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Abstract

Recent planetary space missions, new experimental data, and advanced numerical techniques have helped to improve
our understanding of the deep interiors of the terrestrial planets and moons. In the present review, we summarize recent
insights into the state and composition of their iron (Fe)-rich cores, as well as recent findings about the magnetic field
evolution of Mercury, the Moon, Mars, and Ganymede. Crystallizing processes in iron-rich cores that differ from the
classical Earth case (ie, Fe snow and iron sulfide (FeS) crystallization) have been identified and found to be important in
the cores of terrestrial bodies. The Fe snow regime occurs at pressures lower than that in the Earth’s core on the iron-rich
side of the eutectic, where iron freezes first close to the core-mantle boundary rather than in the center. FeS
crystallization, instead, occurs on the sulfur-rich side of the eutectic. Depending on the core temperature profile
and the pressure range considered, FeS crystallizes either in the core center or close to the core-mantle boundary. The
consequences of the various crystallizing mechanisms for core dynamics and magnetic field generation are discussed.
For the Moon, revised paleomagnetic data obtained with advanced techniques suggest a peculiar history of its internal
dynamo, with an early strong field persisting between 4.25 and 3.5 Ga, and subsequently a much weaker field. In
addition, the long-lasting dynamo and the possible presence of an inner core, as inferred from a revised interpretation of
Apollo seismic data, suggest core crystallization as a viable process of magnetic field generation for a substantial period
during lunar evolution. The present-day magnetic fields of Mercury and Ganymede (if they occur on the iron-rich side of
the Fe—FeS eutectic) and the related dynamo action are likely generated in the Fe snow regime and seem to be recent
features. An earlier dynamo in Mercury would have been powered differently. For Mercury, MESSENGER data further
suggest core formation under reducing conditions that may have resulted in an Fe-S-Si composition, further
complicating the core crystallization process. Mars, with its early and strong paleo-field, likely has not yet
started to freeze out an inner iron core.
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Review

Introduction

Our view of the deep interiors of the terrestrial planets
and moons, and their magnetic fields, has changed sub-
stantially over the past decade as a consequence of in-
sights from recent space missions, new experimental
data that have become available, and the results of more
detailed and sophisticated numerical models. Because
the evolution of a planet’s magnetic field is closely linked
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to its thermal evolution, constraints on the dynamo in
iron (Fe)-rich cores will help provide a better understand-
ing of a planet’s evolution in general. For instance, the
MESSENGER mission has collected new magnetic field
data for Mercury (e.g., Anderson et al. 2011; Johnson et al.
2015), and lunar samples have been reanalyzed with im-
proved paleomagnetic methods (for a review, see Weiss
and Tikoo 2014 among others). Space missions have fur-
ther helped to better constrain the surface compositions
of planets and to provide better constraints on geochem-
ical models of their interiors. MESSENGER spectroscopic
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data show that the planet is more volatile rich than previ-
ously thought and additionally suggest that it was formed
and differentiated under reducing conditions (Nittler et al.
2011; Weider et al. 2012). Therefore, the core is now
thought to be composed of Fe-Si-S (e.g, Malavergne
et al. 2010; Chabot et al. 2014) rather than Fe-S, which is
generally taken as a good model for Earth-like planetary
cores. Experimental data relevant to Fe—FeS eutectic melt-
ing relations (Fei et al. 1997, 2000; Chudinovskikh and
Boehler 2007; Stewart et al. 2007; Chen et al. 2008; Buono
and Walker 2011) suggest that crystallization in the core
can proceed substantially differently in small planets com-
pared with the Earth’s core. In small planets, iron may
start crystallizing at the core—mantle boundary (CMB) ra-
ther than in the center, and iron snow may form (e.g,
Hauck et al. 2006). As a consequence, a dynamo that is
tied to crystallization may work differently in these planets
than it would in Earth. Moreover, for a core richer in sul-
fur than the eutectic composition, iron sulfide (FeS) will
crystallize first and also result in a different crystallization
process as compared with crystallization on the iron-rich
side of the eutectic.

In the present paper, we review our present understand-
ing of the composition, as well as the thermal and mag-
netic evolution, of the iron-rich cores of terrestrial planets
and moons for which evidence of present or past magnetic
fields is available. These are (in order of distance from the
Sun) Mercury, the Moon, Mars, and Ganymede. Other
planets, such as Venus, may have had magnetic fields. It
has been speculated that Venus had a magnetic field
driven by a thermal dynamo that vanished as the planet
cooled (Stevenson et al. 1983; Gaidos et al. 2010), or it
may have transited from plate tectonics to stagnant lid,
losing its dynamo (Stevenson 2002). Another potential
candidate for the presence of a magnetic field is the Jovian
moon o, although strong tidal heating may have pre-
vented the formation of a dynamo (Wienbruch and Spohn
1995). This may also have been true for early Europa. It is
likely that other large moons such as Callisto and Titan
did not form an iron-rich core at all (e.g., Anderson et al.
2001; Iess et al. 2010). We begin by presenting the general
concepts of thermal and compositional dynamos, along
with a discussion of differences in crystallization at low
and high pressures, and then proceed to discuss new find-
ings and their implications for Mercury, the Moon, Mars,
and Ganymede.

Thermal and chemical dynamos

Present-day magnetic fields of terrestrial planets and
moons are either generated in their iron-rich cores (e.g.,
for the Earth, Mercury, and Ganymede), induced in elec-
trically conducting layers (e.g., in the subsurface oceans of
icy satellites), or are due to remanently magnetized crustal
rock (e.g., for the Moon and Mars). The latter suggests a
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self-generated magnetic field during the early evolution of
the planet, at the time of crustal formation. In any case, at
the time of dynamo action, the presence of a convective
(partially) fluid core is required, either an entirely fluid core
or partially fluid with a solid inner core. We distinguish be-
tween thermal and chemical (compositional) dynamos.

For a fully fluid core, thermal buoyancy may be avail-
able to drive the dynamo if a sufficiently large super-
adiabatic temperature difference exists between core and
mantle. The heat flux from the core needs to exceed the
heat flux conducted along the core adiabat. The latter heat
flux provides an important and necessary criterion for
thermal convection in the core. The heat flux (g along
the adiabat is given by

dT dr dpP

acg. T
Derit = kcg |ad = deP |ad E = K¢ 2

C, ’

(1)

where k. is the thermal conductivity in the core, d7/
dr|.q the adiabatic temperature gradient, P the pressure,
T the temperature, r the radius, a, the thermal expansiv-
ity, C, the heat capacity at constant pressure p, g. the
gravity, and dT/dP|,q = a.T/pC,, with p representing the
density. Values for the critical heat flux that have been
used in the literature vary between 5 and 20 mW m™>
for Mars (Nimmo and Stevenson 2000) and Mercury
(Stevenson et al. 1983; Schubert et al. 1988) and between
1 and 10 mW m™? for the Moon (Zhang et al. 2013;
Laneuville et al. 2014; Evans et al. 2014) and Ganymede
(Hauck et al. 2006; Bland et al. 2008; Kimura et al. 2009;
Riickriemen et al. 2015).

