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Abstract

The strongly temperature-dependent viscosity of rocks leads to the formation of nearly rigid lithospheric plates.
Previous studies showed that a very low yield stress might be necessary to weaken and mobilize the plates, for
example, due to water. However, the magnitude of the yield stress remains poorly understood. While the convective
stresses below the lithosphere are relatively small, sublithospheric convection can induce large stresses in the
lithosphere indirectly, through thermal thinning of the lithosphere. The magnitude of the thermal thinning, the
stresses associated with it, and the critical yield stress to initiate subduction depend on several factors including the
viscosity law, the Rayleigh number, and the aspect ratio of the convective cells. We conduct a systematic numerical
analysis of lithospheric stresses and other convective parameters for single steady-state convection cells. Such cells
can be considered as part of a multi-cell, time-dependent convective system. This allows us a better control of
convective solutions and a relatively simple scaling analysis. We find that subduction initiation depends much stronger
on the aspect ratio than in previous studies and speculate that plate tectonics initiation may not necessarily require
significant weakening and can, at least in principle, start if a sufficiently long cell develops during planetary evolution.
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Background

Plate tectonics is central to many aspects of the geology
and evolution of terrestrial planets. While Earth is the
only planet where plate tectonics is observed, its driv-
ing mechanism and timing of initiation are still poorly
understood. Subduction is thought to be the fundamen-
tal process for plate tectonics initiation because the slab
pull of subducting slab contributes most to the forces that
drive plate movements. On the Earth, initiation of sub-
duction is greatly facilitated by tectonic forces associated
with plate motions already occurring elsewhere (Mueller
and Phillips 1991; Hall et al. 2003). Various models for
subduction initiation has been proposed (e.g., McKenzie
1977; Turcotte 1977; Ogawa 1990; Mueller and Phillips
1991; Kemp and Stevenson 1996; Toth and Gurnis 1998;
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Stern 2004; Solomatov 2004a; Ueda et al. 2008; Nikolaeva
et al. 2010), many of which involve existing plate bound-
aries or weak zones. Incipient subduction zones are often
found near transform faults or fracture zones because of
their physical weakness (e.g., Mueller and Phillips 1991;
Gurnis et al. 2004).

On one-plate planets such as Venus and Mars, the
absence of plate tectonics is likely to be due to the diffi-
culty of subduction initiation in the absence of forces due
to plate motions. In other words, the problem of plate tec-
tonics initiation can be viewed as the problem of the very
first occurrence of subduction. Due to the high sensitivity
of viscosity to temperature, the lithosphere acts as the cold
rigid thermal boundary layer that has a very high strength.
On these planets, mantle convection is likely to be in
the stagnant lid regime (e.g., Morris and Canright 1984;
Fowler 1985; Solomatov 1995). One possible mechanism
for the very first episode of subduction is due to the litho-
spheric stresses generated by mantle convection (Ogawa
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1990; Fowler and O’Brien 2003; Solomatov 2004a). The
magnitude of these stresses is relatively small compared
to the lithospheric strength suggested by laboratory and
field observations (e.g., Kohlstedt et al. 1995; Gurnis et al.
2004), and thus, it is usually believed that to initiate sub-
duction, some weakening mechanisms must be present in
the lithosphere.

Much effort has been devoted to understand the weak-
ening mechanisms of the lithosphere. Several studies
showed that the frictional shear stress resisting subduc-
tion at transform faults and fracture zones have to be less
than 10 MPa for subduction to occur (Toth and Gurnis
1998; Hall et al. 2003; Gurnis et al. 2004). Stress drop esti-
mates from earthquakes also indicate that fault strength
may be approximately 10 MPa (Kanamori 1994; Kanamori
and Brodsky 2004). Models are able to describe global
reduction in the lithospheric strength, as well as localized
weak zones such that plate-like features can be gener-
ated from mantle convection in a self-consistent manner
(e.g., Trompert and Hansen 1998; Moresi and Solomatov
1998; Tackley 2000a; Bercovici 2001; Branlund et al. 2001;
Regenauer-Lieb et al. 2001; Regenauer-Lieb and Kohl
2003; Regenauer-Lieb et al. 2006; Korenaga 2007; Landuyt
et al. 2008). Various approaches have been used to deal
with the creation of weak zones (Bercovici 2001; Bercovici
and Ricard 2005; Landuyt et al. 2008; Branlund et al. 2001;
Regenauer-Lieb and Kohl 2003). The two-phase damage
theory with a grain-size dependent rheology was devel-
oped to explain the formation of weak plate boundaries
and track the evolution of deformation (e.g., Bercovici and
Ricard 2005; Landuyt et al. 2008; Bercovici 2012). Some
studies suggested that water might play an important
role in the localization of deformation (Regenauer-Lieb
et al. 2001; Regenauer-Lieb and Kohl 2003; Regenauer-
Lieb et al. 2006). Water also weakens the lithosphere
by lowering the activation energy (Regenauer-Lieb et al.
2001; Regenauer-Lieb and Yuen 2004; Regenauer-Lieb
et al. 2006) and increasing the pore fluid pressure
(Kohlstedt et al. 1995).

One approach to quantify the weakening of lithosphere
is to set a yield value to the rheology of the lithosphere
to simulate brittle behavior (Fowler 1993; Trompert and
Hansen 1998; Moresi and Solomatov 1998; Richards et
al. 2001; Tackley 2000a,b; Fowler and O’Brien 2003; Solo-
matov 2004a; Stein et al. 2004; O’Neill et al. 2007; Stein
and Hansen 2008). The yield stress can be regarded as a
simplification of mechanisms that describe the strength
of the lithosphere. Convection with yield stress is usually
categorized into three regimes: mobile lid regime, transi-
tional regime with some episodic failure, and stagnant lid
regime (Moresi and Solomatov 1998; Tackley 2000b; Stein
et al. 2004). Stein and Hansen (2008) further subdivided
the transitional regime into episodically mobile and stable
plate mobilization regimes. To access the conditions of a
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planet to have plate tectonics, some researchers presented
regime diagrams in terms of Rayleigh number, viscosity
contrast, and yield stress (e.g., Stein et al. 2004; O’Neill and
Lenardic 2007).

A number of studies attempted to derive scaling rela-
tions for convective stresses and yield stress to extrapolate
to planetary conditions (e.g., Moresi and Solomatov 1998;
Fowler and O’Brien 2003; Solomatov 2004a,b; O’Neill et al.
2007; Valencia and O’Connell 2009; Korenaga 2010b; Van
Heck and Tackley 2011; Stamenkovic and Breuer 2014).
Yet the accurate description of these convection-induced
stresses inside the lithosphere and thus the yield stress is
lacking.

This study seeks to understand the stress distribution
of the steady-state convecting cell with respect to various
convective parameters using the pseudoplastic rheology
as a first step. The goal of this study is to find a scaling law
for the lithospheric stress (hereafter referred as lid stress)
and the critical yield stress, which is the highest yield
value at which the stagnant lid could be mobilized. Note
that an alternative and, perhaps, more intuitive approach
would be to assume that the yield stress is known and to
try to figure out under what dynamic conditions it can
be reached. However, (a) the ‘normal’ yield stress is so
high that it is nearly impossible to reach and (b) given the
uncertainties in the weakening mechanisms and thus the
actual magnitude of the yield stress, it should be treated as
an unknown.

In this study, we first examine the stress structure in
steady-state stagnant lid convection and explore scaling
relationships between convective parameters especially in
relation to aspect ratio to develop a scaling theory for lid
stress and critical yield stress. We then compare the theo-
retical scaling laws with numerical results. In addition, we
investigate the accuracy of the Frank-Kamenetskii approx-
imation for modeling the initiation of plate tectonics.

