 1985), so deep water in the North
Pacific contains old carbon from the decomposition of
sunken organic matter that accumulated during global cir-
culation. The upwelling of this old seawater accounts for
the large AR in the North Pacific region.

Both surface water circulation and water ventilation
in the Japan Sea have oscillated over orbital and mil-
lennial time scales during the Late Pleistocene to the
Holocene, reflecting glacio-eustatic sea level and East
Asian monsoon fluctuations (Oba et al. 1991; Tada
et al. 1999: Itaki et al. 2004; Watanabe et al. 2007;
Usami et al. 2013). These could affect the magnitude
of the marine reservoir effect. As mentioned above,
several tephras occur in both the Japan Sea and Lake
Suigetsu. The ages of the Lake Suigetsu deposits are
constrained by more than 500 radiocarbon dates from
terrestrial leaves and other plant remains (Bronk
Ramsey et al. 2012). Comparing the radiocarbon dates
of the tephras in the Japan Sea with those from Lake
Suigetsu allows the reconstruction of both the spatio-
temporal changes in AR and their relationships to
paleoceanographic and paleoclimatic changes. Therefore,
determining the ages of the marine tephras in Japan Sea
sediments is crucial to paleoceanographic studies of the
Japan Sea.

Conclusions

This study has explored the utility of marine tephra records
in stratigraphy, chronology, volcanology, paleoceanography,
and paleoclimatology in the context of the Japanese
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islands. As a product of explosive volcanism, tephra
provides important isochrones for terrestrial, lacus-
trine, and marine sequences in and around Japan.
Because of the large number of tephra beds in Japanese
waters, marine tephra is an ideal tool that can be used in
many fields of earth science, particularly paleoceanogra-
phy and paleoclimatology. Marine tephras are crucial in
understanding the Asian monsoon system and its re-
lationship with the global climate, as demonstrated by
the comparison of paleoclimatic events recorded in
Lake Biwa and Lake Suigetsu sediments with those
recorded in the Japan Sea.
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