The large range of values for the critical heat flux
originates mostly from uncertainties in the thermal
conductivity and the thermal expansivity of the iron-
rich alloy at core pressures (Stacey and Anderson
2001). Recent ab initio calculations of transport proper-
ties suggest that the thermal conductivity in the Earth’s
core is a factor of two higher than previously thought,
and thus upward revisions to the thermal conductivity
in other terrestrial planets are also being discussed. Re-
vised values of the thermal conductivity in the Earth’s
core range from 90 to 150 W m™' K™* (de Koker et al.
2012; Pozzo et al. 2012). Similar values also result from
measurements of the electrical conductivity and from
using the Wiedemann—Franz law to calculate the ther-
mal conductivity (Gomi et al. 2013). Recently, Deng et
al. (2013) suggested a thermal conductivity for Mer-
cury’s core of 113-125 W m™" K™ and a critical heat
flux of 45-100 mW m™> from measurements of the
electrical conductivity of iron. Note, however, that ab
initio calculations have recently been criticized by
Zhang et al. (2015), who argued that such studies over-
estimate the thermal conductivity, because the effects
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of electron—electron scattering are not included in the
numerical calculations.

The thermal conductivity likely decreases with increasing
light-element abundances (e.g., Stacey and Anderson 2001;
de Koker et al. 2012), although Ohta et al. (2015), using re-
cent measurements of the electrical resistivity of iron-rich
alloys, reported that the effect is not sufficiently large to re-
duce the core thermal conductivity to more conventional
values of about 50 W m™ K" (Stacey and Anderson 2001).
For the discussion in this paper, we emphasize the implica-
tions of larger values for the thermal conductivity, although
we note, of course, that the matter is not yet entirely settled.

The thermal expansivity of liquid iron at ambient pres-
sure ranges from 8.2 x 107> K™' to 13.2 x 107> K" (Hixson
et al. 1990; Nasch and Steinemann 1995; Assael et al.
2006). The expansivity also depends slightly on the volatile
content (Kaiura and Toguri 1979). With increasing pres-
sure the thermal expansivity decreases, and a value of
about 107> K™! to 3 x 107> K™ is proposed for the Earth’s
core (Boehler et al. 1990; Kandpal and Gupta 2007).

It is important to note that the heat flux from the core
is controlled mainly by the thermal evolution of the over-
lying mantle. The mantle needs to remove heat from the
core at a rate that exceeds the critical heat flow for the
core to become convective. If the mantle removes heat at
a rate below the critical heat flow, the core will be strati-
fied thermally stably, cooling conductively, and dynamo
action driven by thermal convection is not possible.

Compositional convection can occur when a buoyant
chemical component is released during the freezing of
a fluid core with a non-eutectic composition (Braginsky
1964). The existence of light alloying elements in the
core is cosmochemically reasonable and has been postu-
lated for all terrestrial planets and moons, but the nature
and the concentrations of the suggested light elements vary,

Table 1 Parameters of the interior structure
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as we discuss below. In any case, these elements will, other
than reducing the average core density, significantly reduce
the melting temperature of the core alloy (e.g., Usselman
1975; Fei et al. 1997). Although the effects of a variety of el-
ements are conceivable, the physics of crystallization in the
core has been studied mostly for Fe—FeS systems, both ex-
perimentally and theoretically.

Core crystallization processes

Recent experimental work has shown that the rate of
change of the eutectic temperature 7, with pressure
for Fe—FeS will change sign at a pressure of 14 GPa:
it is negative for lower pressures and positive other-
wise (e.g., Fei et al. 1997, 2000; Chudinovskikh and
Boehler 2007; Stewart et al. 2007; Chen et al. 2008;
Buono and Walker 2011). As a consequence,
crystallization in a cooling core will proceed very
differently in a large planet, where the pressure is
significantly higher than ~40 GPa, compared with a
small planet where the pressure is lower. While the
former case is applicable to the Earth’s core, the latter
is applicable to Mars as well as to smaller planets
and moons (see Table 1). The case of the Earth’s core
has been studied extensively in past decades, while the
smaller planets are the subjects of ongoing research.

Inner-core growth

The conventional model of inner-core growth on the Fe-
rich side of the eutectic is applicable to cases where the
(positive) slope of the core liquidus is steeper than that of
the adiabat, d7/dPp,cy>dT/dP,q (e.g., Stevenson et al.
1983; see Fig. 1a). As a consequence, when the core has
cooled sufficiently to reach the liquidus at the center, iron
will crystallize and an inner-core nucleus will form; upon
further cooling, the core will freeze from the inside out.

Earth Moon Mercury Mars Ganymede
Planetary radius (km) 6371° 17370 2439¢ 3389%¢ 2632
Surface gravity (m s?) 08° 16° 3.7° 3.7° 1.4°
Core radius (km) 2890° 250-430° 1965-20509" 1370-1870%¢ 650-880"
Re/R, 045° 0.14-025° 08-0.84%" 04-055%¢ 025-033'
Perm (GPa) 139° 45-5 28-33" 20-259¢ 55-7"
P. (GPa) 3572 5-6 33-37" 38-429¢ 95-11"
Gravity at CMB (m 579 103° 0.7° 4h 3de 1.3f

Parameters of the interior structure for the Moon, Mercury, Mars, and Ganymede. Earth is included for comparison
Rc/Ry, is the relative core radius, P, is the density at the core-mantle boundary, P. is the central pressure

“Lodders and Fegley (1998)
bSohl and Schubert (2007)
“Anderson et al. (1987)

4Sohl and Spohn (1997)

€Sohl et al. (2005)

fSohl et al. (2002)

9Hauck et al. (2013)

PRivoldini and Van Hoolst (2013)
'Sohl et al. (2009)
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Fig. 1 (See legend on next page.)
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Fig. 1 Crystallization scenarios in the Fe—FeS system. Crystallization scenarios in the Fe—FeS system. a Earth-like, Fe-rich inner core grows from the center.
Sulfur is enriched in the outer core and drives chemical convection. b Iron snow forms at the CMB, sinks, and remelts at depth and drives chemical
convection. The stable snow zone grows in time. When it reaches the center, an inner solid core will form. ¢ Floating FeS crystals form a stable
zone growing toward the CMB where eventually a solid FeS layer will form. The fluid below is enriched in iron and unstable to convection. d
A solid FeS layer grows from the CMB. Expulsion of Fe results in chemical convection in the fluid below as in (c). e FeS crystals rise from the center and remelt
at lower depths. The liquid above the FeS zone is convectively unstable. When the FeS crystal zone reaches the CMB, a solid FeS layer will form. f FesS snow
forms at the CMB and the chemically unstable snow zone grows until it comprises the entire core where a solid FesS inner core will form. The layer below is
chemically homogeneous but may convect thermally. g A solid FesS inner core grows with time without the release of chemical buoyancy to the outer core
and convection above. Red, green, and blue dots indicate solid iron, solid FeS, and FesS, respectively. Short dashes show the direction of sinking or rising.
Red solid lines are the core temperature, blue dashed lines the core melting temperature, and black solid lines the concentration of sulfur,

respectively. Solid arrows indicate chemical and dashed arrows thermal convection, respectively. For further explanation, see text

The outer core will be increasingly depleted in iron and
enriched in sulfur until the eutectic composition is
reached. At that point, the core will continue to freeze in
a eutectic composition. Figure 2 shows, for various initial
sulfur concentrations, the enrichment of sulfur in the
outer fluid core and the associated inner-core size, assum-
ing that the inner solid core is free of sulfur. The max-
imum relative inner-core size, which is attained when the
outer core has a eutectic composition, decreases with in-
creasing initial sulfur concentration.