Rheology

Viscous creep governs the flow in the mantle as it has high
temperatures and low stresses. It can be described by a
constitutive relation (Hirth and Kohlstedt 2003), which is
an Arrhenius function of temperature 7, activation energy
E, pressure P, and activation volume V with power law
dependences on stress 7 (second invariant of stress ten-
sor), grain size d, water fugacity fi,0, and an exponential
function of melt fraction ¢:

(1)

E+PV
n = Arlfndmf]flzo exp(—a¢) exp ( + ) ,

RT

where A and « are constants, R is the gas constant,
and m, n, and r are exponents for grain size, stress, and
water fugacity, respectively. Depending on the temper-
ature, grain size, stress, pressure, and composition, the
dominating deformation mechanism in the mantle would
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be different (Karato and Wu 1993; Karato et al. 1995; Hirth
and Kohlstedt 2003). In the lithosphere, the major factor
controlling the viscosity is temperature. Thus, the viscos-
ity function to investigate subduction initiation is often
written as:

, E
n=A"exp (RT) . (2)

Frank-Kamenetskii approximation

Many numerical studies used use a relatively low vis-
cosity contrast to observe plate behavior, which has lim-
ited applications to realistic planetary situations. Moresi
and Solomatov (1998) investigated the convective regimes
with viscosity contrast ranging from 3 x 10* to 3 x 107, and
in Tackley (2000a), the viscosity contrast was limited to
10%, whereas Richards et al. (2001) and Stein and Hansen
(2008) used viscosity contrast on the order of 10°. The vis-
cosity contrast across the terrestrial lithosphere is many
orders of magnitude higher.

The low-viscosity contrast is used because high-
viscosity contrasts are difficult to treat in numerical calcu-
lations (Moresi and Solomatov 1995). Thus, the Arrhenius
function is often approximated by the Frank-Kamenetskii
function, which reduces the viscosity contrast by many
orders of magnitude compared to Arrhenius viscosity
function. This makes the problem of convection with
strongly temperature-dependent viscosity more computa-
tionally tractable.

Frank-Kamenetskii approximation originated from the
combustion theory. Frank-Kamenetskii pointed out that
since the activation energy E is large, we can consider the
rate of reaction only in a narrow range of temperature
around the combustion temperature (Frank-Kamenetskii
1969). The equation for the rate of reaction is similar to
the strain rate in the constitutive relations, which also has
an Arrhenius form exp(—E/RT). Since convection mostly
takes place in the interior of the cell where the temper-
ature is close to the interior temperature T;, we use the
same approximation by expanding the exponent E/RT in
the Arrhenius form so that the viscosity can be expressed
as an exponential function of temperature only:

n=Bexp(—yT), (3)
where B and y are constants. In the interior:

Ni,Arr = MNiexps (4)

dni,Arr _ dni,exp )
aTr T=T; ar T=T; ’

where na; and 7ep are the interior viscosities of
the Arrhenius function and that of Equation 3 (here-
after referred as exponential viscosity), respectively.
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Equations 4 and 5 give y in terms of activation energy and
interior temperature:

Y =—= (6)

This method of expanding the terms in the exponent
preserves the interior viscosity and the change of vis-
cosity with temperature close to 7;, where convection
actively takes place. Some studies expanded the terms
inside the exponents differently (e.g., King 2009). How-
ever, it is important to use Equations 4 and 5 to ensure
the asymptotic accuracy of Frank-Kamenetskii approxi-
mation (Morris 1982; Morris and Canright 1984; Fowler
1985; Frank-Kamenetskii 1969).

Frank-Kamenetskii approximation was shown to be suf-
ficiently accurate for the interior of the convective layer
with large viscosity contrast (Solomatov and Moresi 1996;
Ratcliff et al. 1997; Reese et al. 1999). Recent studies
have examined convection with Arrhenius rheology and
suggested slightly different scaling laws compared to con-
vection with Frank-Kamenetskii viscosity (Korenaga 2009;
Stein and Hansen 2013). Here, we assess the accuracy of
the Frank-Kamenetskii approximation in predicting the
values of critical yield stress.

Pseudoplastic rheology and plastic yielding

The brittle behavior of the lithosphere can be simplified
with a viscoplastic rheology that causes yielding when the
convective stresses exceed a plastic yield stress 7, (Moresi
and Solomatov 1998; Trompert and Hansen 1998; Tackley
2000b; Fowler and O’Brien 2003). The yield stress can be
defined by Byerlee’s law (Byerlee 1978):

Ty = To + Upgza, 7)

where 7y is the yield stress at the zero hydrostatic pres-
sure, 1 is the frictional coefficient, and pgz is the hydro-
static pressure. Viscous deformation occurs according to
Equation 3 when stresses are less than the yield stress.
Above the yield stress, the deformation follows a plastic
flow law defined by a non-linear effective viscosity:

T
Teff = —~, (8)
e

where é is the second invariant of the strain rate tensor.
The yield stress defines a change on deformation mecha-
nism based on the second invariant of the deviatoric stress
tensor, which corresponds to the Von Mises yield crite-
rion. In this study, we consider two types of yield stress: a
constant yield stress 7, or a depth-dependent yield stress
with a constant gradient ry’.
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Methods

Formulation of the problem

Equations of thermal convection

The equations of thermal convection of an incompressible
fluid in Boussinesq approximation and infinite Prandtl
number are as follows:

8 .
a—: =0, ©)
L
ap’ Oty
apgT — L 4 59 — o, (10)
Bxi 8xj
8T’+_ T’ 92T’ )
L
ot o dx?

where p is density, p’ and T’ are pressure and tempera-
ture perturbations, g; is the gravity vector, « is the thermal
expansivity, k = % is the thermal diffusivity, k is the
thermal conductivity, and ¢, is the isobaric specific heat.
7 represents the elements of the stress tensor according to

the following equation:

ou; i ou;
m=nl—+-—"]),
y=n 0x; 0X;

where i and j, are indices of the coordinate axes.

The boundary conditions are as follows. For a cell with
only base heating, the top and bottom surfaces are isother-
mal. The temperature of the top surface as Ty and that
of the bottom surface as 7. The temperature difference
is AT = T1 — Tp. The vertical boundaries are thermally
insulated. All surfaces are free-slip. The velocity normal to
a cell boundary is zero.

(12)

Non-dimensionalization
The above equations are non-dimensionalized as follows:

_ X  _ d _ n o _ d> ; tK 7 T

K= di=U— =—, T=1—, t=t—, T = —,

a "k 7 1 KNy d? AT
(13)

where d is the layer depth, ¢ is time, n; is the reference
viscosity (at the bottom of the convective layer), and AT
is the temperature drop across the layer. The Rayleigh
number can then be used to characterize the system:

ATd?
Ra= 8T (14)
Kkm
The Arrhenius viscosity is non-dimensionalized as:
- E
E=—"_, (15)
RAT

_ E 6

1 = Nr,Arr €Xp m ) (16)
while the dimensionless exponential viscosity is as follows:

7 = Nrexp €Xp(=0T"), (17)
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where the pre-factors 7, A, and Nr,exp are chosen to ensure
that the viscosity is equal to unity at 77 = 1 and the Frank-
Kamenetskii parameter 6 is the non-dimensionalized

form of the constant y (Equation 6):
0 =yAT. (18)

In this case, the viscosity contrast is characterized by
only one parameter (0):

An=¢é, (19)

The non-dimensional yield stress is as follows:

T =T+ 1% (20)
where
d2
f() = —17 (21)
Km

is the non-dimensional yield stress at the surface and

- P a3

vy =5, (22)
km

is the non-dimensional yield stress gradient. The dimen-

sionless pseudoplastic viscosity is as follows:

= 2
Ty = d .
4 = —e.

Neff = =, €= (23)
e

K

In the following discussion, all parameters are assumed
to be non-dimensionalized and the bar sign will be
dropped. The non-dimensional forms of Equations 9to 11
are as follows:

9
TZL =0, (24)
1
i
RaT'e; — i d +-—2 =0, (25)
0X; 0x;
AT’ AT 9T 26)
ot " ox; 9x2

where e; is a unit vector in the direction of gravity.

