Skip to main content
Fig. 4 | Progress in Earth and Planetary Science

Fig. 4

From: Magnetohydrodynamics modeling of coronal magnetic field and solar eruptions based on the photospheric magnetic field

Fig. 4

3D MHD simulation of solar flares by pioneers in the field. a MHD modeling of the solar flare by Amari et al. (2003a). The potential field was reconstructed from the given simple dipole fields, which were imposed on the twisted and converged motion. Consequently, the potential field was converted into a non-potential field, leading to the eruption. b MHD modeling by Kusano et al. (2012) shows that the emergence of small flux can destroy the initial equilibrium condition of the linear force-free field, leading to the formation of a large flux tube and an eruption. c Inoue and Kusano (2006) investigated the flux tube dynamics associated with the solar flares and causing a CME. The flux tube was assumed to be infinitely long and was driven by kink instability, leading to a CME for a certain supra-threshold height. d Fan (2005) employed a more realistic flux tube (Titov and Démoulin 1999) with footpoints tied to the solar surface. The eruption was first driven by kink instability and later by torus instability (Fan 2010). All images are copyright AAS and reproduced by permission

Back to article page