During crystallization, the concentration of sulfur will not
be homogeneous; instead, a boundary layer will form just
above the inner core, where the sulfur concentration is
above average. The fluid in this layer will be lighter than in
the remainder of the fluid core, and compositional convec-
tion will be induced to homogenize the outer-core compos-
ition. Chemical convection and the associated generation of

a magnetic field in the core will occur if the temperature in
the fluid (outer) core lies between that of the solidus and
the liquidus of the core alloy. Inner-core growth will induce
outer-core convection even if the heat flow through the
CMB is lower than the critical heat flow for a thermal dy-
namo, as discussed above (e.g., Stevenson et al. 1983). Thus,
the temperature gradient may be even shallower than adia-
batic, and compositional convection may carry heat down-
ward, against the temperature gradient. The buoyancy
release associated with this compositional change exceeds
the work done against the stabilizing thermal stratification.

Iron snow regime

Compositional convection, however, can be very different
from the scenario described above in smaller planetary
bodies or for higher sulfur contents than characteristic of
the eutectic composition. Recent experimental studies (e.g.,
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Fig. 2 Radius of solid inner Fe core and thickness of solid FeS layer. Relative radius of the solid inner Fe core (blue lines) and thickness of
the solid FeS layer (green lines) as a function of the sulfur content in the fluid part of the core and depending on the initial sulfur content. R; is the inner-
core radius, R, the core radius, and Rees the radius of the lower boundary to the solid FeS layer. Shown are initial sulfur concentrations of 1, 7, 14, 15, 19,
21, 28, and 35 wt%. The solid and dashed vertical lines indicate the eutectic sulfur concentration at different pressures (14 wt.% corresponds to ~30 GPa
and 20 wt% to ~10 GPa). Left of the eutectic a solid inner Fe core and right of the eutectic a solid FeS layer are formed. The relative inner-core radius
and FesS layer thickness are smaller the closer the sulfur content is to the eutectic
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Fei et al. 1997, 2000; Li et al. 2001; Chudinovskikh and
Boehler 2007; Stewart et al. 2007; Chen et al. 2008; Buono
and Walker 2011) have revealed two important aspects of
the Fe—FeS phase diagram: (1) at pressures below 14 GPa,
the eutectic melting temperature decreases with increasing
pressure; and (2) the S content at the eutectic decreases
with increasing pressure up to a pressure of 60 GPa
(Stewart et al. 2007; Chudinovskikh and Boehler 2007;
Morard et al. 2008; Figs. 3 and 4). Note that the exact
decline of the eutectic concentration with pressure is
somewhat uncertain. While Fei et al. (1997, 2000) found
that the eutectic concentration remains constant between
~7 and 10 GPa, the data of Morard et al. (2007) suggest a
constant eutectic concentration between slightly higher
pressures of ~11 and 15 GPa (see Fig. 5 in Morard et al.
2007). These uncertainties also impact the slope of the
melting temperature, which is typically obtained through
linear interpolation of the melting temperature of the end-
members (Fe—FeS eutectic and pure Fe or pure FeS).

A melting temperature profile with a negative slope (or a
shallower melting temperature profile than that of the core
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temperature, d7/dPye < dT/dP,q) will have profound im-
plications. Upon cooling, Fe will precipitate at the CMB ra-
ther than in the center and may fall as iron snow, since the
solid iron particles are heavier than the surrounding Fe—
FeS fluid (Fig. 1b). A snow zone forms, limited from below,
at a depth where the core temperature is higher than the
melting temperature, and the iron snow particles remelt.
Owing to the solidification of iron, the concentration of sul-
fur increases in the snow zone, and the liquidus of the fluid
decreases there (e.g., Buono and Walker 2011). Under the
assumption of thermodynamic equilibrium, iron continues
to solidify and the local sulfur concentration in the liquid
increases until the liquidus reaches the core temperature.
Thus, in the snow zone, the liquidus becomes collinear
with the core temperature and reverses its slope, so that
the liquidus temperature increases with increasing depth.
The increase of the liquidus with depth in the snow zone
is inevitably accompanied by a decrease in the sulfur con-
centration with depth, which implies the presence of a
stable chemical gradient across the snow zone (Hauck
et al. 2006; Williams 2009; Riickriemen et al. 2015).
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Fig. 3 Pressure dependence of the eutectic temperature in the Fe—FeS system. Pressure dependence of the eutectic temperature in the Fe-FeS
system. Empty squares indicate the presence of melt, while filled squares indicate the presence of Fe and FesS solid phases only. The solid line represents
linear interpolation for this data set. Other melting data are from Usselman (1975), Boehler (1993), Boehler (1996), Fei et al. (1997, 2000), Shen et al. (1998),
Alfe et al. (2002b), Campbell et al. (2007), Chudinovskikh and Boehler (2007), Morard et al. (2007), and Stewart et al. (2007). Figure after Morard et al. (2008)
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Fig. 4 Pressure dependence of Fe-FeS eutectic composition. Pressure
dependence of the Fe-FeS eutectic composition (wt.% S); circles:
Chudinovskikh and Boehler (2007); diamonds: Usselman (1975); squares:
Fei et al. (1997, 2000) and Li et al. (2001). Figure after Chudinovskikh
and Boehler (2007). The eutectic melting temperature is also given

The remelting of iron particles below the snow zone
results in a local enrichment of iron in the Fe—FeS melt.
This creates a gravitationally unstable situation, where a
heavier layer is formed on top of a lighter one. The Fe-
rich layer initiates compositional overturn, which leads
to a well-mixed state of the deeper, entirely liquid core
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below the snow zone. With ongoing cooling, the snow
zone grows at the expense of the deeper, well-mixed
fluid core. Finally, an inner core begins to grow when
the snow zone encompasses the entire core, because the
sinking iron particles can no longer remelt.