Matching Arrhenius viscosity and exponential viscosity in
non-dimensional form

To compare the two viscosity laws, the Arrhenius viscos-
ity and the exponential viscosity are matched according to
Equations 4 and 5:

ex = <o exp (—0T;), (27
Nr,Arr €XP T, + To Nr,exp €XP ( D, (27)
£ _E 0 (—0T;). (28)
ex = exp (— i)
(T, + To)? Nr,Arr €XP T, + To Nr,exp €XP i
Equations 27 and 28 would yield:
E
0= —r—>. (29)
(T; + To)

T; differs from the bottom temperature T’ by a rheological
temperature difference ATy, which is on the order of 1.
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Equation 29 shows that there are various combinations
of E and T that would give the same 6, and they would
result in different Arrhenius viscosity contrasts:

ET;

P To(T; + To) (30)

Anprr = €

Thus the ratio of Arrhenius viscosity contrast to expo-
nential viscosity contrast exp 6 is as follows:

AnArr ET;
=exXp g (31)
exp(9) To(T; + To)
Results

Steady-state convection
We use the finite element code CITCOM (Moresi and
Solomatov 1995) to simulate convection in a 64a x 64
box, where a is the aspect ratio. Several high viscos-
ity cases were ran with 1284 x 128 resolution for more
accurate results. All cases were run until they reached a
steady state. We consider the range of parameters in which
convection is in the stagnant lid regime (Solomatov 1995).
The structure of a steady-state convection cell is shown
in Figure 1. Due to the temperature-dependent viscosity,
the top part of a convective cell forms a stagnant lid and
convection only penetrates into the lid by length of &,
- the rheological layer thickness (e.g., Solomatov 1995).
A cold rigid lid, which is often defined by an isotherm,
is naturally developed in the top part of the cell slop-
ing downward to the downwelling end. The stress field
(Figure 1, right) shows a stress boundary layer near the
surface. This is consistent with the analytical solutions of
Fowler (1985).
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To compare the stresses in exponential and Arrhenius
viscosity, we choose a range of Tj and calculate their cor-
responding E that gives the same 6 according to Equation
29 with T; ~ 1.

Aspect ratio
The horizontally averaged profiles (Figure 2) show that the
lid thickness slightly depend on the aspect ratio of the con-
vective cell but the bulk of the temperature and viscosity
profile does not vary much with the aspect ratio. However,
the stress profile in small aspect ratio cells (¢ = 0.25) is
distinctly different from that in larger cells (¢ = 0.5 to 1).
This difference is more apparent in the 2-D plots
(Figure 3). In wider cells, the layer with highest stress
(red) is approximately symmetric along the half-width
of the cell, increasing in depth towards both edges and
greater towards the downwelling edge. Below the sur-
face stress boundary layer, the stresses in the middle of
the lid are highest as they are not affected by the free-
slip boundary conditions at the vertical edges. Although
surface stress boundary layer is obvious in horizontally
averaged stress profiles, the 2-D stress fields reveal that
the surface stress are not always greater than that at depth.
Figure 3 shows that at mid-width, it is possible that the
surface stresses are lower than the interior. The high-
stress region (orange to lime) roughly correspond to the
cold lid shown in the temperature distribution, both hav-
ing slopes towards the downwelling edge. In the narrowest
cell however, this high-stress slope deviates from the ther-
mal lid slope. There is a high-stress ‘core’ within the lid
where the magnitude of stresses is close to that of the
surface stress boundary layer. This implies that steady-
state convection in small aspect ratios may be in another

Figure 1 Temperature (left) and stress fields (right) of a steady-state convective cell. Color scale goes from high (red) to low (blue). The lid is defined
by anisotherm T;, and the interior temperature T; is found by averaging the temperature of the convecting interior excluding boundary effects. For
scaling purposes, the lid slope A and rheological sublayer thickness §, is taken at mid-width, whereas lid thickness 8)iq is extrapolated to the edge

from the lid slope in the middle.
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Figure 2 Comparison of (a) viscosity, (b) temperature, (c) stress
profiles of exponential viscosities for@ = 16,Ra = 3 x 107, and varying
a. The somewhat different stress profile of a = 0.25 suggests that the
surface stress boundary layer is not the region with highest stress.

regime of plastic failure where the interior stresses reach
the yield stress first, such that the plastic zone could initi-
ate at depth while the surface may or may not be plastic,
depending on the yield stress.

For cases with high-viscosity contrasts and larger aspect
ratios, convection is localized to a small part of the cell, or
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there could be multiple convective cells (Figure 4). These
cases might belong to the subcritical convective regime
(Solomatov 2012), which has a different behavior from
supercritical convection and therefore not in our scope of
study. To stabilize one-cell flow, smaller aspect ratio cases
are considered to investigate the dependence of critical
yield stress on aspect ratio.

Rayleigh number

Increasing Ra reduces the lid thickness as well as the lid
slope (Figure 5). The stresses are larger with higher Ra, as
is expected with more vigorous convection.

Viscosity contrast

The effects of viscosity contrast on the interior profile
are illustrated in the plots in Figure 6. The conductive
lid becomes thicker and the interior temperature is closer
with the bottom temperature with increasing 6. In the
stagnant lid regime (6 > 10), the stress boundary layer
near the surface is more pronounced than in the transi-
tional regime.

The interior viscosity, temperature, and stress for Arrhe-
nius viscosity and exponential viscosity are close. We
investigate a range of different Arrhenius viscosity val-
ues by varying Ty, noting that at 7y = 2.0 is a rather
high surface temperature. As Ty decreases, the difference
in viscosity contrasts calculated by the two viscosity laws
becomes larger. However, the temperature and the stress
profiles are similar, as shown in the horizontally aver-
aged profiles in Figure 7. There is only a slight decrease
in thickness of the stress boundary layer as the Arrhenius
viscosity contrast increases. The 2-D stress distributions
in Figures 8 and 9 reflect the small differences in the
stress distribution as viscosity contrast increases, both in
exponential viscosity and Arrhenius viscosity. This is con-
trary to the findings of Stein and Hansen (2013), which
observed a distinctly thinner lid in Arrhenius viscosity
and slightly different temperature and viscosity profiles.
The small difference that we observe may affect the scal-
ing laws for subduction. The vertical variation in stresses
at the downwelling edge may be particularly important.
Although the lid thickness is about the same, the contrast
in stresses at x = a seems to be greater at low T or high-
viscosity contrast (Figure 9). Since subduction occurs at
the downwelling edge, this may influence the scaling of
yield stress.

Lid stress scaling theory

Fowler (1985) obtained a polynomial expression for the
stress in the lid below the surface stress boundary layer
in large lid slope approximation, which allows a compar-
atively simple scaling relation for stress. In order to solve
the equations of convection, Fowler took Ra and 6 to be
asymptotically large and assumed the magnitude of lid
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Figure 3 Stress (top row) and temperature fields (bottom row) of convecting cells with Ra = 3 x 107,60 = 16, and various a.
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X

Figure 4 Localized convection and multiple subcells in steady-state convection. (@) 8§ = 19, 7o = 06,a=1,Ra =1 x 107.(b) 6 = 16, Ty = 06,
Ra=3x10".
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Figure 5 Stress structure of steady state cases with & = 16,a = 0.75,Tp = 0.8.(a) Ra = 107.(b) Ra = 3 x 107.(c) Ra = 108. The area of convecting
interior becomes larger as Ra increases and the thickness of the stagnant lid decreases. Scale shows the values of log 7.

slope to be either on the order of lid thickness or rheo-
logical sublayer thickness. For the Earth and some smaller
terrestrial planets as well as most numerical simulations,
Ra may not be as high as the asymptotic theory require,
and thus, some other theory may be needed for lid stress
scaling. Moreover, as we find in this study, the lid slope
does not follow either of these two end-member cases and
thus needs to be scaled based on numerical simulations.

