Skip to main content

Advertisement

Table 2 Selected numerical models with fixed Rayleigh Ra=4×107, Ekman E=10−4, and Prandtl Pr=1 numbers and aspect ratio β=0.35

From: Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    Hydrodynamic    Magnetic    
q Ψ [°] τ [°] Re C EAA E m1 Γ Rm C EAA E m1 Γ Λ H sur ω
0 154.7 0.066 0.029 0.057 224.3 0.007 0.064 0.010 7.83 0.005
1 180 0 223.3 0.603 0.013 0.686 446.7 0.747 0.015 0.778 1.71 0.573 49.42
   22 220.9 0.589 0.019 a 433.5 0.738 0.022 a 2.50 0.561 46.54
   45 213.3 0.535 0.040 a 406.3 0.691 0.037 a 3.28 0.431 ?
   63 198.7 0.375 0.081 a 347.4 0.594 0.071 a 7.94 0.220
   90 181.0 0.029 0.239 a 308.7 0.003 0.257 a 2.72 a
  120 0 208.0 0.427 0.023 0.432 428.0 0.759 0.002 0.684 3.94 0.415 25.58
   22 208.9 0.419 0.031 a 412.4 0.729 0.024 a 4.12 0.410 22.74
   45 198.1 0.370 0.071 a 360.1 0.654 0.046 a 7.32 0.226
   63 184.9 0.229 0.145 a 300.1 0.386 0.097 a 8.68 0.136
   90 168.8 0.016 0.247 a 255.6 0.006 0.257 a 7.84 a
  90 0 192.5 0.291 0.029 0.265 365.3 0.703 0.003 0.501 7.94 0.318
   22 191.4 0.293 0.038 a 369.3 0.698 0.028 a 3.69 0.297
   45 184.0 0.243 0.102 a 291.9 0.483 0.055 a 12.87 0.170
   63 177.4 0.149 0.164 a 283.9 0.262 0.111 a 6.98 0.118
   90 163.2 0.013 0.231 a 239.7 0.006 0.238 a 2.40 a
  60 0 172.1 0.169 0.032 0.194 271.8 0.224 0.144 0.194 10.19 0.077
   22 172.0 0.178 0.357 a 263.5 0.258 0.111 a 11.8 0.065
   45 170.4 0.157 0.093 a 249.1 0.205 0.075 a 11.97 0.060
   63 168.9 0.109 0.151 a 249.5 0.109 0.155 a 8.66 0.047
   90 158.0 0.015 0.175 a 230.3 0.006 0.237 a 0.99 a
  30 0 158.5 0.083 0.031 0.065 232.5 0.010 0.047 0.057 7.12 0.007
   22 158.7 0.091 0.027 a 233.6 0.009 0.031 a 6.70 0.007
   45 158.1 0.093 0.031 a 239.1 0.017 0.130 a 6.97 0.012
   63 157.5 0.087 0.045 a 238.2 0.019 0.167 a 7.54 0.011
   90 151.9 0.027 0.062 a 228.7 0.006 0.199 a 8.55 a
0.75 180 0 208.4 0.473 0.015 0.532 425.0 0.763 0.019 0.767 3.69 0.413 34.91
  120 0 198.1 0.340 0.025 0.377 368.8 0.716 0.022 0.462 7.80 0.327
  90 0 184.5 0.250 0.028 0.245 346.5 0.666 0.023 0.401 7.11 0.284
  60 0 168.1 0.154 0.030 0.163 255.2 0.136 0.132 0.043 9.45 0.054
  30 0 158.0 0.085 0.027 0.065 231.2 0.008 0.053 0.010 7.09 0.005
0.5 180 0 193.9 0.351 0.023 0.383 347.3 0.725 0.031 0.555 10.75 0.258
  120 0 181.8 0.257 0.028 0.272 307.2 0.609 0.033 0.379 14.44 0.193
  90 0 173.7 0.195 0.027 0.187 269.9 0.321 0.071 0.193 12.36 0.110
  60 0 163.5 0.128 0.027 0.115 245.9 0.078 0.116 0.052 8.72 0.035
  30 0 157.3 0.078 0.027 0.083 227.7 0.009 0.064 0.038 7.81 0.007
0.25 180 0 166.0 0.173 0.028 0.206 239.5 0.183 0.086 0.2 13.20 0.060
  120 0 163.5 0.147 0.027 0.163 237.8 0.110 0.117 0.111 11.08 0.052
  90 0 161.6 0.122 0.028 0.095 237.7 0.074 0.105 0.048 9.32 0.033
  60 0 158.2 0.089 0.026 0.070 231.7 0.009 0.092 0.070 7.59 0.015
  30 0 155.3 0.067 0.026 0.043 227.7 0.009 0.068 0.024 7.58 0.008
  1. The magnetic Prandtl number was kept constant at Pm=2 throughout all magnetic simulations. If the magnetic field reverses, the oscillation frequency is given in multiples of 2πPm/τ vis . Note that for q =1, Ψ= 180°, and τ= 45°, the field reverses but with an unclear frequency (?). Non-oscillating dynamos are marked with ’-’
  2. aThe quantities of entries were not calculated. This applies to both convective Γ and magnetic H sur hemisphericity