This so-called iron snow regime has already been
suggested to apply to the present cores of Ganymede
(Hauck et al. 2006; Christensen 2015; Riickriemen
et al. 2015) and Mercury (Chen et al. 2008; Vilim et al.
2010; Wicht and Heyner 2014). It has also been sug-
gested that Mars’ core may enter the iron snow regime
(Stewart et al. 2007) and that the lunar core may have
gone through an iron snow episode (Zhang et al. 2013;
Laneuville et al. 2014). Although the thermodynamics
of the iron snow regime seems to be reasonably well
developed, the questions of how and where a magnetic
field can be generated in an iron snow core remain de-
bated. Hauck et al. (2006) suggested that the power
dissipated by the sinking iron snow zone is sufficient
to drive a dynamo. Their work is supported by that of
Zhan and Schubert (2012), who obtained a multipolar
magnetic field using a magneto-hydrodynamic model
where the fluid motions within the snow zone resem-
bled internally heated convection. In contrast to these
studies, Bland et al. (2008) argued that compositional-
driven convection in the Fe snow zone would not pro-
vide enough power to generate a magnetic field, since
the latent heat is released close to the CMB and can-
not be used to efficiently drive the dynamo. In
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Fig. 5 Melting temperature on the sulfur-rich side of eutectic. Melting temperature of FeS (solid black line) and Fe-FeS eutectic (dashed black line)
as a function of pressure. FeS data are from Boehler (1992) and Fe-FeS eutectic from Fei et al. (1997, 2000). Dotted lines are melting temperatures
for different sulfur contents, obtained by linear interpolation between the melting temperatures of FeS and Fe-FeS eutectic. a corresponds to the
pressure range of Ganymede's core and (b) corresponds to the pressure range of the Moon's core. Blue solid lines correspond to adiabatic
temperature profiles and white circles indicate the point where melting and core temperatures coincide first during cooling, i.e,, where
crystallization of FeS starts. The adiabatic temperature profiles have been calculated for a=9x10"° K™', p=5500 kg m>, cp=830 J kg~ ',
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for Ganymede, FeS starts to crystallize in the core or at the CMB and for the Moon, FeS starts to crystallize in the core or in the core center
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addition, Riickriemen et al. (2015) argued that the na-
ture of the convection induced by sedimentation in an
otherwise chemically stably stratified layer is likely of
small scale and thus lacks an important criterion (i.e.,
large-scale convection) that is necessary for dynamo
action (Christensen and Wicht 2007). Instead, it is ar-
gued that the dynamo may be located in the iron-rich
layer below the snow zone. Here, vigorous convection
caused by the release of buoyancy upon remelting of iron
may drive the dynamo (Vilim et al. 2010; Christensen
2015; Riickriemen et al. 2015). However, this dynamo
would only be active during the period between the for-
mation of the snow zone and the time when it reached the
center of the core.

Most dynamo models for iron snow cores have thus
far been calculated for Ganymede, and these will be dis-
cussed in more detail in the section about Ganymede
below. Note, however, that the iron snow scenario de-
scribed above assumes thermodynamic equilibrium. It
might also be possible that the iron particles sink so rap-
idly that they fail to remelt (completely) before reaching
the center. Whether or not a dynamo may then still be
possible remains an open question.

Precipitation of FeS

If the core is sulfur rich (ie., if its sulfur content is greater
than the eutectic concentration), solid FeS (or FesS, for
pressures between 14 and 20 GPa, and FesS for even
higher pressures) will precipitate within the core (Fei et al.
2000; Hauck et al. 2006; Campbell et al. 2007; Stewart
et al. 2007; Morard et al. 2008). Figure 5 shows the melting
temperature as a function of pressure for various sulfur
concentrations, assuming a linear interpolation of the
melting temperature between pure FeS and the eutectic
melting temperature. The pressure ranges shown represent
conditions in Ganymede and the Moon. For Ganymede
(Fig. 5a), a comparison with the adiabatic temperature pro-
file shows that for concentrations close to the eutectic,
freezing will start at about 7 GPa; i.e., within the core but
close to the CMB. Because of the high sulfur content of
FeS (~36.5 wt.% S), even solid FeS will be less dense than
the residual liquid, provided that the composition of the li-
quid is not close to FeS. The increasing concentration of
solid FeS will remelt at shallower depths, thus increas-
ing the S concentration and the liquidus temperature there
(on the sulfur-rich side of the eutectic, the melting
temperature increases with the sulfur content; see Fig. 1c).
Over time, a layer forms where solid FeS rises (FeS floating
zone) and where the temperature is equal to the melting
temperature. The floating zone can be divided into two
parts. The upper part, where d7/dP,,¢c > dT/dP,q, exhibits
a chemically stable gradient, and the lower part, where d7/
dPere < dT/dP,y, is chemically unstable, including the fluid
layer below. The fluid of the lower floating zone is left
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enriched in iron and tends to remix with the deeper fluid
core, leading to a decrease in the melting temperature
there. The floating zone grows toward the CMB until an
FeS layer forms at the CMB. The subsequent crystallization
of the core proceeds similarly to the growth of the Earth’s
inner core but in reverse as the solid FeS layer grows in
thickness toward the center. The continuous enrichment of
Fe in the fluid inner core will maintain chemical convection
and may drive a dynamo.

For sulfur concentrations greater than about 31 wt.%,
crystallization of FeS will start immediately at the CMB
and an FeS layer will grow in time from there (see
Fig. 1d). This is similar to the scenario shown in Fig. 1c
when the floating zone has reached the CMB. Figure 2
(right-hand side) shows the depletion of sulfur in the
fluid inner core as a consequence of the growth of the
FeS layer for various initial sulfur concentrations. The
FeS outer core will grow in thickness until the eutectic
composition is reached in the inner core. From that
point in time, the core will freeze in eutectic compos-
ition. The maximum thickness of the FeS outer core,
expressed in core radii, decreases with decreasing initial
sulfur concentration. Hauck et al. (2006) argue that FeS
crystallization will start in the center of Ganymede (rather
than in the upper core, as argued above). This is possible,
but it requires a conductive core with a suitably small
temperature gradient at the onset of freezing (see Fig. 5a).

For the Moon, we do indeed find that FeS would start
crystallizing at the center of the core. In this case, an
FeS floating zone develops with a stable chemical gradi-
ent where FeS crystallizes and rises upward toward the
outer core (see Fig. le), just like in an inverted iron snow
scenario. When FeS remelts, it releases buoyancy, which
may drive chemical convection in the outer core. With
core cooling, the FeS floating zone grows toward the
CMB. When this zone eventually comprises the entire
core, solid FeS remelting will cease and a solid FeS layer
begins to grow at the CMB. This scenario results in dy-
namics similar to that of the iron snow regime on the
Fe-rich side of the eutectic, although the direction of
growth of the floating zone is reversed, with solid parti-
cles rising instead of sinking. There may thus be a dy-
namo in the fluid outer core above the floating zone
rather than one in a fluid inner core below the iron
snow zone. The dynamo would be active as long as the
floating zone grows.