Fowler also found that the interior flow can be uncou-
pled from the rheological sublayer, which makes the prob-
lem setup akin to a viscous lid gravitationally sliding along
a slope. We can therefore estimate the shear stress in the
rigid lid tj;q by considering the force balance on the lid
(Figure 1):

dr

— = Apgy.
dy PEx

For density changes due to temperature variations, the
lid stress can be integrated from Equation 32:

(32)

T nal 4
Tid = — P —g sin A— + T;,
lid £0 dyg ) i

(33)
where 7; is the stress at the interior temperature 7.

There are two assumptions that allow us to simplify
Equation 33. The first is that t; is negligible since 7; <«
7iid. The second is the small lid slope approximation. For
small A, sin(}) is approximately equal to A. The non-
dimensional form of Equation 33 becomes:

L
Tid = —Ra—"—A.
lid dy 9

Thus, the lid stress is determined by Ra, dT/dy, A,

and y, which will be defined in the following discussion.

(34)

This scaling is similar to that obtained from the analytical
solutions of Fowler (1985).

Lid base temperature
The lid base is often defined by an isotherm:
T, =T —CO~! (35)
where C is a constant. We determine the lid base from
velocity profile (Solomatov and Moresi 2000) to find the
constant C. We first find the greatest velocity gradient at a
specific distance x from the upwelling edge of the cell. This
velocity gradient is then extended to the depth at which
velocity is zero, as shown in Figure 10. This depth defines
the lid thickness. This process is repeated for all x (from
0 to a) to obtain the shape of the lid base across the con-
vecting cell. This velocity gradient-defined lid base is then
used to find the thermal lid base defined by Equation 35.
The interior temperature 7; is found by averaging the tem-
perature in the middle part of the interior to exclude the
boundary effects. The constant C is determined by match-
ing the lid thickness at mid-width (x = 0.5a) given by T}
and that defined by the velocity gradient (Figure 11). We
choose the value at mid-width because in most cases, the
two lid bases are closest around the middle of the cell for a
large lateral extent. In some cases, especially for narrower
cells, the temperature lid base and the velocity lid base
may not match, so the mid-width serves as a reference
point for consistency in defining the lid base.

Equation 35 allows us to determine the rheological tem-
perature difference ATy, = T; — Ty = CO~L. It varies
with Ra, 6, and aspect ratio, and the scaling exponents are
summarized in Table 1.
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Figure 6 Temperature, viscosity, and stress profiles of Ra = 3 x 107,
a = 0.75, and varying Frank-Kamenetskii parameter 6.

Lid slope and lid thickness

Gravitational sliding requires a downward dipping slope
A as indicated in Equation 34. In larger aspect ratio cells,
although the lid thickness varies horizontally, the lid slope
is approximately constant in the middle portion of the cell.
This is different for smaller cells, where the lid base could
be some function of x instead of a straight line (Figure 12).
For example, Fowler suggests that the lid base varies with

7
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Figure 7 Comparison of temperature, viscosity, and stress profiles of
Arrhenius and exponential viscosities for = 16, Ra = 3 x 107,
a = 0.75, and various Ty.

%94 (Fowler 1985). For consistency in our scaling analysis,
the lid slope is taken to be the slope of the thermal lid base
at mid-width.

To check whether the lid slope scales with lid thickness
or rheological sublayer thickness (Fowler 1985), we look
at the vertical drop &« (Figure 1) and define the lid slope
as 8y /a. If the lid slope scales with the lid thickness, then
8¢ ~ 8lid ~ Nu~1, and thus
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Figure 8 Stress structure of steady state cases with Ra = 3 x 107, Tp = 0.8, a = 0.75. (a-d) Arrhenius viscosity with (a) 8 = 22, (b) 8 = 19, (c)
0 =16,(d) & = 13, and (e) exponential viscosity with & = 13. Color scale shows the values of log(t). White lines represent streamlines.

8x/81id ~ Nudyx ~ constant. (36)

If the lid slope scales with 8, then 8x ~ 8. As
8th/81id ~ 071, thus 8x/8iq ~ 071, or

08x/81id ~ Nudyd ~ constant. (37)

We plot Nudy and Nudy6 in Figure 13. Neither combi-
nation remains constant with 0, with Nudy increases with
0 and Nué,6 decreases with 0. This suggests that the lid
slope is somewhere in between these two extreme cases.
Therefore in deriving the scaling laws for stresses, we
need to determine the dependence of lid slope on various
convective parameters (Table 1).

Thermal gradient

The temperature is approximately a linear function of
depth and the thermal gradient in the lid is about constant
with depth. At mid-width (x = 0.5a), it is approxi-
mately equal to the Nusselt number, which is the non-
dimensional horizontally averaged surface temperature
gradient. Since we are looking at temperature changes
from the interior to the bottom of the lid which includes
the rheological sublayer, we also check the thermal gra-
dient in the rheological sublayer ATy, /8 to note any
difference in the scaling relations. As before, we choose
the values ATy, /8h at the mid-width to exclude boundary
effects for scaling purposes.



Wong and Solomatov Progress in Earth and Planetary Science (2015) 2:18 Page 11 of 34

Figure 9 Stress structure of steady state cases with Ra = 3 x 107,80 = 16,a = 0.75. Cases (a-d) use Arrhenius viscosity with (a) 7o = 0.6, (b)
To = 08,(c) To = 1.2,and (d) Tp = 2.0. Case (e) uses exponential viscosity. Color scale shows the values of log(z). White lines represent streamlines.

In previous theories, ATy, /AT ~ 67! and 6,,/81q ~ be dependent on aspect ratio and #. Therefore, AT, /AT
6~1. The determination of C follows the description in the  and 8,/8jiq will also have a dependence on a and , and
previous section on lid base temperature, and itis found to  their scaling relations are summarized in Table 1.
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Figure 10 Velocity profile taken at mid-width of the cell (x = 0.5a). Dotted line is the linear extrapolation of the maximum velocity gradient, and
the lid base is marked at the depth at which this line intersect with the vertical axis.
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Stress scaling

Equation 34 can now be expressed in a non-dimensional

form with the definitions of various parameters in the pre-

vious discussion. At the bottom of the lid at §,;, from the

interior, where the temperature difference is ATy, the

stresses are as follows:
Tlid ~ RaLTrh)»yz.

Orh

(38)

Further into the lid, the non-dimensional temperature
gradient is the Nusselt number. Therefore Equation 34 can
be alternatively scaled as:

Tjid ~ RaNuiry?. (39)

01 \ =

k=
@-4 0.2 -
-1 b
=T =T,-3.20 ~
03 — T, =T,-3.46"
--- velocity-defined lid base
- lid slope
.- plume slope
0402 " o0& 06 08 1
width

Figure 11 Top part of a convective cell showing various definitions
of the lid base. The lid base defined by the velocity gradient is shown
in dashed line, and it matches the temperature lid base defined at

T, = T; — 3.20~ " at around the mid-point. The lid slope is estimated
at the mid-point.

As shown in Figure 10, there is a slight difference in the
thermal gradient in the lid and in the rheological sublayer;
therefore, Equations 38 and 39 may result in slightly dif-
ferent scaling exponents. We check both scaling relations
to see whether the stresses at the lid base and those in the
lid can be scaled similarly.

We plot the stress profile according to Equations 38
and 39 and compare with that from numerical solutions
(Figure 14). The prefactor of the stress as a function of
y calculated from the thermal gradient in the rheologi-
cal sublayer (T}n/8:h) is 5.9%x10°, whereas that from the
Nusselt number is 9.6x10°. This demonstrates that the
theoretical stress profiles match fairly closely with the
numerical one, and the best fit can be obtained with some
small adjustments in the coefficient.

