Skip to main content

Advertisement

Table 1 Parameters used in this study (Wada et al. 2018; Watanabe 2019)

From: Effects of dust layers on thermal emission from airless bodies

Property Symbol Value Units Comment
Solar constant S 1366.1 W/m2 Solar irradiance at 1 AU
Stefan-Boltzmann constant σ 5.67 × 10−8 W/m2/K4  
Pole orientation RA 96.40101 [°] Right ascension J2000
  DEC − 66.39948 [°] Declination J2000
Rotation period P 7.632622 [h]  
Obliquity I 171.6428 [°]  
Orbital period T 473.9 [d]  
Absolute time     Oct 03, 2018
Season parameter(1) L p 153.5913 [°] Retrograde spin!
Orbit parameters e 0.19034 [] Subsolar latitude − 5.277°
Perihelion distance q 0.96315 [AU]  
Heliocentric distance r h 1.2447 [AU] Distance to Sun on Oct 3, 2018
Geographical latitude ϕ − 34.60 [°] MASCOT observation site
Specific heat capacity c P 700 [J kg−1 K−1] K ((Biele and Grott 2018), average temperature 215 K)
Emissivity ε 0.90 [] Hemispherical NIR emissivity
Bond albedo A 0.0178 []  
Grain density ρ g 2100 [kg m−3]  
Bedrock density ρ b 2000 [kg m−3] Low porosity < 5%
Regolith/porous rocks bulk density ρ reg 1480 [kg m−3] Corresponding porosity is ~ 30%
Dust bulk density ρ dust 366 [kg m−3] Corresponding porosity is 83%
Bedrock heat conductivity k b 1.0 [W K−1 m−1] Resulting Γ = 1183 J m−2 K−1 s−1/2
Regolith heat conductivity k reg 0.0866 [W K−1 m−1] Resulting Γ = 299.5 J m−2 K−1 s−1/2
Dust heat conductivity k dust 0.0025 [W K−1 m−1] Resulting Γ = 25.31 J m−2 K−1 s−1/2
  1. (1)Angle between asteroid’s vernal equinox—the ascending node of its equator and orbit—and perihelion, measured in the orbital plane. Orbital elements are 2018 average osculating elliptical elements