For core pressures higher than about 21 GPa, solid Fe3S
forms for S contents higher than the eutectic (Fei et al.
2000; Campbell et al. 2007; Stewart et al. 2007; Morard
et al. 2008). The slope of the eutectic temperature is esti-
mated at 15 K GPa™ (Campbell et al. 2007; Morard et al.
2008). For Mars, precipitation of Fe3S would first occur at
the CMB, because dT/dP,, < dT/dP,q is given for most
plausible parameter variations to determine the adiabatic
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temperature profile. FesS is denser than the residual liquid
(Stewart et al. 2007), so it sinks into the core and remelts
where T, > T (Fig. 1f). The crystallization process of
Fe;S is similar to that in the iron snow regime (Fig. 1b),
because an FesS snow region forms at the CMB. However,
there are important differences. The density profile of the
liquid in the FesS snow region is unstable. The sinking
and remelting of FesS results in an increase in S with in-
creasing depth, which results in turn in a decreasing dens-
ity with depth. In the Fe3S snow region, therefore, the
material continuously crystallizes and remelts because of
this unstable situation. Below the snow zone, compos-
itional convection is absent, since the remelting of FesS re-
sults in a local increase of S and leads to the formation of
a lower density fluid layer on top of the denser liquid core
below. This situation is stable. However, thermally driven
convection in the bottom fluid layer may still be possible,
since the heat flow from the lower core is adiabatic owing
to the convective snow zone. Over time, the Fe3S snow re-
gion comprises the entire core and a solid inner Fe3S core
forms. For this crystallization scenario, we can find two
convection layers and, therefore, two dynamo regions if
thermally driven convection is efficient in the liquid inner
core. Alternatively, the dynamo region is located in the
upper core, attains its maximum extent when the snow
zone reaches the center, and then shrinks again owing to
the growth of the solid inner core.

If FesS crystallizes first in the core center (see Fig. 1g),
which is possible for a conductive temperature profile,
the dense crystals remain in the center to form an inner
core, as in the conventional Earth scenario. Compos-
itional convection in the outer liquid core is unlikely to
occur, since the liquid from which FesS crystallizes will
be depleted in S and its density will increase. A fluid
layer forming in the solid FesS core, which is denser
than the remaining fluid core, does not induce an up-
ward flow through compositional buoyancy forces, and
dynamo action is less efficient or even unlikely.

Scaling laws and power for dynamo action

Scaling laws have been derived in recent years for hydro-
magnetic dynamos which relate magnetic induction to the
buoyancy flux, a measure of the convective power available
for the dynamo, and the dimensions of the dynamo re-
gion (e.g., Christensen and Tilgner 2004; Christensen
and Aubert 2006; Olson and Christensen 2006; Aubert
et al. 2009). These scaling laws suggest that the mag-
netic field strength is related to the convective power
available to balance ohmic dissipation and that it is not
determined by a force balance between the Coriolis and
Lorentz forces, as in the older scaling laws (e.g., Busse
1976; Stevenson 1979; Curtis and Ness 1986). A scaling
based on ohmic dissipation has already been used by
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Stevenson et al. (1983). A detailed discussion of the various
scaling laws can be found in Christensen (2010).

The scaling laws derived from dynamo simulations are
characterized by diffusivities and viscosities that are
many orders of magnitude too large. Such large values
are chosen to dampen any small-scale flow that cannot
be resolved with the present numerical resolution and
available computational power. The scaling of Christensen
and Aubert (2006) attempts to circumvent this problem by
avoiding diffusivity and viscosity. While a weak depend-
ence on the magnetic Prandtl number leads to a slightly
better fit to the simulated data (e.g., Christensen 2010), the
main advantage of the present scaling is that it satisfac-
torily covers a wide range of parameters, from planetary
dynamos to dynamos of fully convective rapidly rotat-
ing stars. Future simulations for more extreme parame-
ters than those explored by Christensen and Aubert
(2006) will further clarify the applicability of the pro-
posed scaling law.

Accordingly, the surface value of the magnetic induc-
tion can be calculated using

R\?
Bt :fﬂ(l)/2pcl/6(¢D)1/3 <R_> ’ (2)
V4

where f'is a constant prefactor that includes the parti-
tioning of energy between the poloidal and toroidal
components, yo is the permeability of free space, p. the
core density, ¢ the volumetric ohmic dissipation rate, D
the thickness of the fluid core, R, the core radius, and R,
the planetary radius. The final term shows that the de-
crease of the field strength is proportional to at least the
third power of the distance to the surface.

To calculate the ohmic dissipation rate, an entropy
balance is required for the core. Ohmic and viscous dis-
sipation do not enter the core’s global energy budget,
but, as irreversible processes, both are sources of en-
tropy. In the fluid regions of the core, viscous dissipation
can be neglected compared with ohmic dissipation. The
entropy budget for the core (for a review, see Nimmo
2007) reads

Egp = ES + Eg + EL + Erad_Eada (3)

where E4 is the rate of entropy production through
ohmic dissipation, Es is the entropy production rate
owing to secular cooling, and E, owing to the release of
chemical buoyancy. Ej, E.q and E,q are the entropy
production rates owing to latent heat release, radioactive
heating, and conduction along the adiabat, respectively.
Note that ohmic dissipation and heat conduction are ac-
tually entropy sinks. The individual contributions to the
entropy balance are given by
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Here, T, is the temperature at the CMB, Q, is the heat
carried by chemical convection, ¥ the gravitational poten-
tial, C the concentration of the light alloying element, Ly the
latent heat, drm,;/d¢ the rate of change of solidified mass, and
h the internal heating rate. For the classical case of inner-
core growth, as applicable to the Earth, the terms Ej, E,, and
E; can be expressed as functions of the radial growth rate of
the inner core (e.g., Labrosse 2003; Nimmo 2007).

Since dissipation always produces entropy, Eg has to
be greater than zero for a dynamo to occur. The entropy
balance also illustrates the importance of core freezing
for a dynamo because compositional buoyancy is not
limited by the thermodynamic (Carnot) efficiency factor
(*/r.-'/r). For a purely thermal dynamo (E,=E; =0)
and assuming no internal heat sources in the core, the
heat flux from the core needs to be greater than the heat
flux along the core adiabat.

The volumetric ohmic dissipation rate is then calcu-
lated as

EoT
Vg’

¢= ©)

where V4 is the volume of the fluid core and T the char-
acteristic core temperature where most entropy is produced.

In addition to constraints to the power available to gen-
erate a dynamo, the magnetic Reynolds number must be
greater than a numerically defined critical value of about
50 (Christensen and Aubert 2006). The magnetic Reynolds
number characterizes the importance of magnetic advec-
tion versus magnetic diffusion and is defined as Re,,, = vL/
n, where v is the characteristic velocity, L the characteristic
length (the thickness of the convective shell, D =L), and #
the magnetic diffusivity. The characteristic velocity can be
expressed through a scaling law,

D\ Y5 @\ 2/5
~0.7 | = —
~7(a) )

where Q is the rotation rate and p. is the average
density of the fluid core.

(10)
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In conclusion, whether a terrestrial planet features core
convection and whether it can have a thermal or a chemical
dynamo in these models depends mainly on the cooling
rate of the core, the core temperatures, and the core melt-
ing temperatures. Thermal evolution models suggest that
the existence of a present-day magnetic field in a terrestrial
planet requires a crystallizing core. A purely thermally
driven dynamo is unlikely for any present-day terrestrial
planet, since the models typically predict a slowly cooling
core with a core heat flux that is smaller than the heat flux
along the core adiabat. In fact, a thermal dynamo is, in gen-
eral, difficult to obtain for stagnant-lid planets. For these,
superheating of the core with respect to the mantle must
be postulated (e.g., Stevenson et al. 1983; Breuer and Spohn
2003; Laneuville et al. 2014). If superheating can be ob-
tained (e.g., upon core formation), the thermal dynamo typ-
ically shuts off very early during the evolution, since the
heat flow from the core decreases rapidly during the first
few hundred million years. Considering the high values for
the thermal conductivity recently suggested, early thermal
dynamos would either be even more short-lived or entirely
absent. Whether an inner core can grow (and by which
crystallizing mechanism) and whether a compositional dy-
namo can be initiated depends strongly on the temperature
evolution, the core pressure, and the core composition
(melting temperature).