All the above parameters depend on Ra, aspect ratio a,
and 6; thus, they can be expressed as Rafaf9” where B, ¢,

Table 1 Numerical results of power law coefficients in
scalings of different parameters with Ra, aspect ration a,
and Frank-Kamenetskii parameter ¢

Parameter cin 10¢ Ra a 0

Nu 0.23 £0.07 0.24 £ 0.01 -0.17+£003 -1.17+£0.05
ATp/AT 025£0.17 0010£002 039£008 -084+0.12
8o/d -026 £0.10 -0.22 £0.01 0.27 £0.04 1.12 £0.06
Siid/d -0.74£006 -0.23£0.01 0.12 £ 0.03 144 £ 0.04
Slidmax/d -062+£007 -0.1940.01 033 £0.03 1.26 £ 0.05
S/d 002+£033 -020+£004 06040.15 0.34+£0.21
Lid slope -098£0.13 -007£002 014+£006 063+£009
Tid 036 £0.21 0.68 £+ 0.03 092£009 -0.15+0.13
Tycr 040 £0.22 1.09 £ 0.03 1.67£0.10 -149+0.14
T;’U 234 £032 1.34£0.04 145+£0.14 -347+021

AT.n/AT and 1jig taken at mid-width.
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Figure 12 The slope of the lid base at various aspect ratios. The lid slope deviates from the linear approximation as the cell aspect ratio and
viscosity contrast increase; therefore, a non-constant value of the lid slope may affect the scalings.

and « are scaling exponents. The results are summarized
in Table 2.

Convection with yield stress

We use the steady-state solutions as the starting point
before imposing a yield stress to simulate plastic yielding.
For the yield stress gradient, a small cohesion term (sur-
face yield stress) was introduced to stabilize the solution.

Regimes of convection with constant yield stress or constant

yield stress gradient

When a yield stress is present, the regions with stresses
that reach the yield value would have an approximately
constant stress close to 7,. These plastic zones develop
first at the corners of the cell where the stresses are
highest. As 7, decreases, the plastic zones extend both
in depth and horizontally, narrowing the width of the

high-viscosity part of the lid (Figure 15). If yield stress
is too high, the depth of the plastic zone is small or the
plastic zone is entirely absent; thus, the stagnant lid does
not fail. If the yield stress is sufficiently low, the plastic
zone extends suffcieintly deep so that the stagnant lid is
mobilized.

We examine the stress and viscosity profiles at vari-
ous locations x to see how they change in the presence
of a yield stress (Figures 16 and 17). At high yield stress
or high yield stress gradient, the plastic zone only occurs
at shallow depths and the bulk of the stress and viscos-
ity profiles are unaltered from the stagnant lid state. The
plastic zone extends deeper as the yield stress or yield
stress gradient decreases. As the yield stress approaches
the critical value, a small change in yield stress induces
a change in plastic depth that is comparable to the
change caused by an order of magnitude change in yield

12 -
. . . ® Ra=3x10",a=1
061 7 ® Ra=3x10,2=0.75
10+ . . B E
[} Ra=3x10,a=0.5
. L4 7
0.5 . . 4 @ o . ® Ra=10,a=1
2] < o 7
= . s og . hd . . e Ra:lO,z:’:O.75
L] — —
Z 0.4 . . o 1z . . ® Ra=3x10,a=1
L]
° o ©
03 R or e ¢ 1
L 1 I 1 L | s | s
03¢ 15 20 35 40 15 20 25
0 0
Figure 13 Plots of Nuéy (or 8x/31iq) and Nuéx6 (or 88 /8iiq) as a function of 6.
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Figure 14 Comparison of stress profiles at mid-width obtained from numerical calculations and theory. Blue line represents the best fit to
numerical solutions of stresses. The stress profile is taken at mid-width, where the stresses in the surface boundary layer is lower than the interior as

stress when it is far from critical. Although subduc-
tion does not occur, this implies a change in convection
regime from stagnant lid to some sort of transitional
regime.

In this transitional regime, the yield stress slightly
changes the interior dynamics as can be seen in vari-
ous convective parameters of the interior region of the
cell. The yield stress increases the lid slope whereas
the lid thickness remains approximately the same. When
the yield stress is slightly above the critical value, these
changes caused by vyield stress are negligible and con-
vection remains in the stagnant lid regime. Therefore in
deriving the critical yield stress scalings, we refer to the
steady-state structure that has a yield stress just above
the critical value, so that the scaling relations for various

convective parameters (Table 1) from steady-state stag-
nant lid convection can still be used.

Time evolution of lid weakening and failure

When the lid fails, the surface velocity continuously
increases and overturn occurs (Figure 18). Figure 19
shows the time sequence of stress structures before
and during failure. When the surface velocity is still
low compared to the bottom velocity (Figure 18, left),
the variation in stress structure is not obvious. It is
not until the velocity begins to increase drastically
that the plastic yield zones from the two corners start
to connect in the middle of the cell to form a plastic
lid. The weak lid then becomes unstable and starts to
subduct.

Table 2 Power law coefficients in scaling laws for stresses: numerical results vs theory

Parameter Ra a 0 Method
Tid 0.68 £0.03 0.92 £0.09 -0.15+£0.13 Numerical
0.73 £ 0.09 1.14+£029 0.146 £ 042 Theory (in terms of ATy, /8m)
0.77+0.12 1.18 £ 039 0.14 4+ 0.56 Theory (in terms of Nu)
Tyer 1.09 £ 0.03 1.67 £0.10 -149£0.14 Numerical
094 +0.10 181 +032 -1.13£047 Theory (in terms of ATy, /8m)
097 +0.13 1854042 -1.16 £ 061 Theory (in terms of Nu)
Ty 134 £0.04 145+ 0.14 -347 £0.21 Numerical
1131011 1.48 +0.35 -239+ 051 Theory (in terms of Nu)
116 £0.14 1.52 +£045 -2.38 £ 0.65 Theory (in terms of ATy, /8h)

AT/ AT and 1jig taken at mid-width.



Wong and Solomatov Progress in Earth and Planetary Science (2015) 2:18

Page 15 of 34

X X

X

Figure 15 Stress (top) and viscosity (bottom) fields of case Ra = 3 x 107,68 = 16,a = 0.75,To = 0.8.(a) 7, = 6.7 x 10°,(b) 7, = 7 x 10°, (c)
7, = oo. Failure occurs at 7y, = 6.6 x 10, while the stagnant lid remains at higher t,. Color bars show logt values.

A possible contribution to the uncertainty in determin-
ing the critical yield stress is that at the vicinity of the
critical value, the behavior may be difficult to interpret.
In some cases that as the yield stress gets close to a criti-
cal value, the surface velocity increases slowly and it may
take more than 10° timesteps to reach a point of overturn,
whereas typically, it takes less than 10* timesteps to a dras-
tic increase in surface velocity (Figure 18 right). This may
be due to the behavior of dynamic system near a critical
point.

Critical depth of plastic failure zone

For subduction to occur, the lithosphere has to be suf-
ficiently weak so that it can be mobilized by stresses
arisen from mantle convection. As seen in Figures 16 and

17, the lid remains stagnant if the plastic yield zone is
small. Therefore, the question is how deep does this plas-
tic zone have to penetrate for the lid to be mobilized?
Previous theories proposed that the plastic zone has to
penetrate through some critical depth 8 defined by a
critical temperature T:

Spl — M, (40)

o Ti—To
where 89 = 68jiq + 8:n. The model of Fowler and O’Brien
(2003) predicts that §,; is defined by the temperature that
gives the interior viscosity. For Newtonian rheology, this
means that the plastic zone has to extend through the base
of the lid. Solomatov (1995,2004a) suggested that §,; only
has to penetrate to the isotherm at which the viscosity
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Figure 18 Surface velocities over time for Ra = 3 x 107,60 = 16,a = 0.75, (@) To = 08,7, = 6.6 x 10°,(b) To = 04,7, = 6.1 x 10°, bottom
velocity & 650. The surface velocity in (b) increases slowly. Although it has evolved for approximately 25 times as much as the period for (a) to fail, it
is far from reaching the bottom velocity.

contrast with the interior viscosity is e*"*D, where # is
the stress exponent for non-Newtonian viscosity.