Core composition
Cosmochemical abundances suggest that the bulk of the
core is made of iron, with some Ni and light elements.
In addition to cosmochemical arguments, light elements
are required to balance the density deficit of the Earth’s
outer fluid core compared with pure fluid iron and of
the solid inner core with respect to pure solid iron (e.g.,
McDonough 2014). It is commonly assumed that sulfur
is the most likely candidate for the light elements in the
cores of terrestrial planets and moons (e.g., Ringwood
1977; McCammon et al. 1983). First, it is abundant in
the solar system and is a siderophile (an element that is
preferentially enriched in the iron melt), and it is thus
likely enriched in the core upon core formation. Second,
iron meteorites consist of pure Fe—Ni, with varying
amounts of sulfides (FeS). These meteorites are believed
to be remnants of iron-rich cores from planetesimals that
have differentiated during their early evolution and are
considered building blocks of the terrestrial planets. The
Fe—FeS system is a eutectic system. It is usually assumed
that the compositions of most terrestrial planets are on
the Fe-rich side of the eutectic composition (e.g., Lodders
and Fegley 1998), while for the large Jovian moons (e.g.,
Scott et al. 2002) and Mars (e.g., Stewart et al. 2007), this
is under debate.

Many models of core processes simply assume an Fe—
FeS composition. This assumption is almost certainly
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an oversimplification. We know from the Earth’s core that
light elements such as Si, O, C, and H are likely incorpo-
rated in the core (for recent reviews, see, e.g., Hirose et al.
2013; McDonough 2014; Nimmo 2015). The actual com-
position of the core depends strongly on the primordial
composition of the planet’s forming material and the par-
tition coefficient of light elements between the solid and
liquid phases, which again depends on temperature and
pressure conditions, as well as on the oxidation state dur-
ing core formation: the abundance of light elements in the
iron-rich cores will, therefore, vary among planets and
moons. Even for the Earth’s core, the core composition is
not well-known and compositional models for the core
(e.g., a silicon- versus an oxygen-bearing core) are offered
as competing hypotheses (e.g., McDonough 2014). In con-
trast to other terrestrial bodies, compositional models for
the Earth’s core can be constrained by seismological data
(e.g., Badro et al. 2014).

Knowing the light elements and their concentrations is
important for modeling the thermal and the magnetic
field evolution, for two main reasons. First, the melting
relations pertaining to the core depend on the nature
and concentrations of the light elements. For instance,
the eutectic temperatures in the Fe—FeS and Fe—Fe;C
systems are about 1000 and 500 K lower, respectively, than
the melting temperature of pure iron at 25 GPa (Chabot
et al. 2008; Buono and Walker 2011). Second, the buoyancy
forces powering the dynamo depend strongly on the dens-
ity difference between the solid and the fluid phases. In the
Fe—FeS system, for instance, pure Fe is crystallizing (includ-
ing a small amount of sulfur at higher pressure; Li et al.
2001), thereby maximizing the effects of the enrichment of
light elements in the outer core and the density difference
between the outer and the inner cores. In the Fe—Si system,
alloys of Fe and Si form a solid solution with maximum
compositional differences of ~2 wt.% Si between the liquid
and solid at 21 GPa and temperatures <2000 K (Kuwayama
and Hirose 2004), and only a small density difference is ex-
pected, which is mainly due to the volume change upon
crystallization. For more complex, multicomponent sys-
tems, melting temperatures and density differences are less
well studied. First steps have been taken to explore the
Fe-Si-S system (e.g., Sanloup and Fei 2004; Siebert
et al. 2004; Malavergne et al. 2007) and the Fe—-O-S
system (e.g., Naldrett 1969; Urakawa et al. 1987; Tsuno
and Ohtani 2009).

Another important issue for magnetic field generation is
the presence of radioactive elements in the core, since these
can provide additional power for the dynamo (see Eq. 6). In
general, uranium, thorium, and potassium are lithophile el-
ements that will not easily partition into the core (for re-
views, see Roberts et al. 2003; McDonough 2014). Thermal
models usually neglect them, although at least potassium
has been discussed (e.g., Lewis 1971; Murthy 1991; Breuer
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and Spohn 1993; Buffett 2002). Recent experimental studies
found that K increasingly partitions into Fe liquids at high
pressures and temperatures with increasing concentrations
of S or Ni (Gessmann and Wood 2002; Murthy et al. 2003;
Lee et al. 2004). For Mars, a value of about 150 ppm K in
the core has been suggested (Murthy et al. 2003), which
has only minor effects on the planet’s thermochemical evo-
lution, however (Williams and Nimmo 2004). In addition,
at very low oxygen fugacities, as suggested for Mercury’s in-
terior, elements that are typically considered lithophile can
become more siderophile or chalcophile. This has been
shown for U (Malavergne et al. 2007) and is also possible
for Th (Malavergne et al. 2010).

Mercury

The MESSENGER mission, which orbited Mercury between
March 2011 and the end of April 2015, confirmed the pres-
ence of an internally generated magnetic field (Anderson
et al. 2011), which had already been detected during the first
and third close encounters of Mariner 10 in 1974 and 1975
(Ness et al. 1974, 1975, 1976; Connerney and Ness 1988;
Russell et al. 1988). Mercury’s magnetic field features a pecu-
liarly small dipole moment, which is a factor of about 10*
smaller than that of the Earth. MESSENGER found the
equivalent dipole to be offset toward the north by about 0.2
planetary radii, suggesting a strong quadrupole contribution,
and a small deviation from axial symmetry (Anderson et al.
2012; Johnson et al. 2012). Moreover, evidence for remanent
crustal magnetization was found as the spacecraft was
spiraling toward Mercury to hit the surface on 30 April
2015. The cratering record of the magnetized surface sug-
gests that a magnetizing field has existed since at least 3.7—
3.9 Ga (Johnson et al. 2015).

Since the discovery of Mercury’s magnetic field, it has
mostly been argued that a hydromagnetic dynamo driven
by chemical convection in an outer liquid core provides the
best explanation, although alternative dynamo mechanisms
have been suggested as well (see below). It is generally ac-
cepted that Mercury has an iron-rich core. The high density
of the planet suggests that this core must be comparatively
large, about 0.8 planetary radii. Recent MESSENGER grav-
ity data (Smith et al. 2012) and the amplitude of libration
measurements with Earth-based radar (Margot et al. 2007,
2012) have been used to calculate improved values of the
planet’s moment of inertia factor, C, and the ratio of the
moment of inertia of the solid part of the planet overlying
the liquid core to that of the whole planet, C,,/C, following
Peale (1976). From these, improved estimates of the core
radius range between 1840 and 2040 km (Smith et al. 2012;
Hauck et al. 2013; Rivoldini and Van Hoolst 2013). The
value of C,,/C =0.431 + 0.025 also supports the presence of
a fluid outer core (Peale 1976; Margot et al. 2012). In a re-
cent study, these data have been used to constrain the size
of the putative inner core (Dumberry and Rivoldini 2015).
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Assuming an Fe—FeS core composition, the largest inner-
core radius consistent with the geodetic observations is
1325 + 250 km.

Prior to the MESSENGER observations, the planet’s bulk
composition, including that of the core, was poorly con-
strained. Generally, a low volatile content was assumed be-
cause of Mercury’s close orbital position to the Sun and its
unusually large metal-to-silicate ratio suggested by the aver-
age density. Most models that aim to explain the large core
radius predict a nearly complete loss of volatiles; i.e., a loss
of silicates through evaporation (Fegley and Cameron
1987), high temperature equilibrium condensation of nebu-
lar materials (Lewis 1973), a giant impact removing part of
the silicate planet (Cameron et al. 1988), or meteoritic mix-
ing of refractory and volatile condensates (Morgan and An-
ders 1980). Measurements of the elemental ratios K/Th
and K/U with the MESSENGER gamma-ray spectrometer
(Peplowski et al. 2011, 2012), however, argue for a volatile
content similar to that of the other terrestrial planets and
thus may also allow for a higher volatile content in Mer-
cury’s core than previously assumed. Note that this assump-
tion is still uncertain, because up to 10 % of Mercury’s U
inventory, and possibly also a significant amount of Th,
may have partitioned into the core (McCubbin et al. 2012)
and thereby changed the elemental ratios K/Th and K/U if
Mercury’s core formed under extreme reducing conditions.

As for the other terrestrial planets, sulfur has been the
most likely candidate for the light element in the iron core
(e.g., Ringwood 1977; McCammon et al. 1983). However,
the model of an Fe—FeS core has recently been ques-
tioned, since the MESSENGER x-ray spectrometer (XRS)
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data (Nittler et al. 2011; Weider et al. 2012) indicate
strongly reducing conditions, which has been used to sug-
gest a core containing Si as well as S (e.g., Malavergne
et al. 2010; Chabot et al. 2014). The presence of silicon
may have major implications for the core’s structure and
evolution (Smith et al. 2012; Hauck et al. 2013) and for
the magnetic field evolution (see Fig. 6).

Thermal evolution models (Schubert et al. 1988; Hauck
et al. 2004; Grott et al. 2011; Tosi et al. 2013) suggested
that a typical evolution of the magnetic field starts with a
thermally driven dynamo, followed by a chemically driven
dynamo after the start of inner-core growth. Thermally
driven dynamo action may cease before the inner core be-
gins to freeze, in which case there would be a gap in the
magnetic field history. Whether such a gap occurs and its
length in time would depend on the value of the heat flow
along the core adiabat and the core’s volatile content. The
larger the heat flux along the core adiabat becomes, the
shorter the lifetime of a thermally driven dynamo is. Re-
cent laboratory measurements for iron suggested a ther-
mal conductivity of 113—-125 W m™" K™! for Mercury core
pressure and temperature conditions and a heat flow
along the adiabat of 45-100 mW m ™2 (Deng et al. 2013).
This high value suggests a rapid decline of a thermal dy-
namo, within less than a few tens of Ma (e.g., Grott et al.
2011; Tosi et al. 2013): see Fig. 7c. Note, however, that vol-
atiles in the core reduce the thermal conductivity and thus
the heat flow along the adiabat (de Koker et al. 2012).
This, in turn, increases the lifetime of an early thermal dy-
namo. On the other hand, the higher the volatile content
is, the later the onset of inner-core growth occurs (e.g.,

Fe-Si rich fluid

Fig. 6 Structure of an Fe-S-Si core in Mercury. Cross-section through Mercury's core, illustrating possible layered Fe-S-Si cores, depending on
the temperature distribution (temperature decreases from a to c). a The immiscibility of S- and Si-rich liquids (Sanloup et al. 2000; Morard and Katsura
2010) up to 14 GPa and the lower density Fe-S-rich phase compared with the Fe-Si-rich phase (Badro et al. 2007) leads to a segregation of S-rich
liquids (with almost no Si) near the top of the core, with more Si-rich liquid materials (with almost no Si) at greater depths. For pressures higher than
14 GPa, a liquid layer with Fe-Si-S can, in principle, be present, but such a configuration is unstable, since Si liquids that are located higher up are
denser and sink into the core, resulting in the final structure shown. b The smaller melting point depression of Fe-Si alloys (e.g., Kuwayama and Hirose
2004) compared with Fe=S alloys (e.g., Usselman 1975; Fei et al. 1997; Li et al. 2001; Stewart et al. 2007; Chen et al. 2008) suggests that a solid Fe-Si core
grows first. Alloys of Fe and Si form a solid solution with small compositional differences between the liquid and solid (Kuwayama and Hirose 2004).

c A solid FeS layer forms at the CMB even when the temperature decreases below 1600-1700 K
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Fig. 7 Thermochemical evolution of Mercury. Representative a time evolution of mantle temperature and CMB temperature; b time evolution of
the planetary radius change caused by thermal expansion/contraction of the mantle and core (solid line), mantle differentiation (dashed line), and
sum of the two contributions (dash-dotted line); ¢ time evolution of the surface heat flux (solid line), mantle heat flux (dash-dotted line), and core
heat flux (dashed line); d time evolution of the thickness of the secondary crust (dashed line), the stagnant lid (solid line), and the region where
partial melting occurs (shaded gray). Figure adapted from Tosi et al. (2013)
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Schubert et al. 1988; Hauck et al. 2004; Grott et al. 2011;
Tosi et al. 2013). For example, the core starts to freeze
after 0.75, 0.8, and 2.5 Gyr for an initial concentration of
0.2, 1, and 5 wt.% S, respectively, assuming the same
mantle parameters (Schubert et al. 1988).

The existence of a solid inner core places constraints
on the volatile content of the core and an upper limit
to the concentration can be derived depending on the
radioactive heat source density in the mantle, the ther-
mal history, the nature of the volatiles, and the details
of the melting relations. The amount of contraction of
the planet derived from the distribution, lengths, and
heights of lobate scarps (e.g., Strom et al. 1975; Byrne
et al. 2014), on the other hand, places constraints on
the minimum amount of volatiles in the core, as well
as on the cooling rate of the planet since the late
heavy bombardment (LHB; Hauck et al. 2004; Breuer
et al. 2007; Grott et al. 2011; Tosi et al. 2013). Before
MESSENGER, the distribution and morphology of the
scarps were thought to imply an average contraction
of the planet’s radius by only 1-2 km (Strom et al.
1975) since the LHB. From MESSENGER camera ob-
servations, a larger value of 4.2-6.3 km has recently
been inferred (Byrne et al. 2014).