To examine these hypotheses, we look at the stress pro-
file at the downwelling edge (x = a) to determine the
depth of the plastic zone, as the stresses at this edge are
the highest and this is where subduction starts (Figure 20).
The depth of the plastic zone is defined by extent of the
stress modified by the plastic flow law in Equation 7.
The exact value of §,; and the stress at this depth are
found by the intercept of the stress calculated from lin-
ear extrapolation from the top (where stress is determined
by the yield stress) and exponential extrapolation from
the creep regime just below the plastic depth. The values
of 8, for constant yield stress cases and that for con-
stant yield stress gradient cases are close. It is noted that
the stress at depth §,; in constant yield stress gradient
cases is about twice as much as that in constant yield
stress cases. The force on the lid is 8,7y for constant
yield stress and 0.581911}’,,” for constant yield stress gradi-
ent. This implies that the force on the lid is about the same
for both constant yield stress and yield stress gradient.

As we see from the effects of aspect ratio on steady-state
stress distribution, the stresses in the interior become
comparable or even exceed the surface stresses as the
aspect ratio and Ra decrease and viscosity contrast
increases. This means that the plastic zone may not prop-
agate from the top but also develop at depths in the lid,
and the plastic zone does not span the whole top part of
the cell. (Figure 21). This may represent another regime of
lid failure. These cases are thus excluded from our scaling
analysis.

The depth of the plastic zone is determined from drop
in stress by the yield stress. We note that the zone of
reduced viscosity due to the yield stress may correspond
to the zone of reduced stress as shown in Figure 20. How-
ever, this does not always hold, especially for cases with
higher 6. Figure 22 shows that the transition of the plastic
zone to creep flow may not correspond to the sharp

change in the viscosity. This means that the viscosity at
the plastic depth and the maximum viscosity are different,
since the reduction in viscosity is not only determined by
the yield stress but also by the strain rate.

To find out whether there is a critical viscosity con-
trast in lithospheric failure, we examine both the viscosity
contrast at plastic depth Anp and the maximum vis-
cosity contrast Anmax. The maximum viscosity needs to
be determined by extrapolation as the resolution near
the point where the viscosity is maximum is not high
enough to resolve sharp changes in stress and viscosity.
The point of maximum viscosity is found by extrapolat-
ing the values from both above and below the maximum
point (e.g., Figure 22 right). The viscosity is extrapo-
lated linearly from the two points above the maximum
point, and below the maximum point, the viscosity is
calculated from temperature. The intersection of these
two curves determines the maximum viscosity and its
depth. We found that these two viscosity contrasts are
mostly within the same order of magnitude. Figure 23
shows that the maximum viscosity seems to depend on
the original non-yielding viscosity contrast A7. For expo-
nential viscosity and Arrhenius viscosity cases at low
non-yielding viscosity contrast, the maximum viscosity
contrast Anmax increases with non-yielding viscosity con-
trast. This may be because they are close to transitional
regime. At higher An, the increase in Anmax seems to
decline with increasing An, but the spread of data pre-
vents us from concluding that Anmax converges towards
higher viscosities. As with the maximum viscosity con-
trast, Anp| also does not display linearity or convergence
clearly with either the non-yielding viscosity contrast or 6
(Figure 24).

Since the critical viscosity contrast is neither a constant
or a function of 6, we look at the depth of the plas-
tic zone to derive scaling relations for the yield stress.
We investigate the plastic depth §j as a fraction of
the lid thickness. For scaling purposes, the lid thickness
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Figure 19 Snapshots of stress fields before and at the point of failure for case Ra = 3 x 107,60 = 16,0 = 0.75, Ty = 0.8, T, =66 X 10°. Time
sequence goes from left to right and top to bottom. White arrows show velocities. (a) and (b) are close to beginning of simulation, (c) is at the
mid-point between the start and failure, and (d-i) are right before overturning (depicted in (j-1)) occurs.

was previously defined at the middle of the convect-
ing cell. Here, since dp is defined at the downwelling
edge, we have to determine a lid thickness at the edge
8lid,max- This is done by extrapolating the mid-width lid
slope to the downwelling edge (Figure 10). As shown is
Figure 24, the plastic depth is approximately 0.3 to 0.5
of the lid thickness. We take approximate values for our

scaling relations rather than scaling these properties with
convective parameters because the trends observed in
Figure 24 maybe due to insufficient viscosity contrasts
which place convection on the boundary of transitional
regime, especially for & = 13 in which the viscos-
ity is reduced to approximately 10* by the critical yield
stress.
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Figure 20 Depth of plastic zone determined by the yield stress

(right) and the drop in viscosity due to the yield stress (right). Profiles

taken at the downwelling edge (x = a) of the convecting cell.

To find the lid stress at dp using Equation 34, we also
need to determine the distance of the base of the plastic
zone from the convective interior yp. The lid base is at
8¢n from the interior, so we express yp| in terms of &y, to
give a sense of distance in relation to rheological sublayer
thickness. While there is a general trend of increasing of
¥pl/Srh with 6, it is difficult to discern a correlation as
¥pl/6rh fluctuates; thus, we take y,| A~ 36y, for our scaling
relations.
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The dependence of 8py, ¥, and Anp| on Ra and aspect
ratio are very weak and therefore assumed negligible.

Scaling for critical yield stress and critical yield stress
gradient

Critical yield stress scaling theory

In deriving a theoretical scaling for the critical yield stress,
we assume an approximate balance between the force
generated by the shear stresses acting at the base of the lid
and the normal stress acting on the side of the lid and we
assume that the latter are largely dominated by the stresses
in the plastic zone 8, (Solomatov 2004a and Figure 25).
Thus, we can express the yield stress as:

a
Ty ™~ Tid o~
8}’
dT Vi a
— R L (41)
dy 2 3y

In the case of a constant yield stress, gradient (z, = ty’z),
7, can be scaled as

y
¥ ~ e
y ™ TUid oy
83’
dT V3 a
= RaZ 2L (42)
dy 28

In Equations 41 and 42, the yield stress is treated as the
normal stress whereas the lithosphere stresses are shear
stress. However, the magnitude of stresses is expressed
in second invariant, and the yield stress in von Mises

Figure 21 Stress field (left) and stress profile at the downwelling edge. Ra = 3 x 106, 0 = 0.5x5,0 = 19, T, =32x 104, exponential viscosity.
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Figure 22 Strain rate, stress, and viscosity profile at the edge with Ra = 3 x 10%,a = 0.75,0 = 19, exponential viscosity. The point of maximum

criterion also put a limit the second stress invariant. To see
which stress component contributes to the second invari-
ant, we plot the normal stress and shear stress profiles
in Figure 26. Inside the lid where plastic failure occurs,
normal stress dominates, whereas shear stress exceeds
normal stress below the plastic depth.

The critical yield stress is the stress at , = §,;. The crit-
ical plastic depth 8, is taken to be 0.3 to 0.581i4, and y, is
about 2 to 44,,.
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Figure 23 Maximum apparent viscosity in the convective cell at the
point of lithospheric failure as a function of the viscosity contrast in
the absence of yield stress. Black, exponential viscosity with constant
Ty,¢r; red, Arrhenius viscosity with constant ty,¢; green, exponential
viscosity with constant 7, .,; blue, Arrthenius viscosity with constant

/
Yyer

Tid ~ CiRaAT A8, (43)
é

Tyer ~ CoRaATyra-2, (44)
Slid

/ Srh

Tyor ™~ CgRaATrh)\aaT. (45)

lid
For 1j34 expressed in terms of Nu (Equation 39), noting
that Nu ~ dT/dy ~ 6.,

Tiia ~ CiRaNurs?, (46)
Tyer ™~ CzRaNuZAuéf, (47)
Tyor ™ CsRaNu?ras?,. (48)
where Cj, Cy, C3 ranges from 4 to 16, 8 to 53, and 16 to

178, respectively.

From the previous sections, since ATy, /AT, &n/d,
81id/d, and A are all scaled in terms of Ra, a, and 6 with
scaling exponents summarized in Table 1. 74, 7y, and
7, o can be scaled in terms of Ra, @, and 0. The results are
listed in Table 2.

Numerical results for critical yield stress and yield stress
gradient: Arrhenius vs. exponential viscosity

Figures 27 and 28 show that both 17, and 7, , decrease
with increasing 6 and total viscosity contrast and might
converge to asymptotic values at high viscosity contrasts,
although it is difficult to tell from our limited data. To
estimate the accuracy of Frank-Kamenetskii approxima-
tion in the prediction of critical yield stress, we express
the ratio of yield stress for Arrhenius viscosity to that for
exponential viscosity Ry = Ty,cr,Arr/Ty,crexp and similarly
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Figure 25 Schematic diagram of surface stresses on the plastic zone

in the lid. The shear stress ;4 acting on the base of the lid of

horizontal length a is balanced by the normal stress 7, acting on the
side with depth 8, developed under free-slip boundary conditions.

for critical yield stress gradient with Ry = 7/ 4\ /T) o1 exp
to look at the dependence of these ratios on 6 (Figures 29
and 30). Both R; and R, increase with 6 and the val-
ues of yield stress for Arrhenius viscosity and that for
Frank-Kamenetskii approximation get closer as the vis-
cosity contrast increases, assuming that R; < 1and R, <
1atall 6.

For the cases tested at resolution that is doubled, we find
that the values for R; and R,/ are within 5% difference.
Therefore, 64 x 64a resolution is sufficient for our single-
cell steady-state convection analysis.
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Figure 26 Horizontally averaged stress components and second
invariant of stress as a function of depth.
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To find the dependence of R; and R,/ on the Arrhenius
viscosity contrast Anayy, we consider the ratio of Arrhe-
nius viscosity contrast to exponential viscosity contrast
(Anarr/ exp 6). This ratio reflects the difference between
Arrhenius viscosity contrast and exponential viscosity
contrast: the larger the ratio, the greater the difference.
Figure 31 shows that values of the two 7). approach each
other as the Arrhenius viscosity gets closer to the expo-
nential viscosity. It also suggests that R; and R,/ are mainly
determined by the Frank-Kamenetskii parameter 6 but
less sensitive to Ra and a. As the difference between the
Arrhenius viscosity and exponential viscosity increases,
both R; and R, appear to approach some asymptotic
value.

We also investigate the dependence of critical yield
stress and yield stress gradient on aspect ratio (Figures 32
and 33). The positive power law coefficient (see Table 1)
implies that with smaller aspect ratio, the critical yield
value is lower and thus more difficult to reach the yield-
ing criterion. Therefore, smaller cells are more stable. This
may explain the phenomenon where overturning of the
cold lid is observed once or a few times but then stabilized
after reconfiguring into smaller cells.

Figures 34 and 35 and Table 1 show that 7 and 7,
are approximately proportional with Ra.

The plots in Figures 27, 28, 32, 33, 34, and 35 show
that the scaling exponents could have a range of values,
and the cases using Arrhenius viscosity may have a bit
different values from those with exponential viscosities.
Figure 36 shows that while the scaling exponent for Ra
and a for exponential viscosity cases lie between the range
obtained from Arrhenius viscosity cases, the exponent for
0 varies with surface temperature T, Ra, and a. In gen-
eral, the scaling exponent of 6 increases with the viscosity
contrast (i.e., lower Tp), a, and moderately with Ra. This
may be related to the difference in the stress distribution
in the lid in Arrhenius cases, especially towards the down-
welling edge, as discussed previously. In the future, it will
be worthwhile to look in more detail at the stress varia-
tions for the Arrhenius viscosity and to see if there are
any relationships between R, R/, and Ty at even lower Ty
(i.e., at higher viscosity contrasts.)

Discussion and conclusions

Comparison with other studies of stress scaling laws

The studies dealing with convective stress scaling often
aim to provide an expression for stress in terms of radius
and mass of a planet to predict the likelihood of plate
tectonics. They reached various conclusions (e.g., O’'Neill
et al. 2007; O'Neill and Lenardic 2007; Valencia and
O’Connell 2007;2009; Korenaga 2010a; Van Heck and
Tackley 2011; Stamenkovic and Breuer 2014). One of the
main difficulties in deriving convincing scaling laws for
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Figure 27 Critical yield stress 7, as a function of Frank-Kamenetskii parameter 6. The Arrhenius viscosity is calculated with the non-dimensional
surface temperature Tg and the activation energy £ that gives the corresponding 6. Lower Ty gives a higher viscosity contrast Anayr.

plate tectonics initiation was a poor understanding of lid
stresses and how they are related to lid failure. In the
present study, we have addressed these issues using two-
dimensional steady-state convective cell simulations. This
is the simplest system to analyze, and yet even for this
system, the derivation of scaling laws proved to be com-
plicated and not well described by the existing asymptotic
theories. Below, we discuss some differences between our
study and previous studies and summarize our scaling
laws in a dimensional form.

In some studies (e.g., Moresi and Solomatov 1998;
Trompert and Hansen 1998; Tackley 2000b; Fowler and
O’Brien 2003), the authors assumed that subduction
occurs when the stresses in the convective interior exceed
the yield stress. This means that subduction begins when

not only the lid but also the interior of the convective
cell fails. However, subduction initiation may not nec-
essarily require the failure of interiors but instead may
only require failure of just a small portion of the lid. The
stresses in the lid are several orders of magnitude higher
than the stresses in the interior, and also, they scale dif-
ferently. Thus, the assumption regarding what part of the
convective cell must fail in order for subduction to begin
is critically important. In this study, we have investigated
this assumption quantitatively, based on a detailed analy-
sis of stresses and other parameters in the convective cell,
and then formulated the critical conditions for subduction
initiation.

In agreement with Fowler (1985), we have shown that
the lid slope is a key factor in determining the stresses
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Figure 28 Critical yield stress gradient ry’ as a function of 6.
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in the lid. However, our model has several important
differences from Fowler (1985). The theoretical solution
in Fowler (1985) is a similarity solution and does not take
into the finite horizontal extent of the lid. Our model has
vertical boundaries, and thus, the structure of the lid in
our model is more complex. Also, the solution in Fowler
(1985) is an asymptotic solution requiring very high val-
ues of parameters, such as Ra and 6, and a satisfaction of
certain asymptotic conditions, which are not reached in
our simulations and may not necessarily be reached on
planets. Thus, our scaling laws are not asymptotic in this
sense. Also, solutions in Fowler (1985) are obtained for
two end-member cases, the large lid slope case, and the
small lid slope case. We find that the lid slope behaves in a
more complex way and is between these two end-member
cases. We have determined a scaling law for the lid slope

numerically and used it to derive the scaling law for the
stresses in the lid.

Our analysis suggests that the stresses in the lid increase
approximately as a square of the distance from the bottom
of the lid (Equation 34 and Figure 14). This agrees with the
asymptotic analysis of Fowler (1985) but is different from
the stress distribution in Solomatov (2004a). In Solomatov
(20044a), the stress distribution was more complex because
the convective cell was heated from within rather than
from the bottom and the internal heating affected the
temperature-induced density distribution in the lid. At
Rayleigh numbers higher than those reached in Solomatov
(2004a), the lid is expected to become sufficiently thin so
that the heat production inside the lid would be negligi-
ble compared to the heat flux at the base of the lid. Thus,
we expect that for convection with internal heating, the
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Figure 29 The ratio of Arrhenius yield stress to exponential yield stress R; as a function of Frank-Kamenetskii parameter 6.

stress distribution in the lid should approach the quadratic
distribution that we observe for convection with bottom
heating.

We find that subduction initiation requires that only a
part of the lid undergoes plastic failure, roughly 0.3 to
0.5 of the total lid thickness. This generally agrees with
the analysis in Solomatov (2004a) and confirms that the
plastic failure does not have to extend all the way to the
bottom of the lid as was assumed in Fowler and O’Brien
(2003). However, unlike Solomatov (2004a), we determine
the distance to the boundary of the plastic failure zone by
measuring it from the base of the lid and scaling it in terms
of the rheological boundary layer thickness. We find that
such an approach is more appropriate because the mobil-
ity of the lid is largely controlled by the viscosity contrast
between the zone of failure and the convective interior

of the cell, which in turn is scaled with the rheological
boundary layer thickness.

Estimates for the Earth

To compare our results with those obtained in Solomatov
(2004a,b), we convert the critical yield stress 7, and
critical yield stress gradient 7, into their dimensional
forms (Equations 20 and 22) and estimate the critical
yield strength and the critical coefficient of friction u for
subduction initiation on the Earth.

The interior viscosity cannot be reliably estimated
from the viscosity law alone and is usually deter-
mined from better constrained properties such as lithos-
pheric thickness. Therefore, following Solomatov (2004a),
we use the scaling law for §p (Table 1) and present
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Figure 30 The ratio of Arrhenius yield stress gradient to exponential yield stress gradient R, as a function of 6.

the results in terms of the thickness of the thermal
boundary layer 8o ~ 100 km instead of the mantle
viscosity 1.

The scaling law for the critical yield stress depends
strongly on aspect ratio 4. Previous studies have scaled
the aspect ratio from half-space cooling of lithosphere
(Korenaga 2010b; Stamenkovic and Breuer 2014) or esti-
mated from numerical simulations (Solomatov 2004a,b),
whereas it was assumed to be on the order of 1 in
Valencia and O’Connell (2009). We use the horizontal
width of the convective cells as oy = ad ~100 km as
a very rough value to compare our estimates with those
in Solomatov (2004a,b). This value was inferred from
observational constraints on the present-day horizontal
scale of sublithospheric convective structures (Solomatov
2004a).

Using the results in Table 1, we obtain that the dimen-
sional critical yield stress for subduction initiation is as
follows:

~1.03
E
Tyer ~ 1.95apg (RT2> AT—0035 041178 4=037  (49)

i

For comparison, Solomatov (2004a,b) give:

-2
E -1
Ty,er ~ 13apg (RT?) AT lhor. (50)
The critical coefficient of friction u for subduction
initiation is as follows:

—1.74
E
w~ 89« (RT2 ) A T—0‘7480—1‘55ll}168r7d—0.32’ (51)
L
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and in Solomatov (2004a,b):

-2

E

w ~ 50a <RT2) AT 185 o (52)
i

Using the typical values of various physical parameters
(Table 3), we estimate that the yield strength for the Earth
is 5 MPa which is of the same order of magnitude as 3 MPa
obtained by Solomatov (2004a,b). To see how variations in
various parameters may affect these estimates, it is useful
to present the estimates in a different form. Our estimate
(Equation 49) can be written as:

5 (100 km\** 7 hor 78 /500 km\ %% D
T ~ a,
yer 8o 100 km d

(53)

and the estimate from Solomatov (2004a,b) (Equations 50)
is as follows:

lhor
~3 () Mpa, 54
Fer (100 km 2 (54)

from Equation 50.

Our estimates of the critical friction coefficient u is
8x1073, which is a factor of 3 larger than 3x1073
obtained in Solomatov (2004a,b). Our estimate can be
written as

~ o0.008 (190 km\"® /' hor ¥ /500 km %32
== 5 100 km d ’
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Table 3 Parameters used to estimate 7, ., and rJ’W for
Earth as in Solomatov (2004a,b)

o 3x107°
K 1070 m?s~!
Jiid 100 km

k 3wm— k!
E 430 k) mol™1
d approximately 500 km
g 10ms—2
P 3,300 kg m~3
To 300K

Ti 1,700 K
Ihor 100 km

and the estimate from Solomatov (2004a,b) (Equation 50)
is as follows:

Ihor 100 km
~ 0.003 . 56
" (100 km) < 5 ) (56)

If we take into account the fact that Frank-Kamenetskii
approximation that we used to derive the scaling laws
overestimate the critical yield stress and the critical fric-
tion coefficient (Figure 31), then both ours and the esti-
mates in Solomatov (2004a,b) should be further reduced
by a factor of 2 (Figure 31), depending on the values of the
viscosity parameters and the Rayleigh number.

One major difference between our scaling laws and the
scaling laws obtained in Solomatov (2004a) is a much
stronger dependence of the critical yield stress and criti-
cal friction coefficient on the width of the convecting layer
Ihor - they scale roughly as approximately 1}21 or 3 opposed
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to the previous scaling approximately /. This means that
the critical values of the yield stress and friction coefficient
would increase by 2 to 4 orders of magnitude if the width
of the convective cells increased by 1 to 2 orders of mag-
nitude (for example, in the past history of the Earth),and
thus, at least in principle, could reach the experimentally
observed values that are on the order of 1,000 MPa for ¢,
and u ~0.6 to 0.85 (e.g., Byerlee 1978; Goetze and Evans
1979; Kohlstedt et al. 1995; Mei et al. 2010) and values
constrained by loading models with in situ stress measure-
ments of Hawaiian Islands (Zhong and Watts 2013) which
are 0.25 to 0.7 for © and 100 to 200 MPa for lithospheric
stress. This implies that the chances of plate tectonics
might be higher than we thought before. Time-dependent
calculations and a more realistic formulation of the prob-
lem are required to better understand the implications of
these results for plate tectonics initiation.

Uncertainties in stress scaling

The scaling laws derived here are applicable to Newtonian
rheology; therefore, the activation energy for diffusion
creep is used in our calculations. However, it should be
noted that dislocation creep is probably the dominant
mechanism in the lithosphere (Karato and Wu 1993).
For the Earth, wet dislocation creep may be preferable
(Solomatov and Moresi 2000) while for other terrestrial
planets such as Venus might have dry lithosphere. To
apply on a wider range of planets including icy bodies,
scaling laws based on non-Newtonian rheology will be
required.

In previous scaling theories, the lid slope is often con-
sidered to be small because the lid thickness is assumed to
be relatively small. Even in the large lid slope end member
case in Fowler’s theory, jiq is assumed to be small relative
to the thickness of the convecting layer.

However, our simulation indicates that the slope may be
significant, so the derivations may need to be modified to
take this into account.

Free-slip boundary conditions are often used in solv-
ing equations for thermal convection, but this restricts
the vertical motion of the surface. Recent studies have
used the free-surface boundary conditions, which is closer
to natural surface condition as both normal and shear
stress on the surface is reduced to zero (Zhong et al. 1996;
Schmeling et al. 2008; Kaus et al. 2010; Crameri et al. 2012;
Kramer et al. 2012). It maybe computationally expensive
to implement this for the time being, but it could be
worthwhile to explore its effect on scaling relations for
stresses in the future.

Our numerical results show that 7y, of Arrhenius vis-
cosity approaches that of exponential viscosity as the
Frank-Kamenetskii parameter 6 increases. This enables
us to use exponential viscosity law to extrapolate to
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high Arrhenius viscosity contrast conditions. Besides the
Frank-Kamenestskii approximation, the viscosity con-
trasts can be reduced in other ways, one of which is
to set a cutoff viscosity. The stress structure resulting
from the cutoff viscosity will have to be examined. We
can then compare the accuracy of these approximations
and apply them to extrapolate the results to planetary
parameters.

Our results generally support previous conclusions that
in order for the convective regime on the terrestrial plan-
ets in the inner Solar System to change from stagnant lid
convection to plate tectonics, the yield stress of the litho-
sphere should be much smaller (several MPa) than that
predicted by laboratory experiments on rock deformation
(hundreds of MPa as predicted by Byerlee’s law). However,
our results suggest a much stronger dependence of the
critical yield stress on the horizontal width of the convec-
tive cells. This opens a possibility of subduction initiation
even for the large, experimentally measured, lithospheric
strength provided that a sufficiently long convective cell
forms in a time-dependent mantle convection. In the
future, it would be important to investigate the role of ini-
tiation conditions and statistical fluctuations of convective
cells for the initiation of subduction in time-dependent
convection.
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