The most likely source of global contraction is a combin-
ation of thermal contraction (caused by cooling) and a vol-
ume change through solidification of parts of the core, with

core freezing contributing more effectively. Complete so-
lidification of a purely iron core would shrink the planet by
about 17 km in radius (Solomon 1976). This effect can be
considerably amplified if a light alloying element such as
sulfur is present in the core, which is expelled from the
inner core upon solidification, increasing the density differ-
ence between the liquid and solid core phases. The radius
of the inner core can thus be taken as roughly proportional
to the amount of planetary contraction (Hauck et al. 2004;
Breuer et al. 2007; Grott et al. 2011; Tosi et al. 2013). Con-
sidering a value of ~7 km (Byrne et al. 2014) and assuming
that it is entirely caused by the volume change owing
to inner-core growth, an inner-core radius of ~800—
1000 km (0.4-0.5 R, Grott et al. 2011) is obtained.
The inner solid core is likely smaller, however, because
of secular cooling contributing to the radial contrac-
tion. A larger solid inner core can only be reconciled
with the observed contraction data if most of the inner
core formed during the first 500 Ma before the LHB
(e.g., Schubert et al. 1988), thereby erasing the geo-
logical evidence of early contraction.

Models that consider the combined thermal, magmatic,
and tectonic evolution of Mercury (Hauck et al. 2004) sug-
gest a bulk core sulfur content between 6.5 and 7.5 wt.%
and a late formation of the inner core since 1 Ga. These
authors further argued that acceptable models will require
a dry-olivine mantle rheology and that heat production is
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provided by thorium only, as predicted by the forma-
tion model with late evaporation of silicates (Fegley and
Cameron 1987). The more recent models of Grott et al.
(2011) and Tosi et al. (2013) predicted similar values of the
sulfur content (6-10 wt.%) to explain the global contrac-
tion, even when considering a non-refractory composition
consistent with the MESSENGER gamma-ray spectrom-
eter data (Peplowski et al. 2011, 2012) if the insulating ef-
fect of a regolith layer is included (see Fig. 7b). Combined,
the results of thermochemical evolution models suggest
that dynamo action in Mercury to produce the present
field is recent and that the observed early magnetic field
episode was likely brief.

The classical hydromagnetic dynamo, as assumed in
the thermal evolution models above, has problems to ex-
plain the strength of Mercury’s magnetic field, however.
Estimates from scaling laws such as Eq. 9 above suggest
a much stronger field than observed (Stevenson et al.
1983; Schubert et al. 1988; Wicht et al. 2007). Other
models that predict a strong quadrupole component
(e.g., Christensen 2006; Christensen and Wicht 2008)
imply a large dipole tilt, which has not been observed. A
recent review of the various dynamo models for Mercury
can be found in Wicht and Heyner (2014). We only pro-
vide a summary here.

Thin-shell dynamo models with a large inner core (rela-
tive inner-core size larger than about 0.8) can produce mag-
netic fields with Mercury-like field strengths (Heimpel et al.
2005; Stanley et al. 2005), but these models are not consist-
ent with geodetic and tectonic observations (Grott et al.
2011; Dumberry and Rivoldini 2015). Alternatively, a deep
dynamo with a small inner core (of less than 1000 km in ra-
dius) has been proposed by Heimpel et al. (2005), Christen-
sen (2006), and Christensen and Wicht (2008). In the latter
two models, the dynamo operates below a stable conduct-
ing layer in the outermost core. The field is then strongly
attenuated by the electromagnetic skin effect of the stag-
nant (i.e., no vertical movement) but electrically conducting
layer. However, the stagnant layer may be destabilized by
double diffusive effects, which can only be avoided if the
sulfur concentration in Mercury’s core is very small, only a
fraction of a percent (Manglik et al. 2010). A core with such
a low sulfur concentration is again not likely to be consist-
ent with the geodetic and tectonic evidence (Hauck et al.
2004; Grott et al. 2011; Tosi et al. 2013).

These dynamo models assume an Earth-like dynamo
with inner-core freezing starting at the center. However, as
discussed before, recent data about the melting relations of
Fe—FeS at moderate pressures suggest a negative liquidus
temperature gradient in the outer layers of the Hermean
core. The present core would then most likely be precipi-
tating solid iron in the form of snow at a single depth or in
two distinct zones (Chen et al. 2008). Such a sce-
nario predicts a stably stratified layer in the outermost
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core, as required to explain the geometry and magnetic
field strength through the electromagnetic skin effect
(Christensen 2006; Christensen and Wicht 2008; Vilim
et al. 2010). However, dynamo models that include an iron
snow layer are strongly time dependent and generate
Mercury-like magnetic fields only for a fraction of the total
simulation time (Wicht and Heyner 2014). Large-scale vari-
ations in the CMB heat flux may help to stabilize strong
Mercury-like quadrupole terms (Cao et al. 2014), but these
are not consistent with the current understanding of Mer-
cury’s lower mantle (e.g., Tosi et al. 2013).

Motivated by the findings produced by the MESSENGER
XRS instrument (Nittler et al. 2011), Si has been suggested
as a core phase in addition to S (Malavergne et al. 2010),
which may have strong implications for the core structure
and evolution (Smith et al. 2012; Hauck et al. 2013). High-
pressure experiments with the Fe—S—Si ternary system (e.g.,
Malavergne et al. 2010) have revealed an immiscibility of S-
and Si-rich liquids up to a pressure of ~14 GPa (Sanloup
and Fei 2004; Morard and Katsura 2010) and smaller dens-
ity differences between liquid and solid phases com-
pared with those in the Fe—S binary system (Kuwayama
and Hirose 2004). These findings suggest a compos-
itional stratification in the core as S-rich liquids would
segregate toward the CMB, leaving more Si-rich materials
at greater depths (Malavergne et al. 2010; Smith et al.
2012; Hauck et al. 2013; see Fig. 6). Hauck et al. (2013)
even suggest that the outer FeS layer is solid and part of
the solid outer shell (crust, mantle, and upper core),
whose thickness has been estimated from the moment-of-
inertia data. This would imply a mantle even thinner than
400 km and require core—mantle temperatures lower than
that for the liquidus of pure FeS (1600-1700 K, depending
on the pressure at the CMB; Boehler 1992). These temper-
atures are not consistent with the most recent thermal
evolution models (Tosi et al. 2013; see Fig. 7a). The impli-
cations of an Fe—S-Si system for the dynamo are, how-
ever, unknown.

The present magnetic field data do not allow us to con-
clusively prove or reject the various dynamo models and
thermal history calculations. More details about the mag-
netic field are expected from the upcoming BepiColombo
mission, and new constraints may be derived for the dy-
namo. BepiColombo consists of two orbiters in different
orbits (characterized by small and large eccentricities),
both equipped with magnetic field sensors that may help
to better disentangle the magnetic field of the planet.

The moon

Lunar paleomagnetic data suggest a magnetizing field of up
to ~100 pT between at least 4.25 and 3.56 Ga b.p., a field
similar in strength to the present terrestrial magnetic field
(Cisowski and Fuller 1986; Garrick-Bethell et al. 2009; Shea
et al. 2012; Tikoo et al. 2012; Suavet et al. 2013). The field
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strength decreased by an order of magnitude between 3.56
and ~3.3 Ga b.p. (Tikoo et al. 2012, 2014) and possibly per-
sisted until 3.19-1.3 Ga b.p. (Tikoo et al. 2014) or even
until 200 Ma b.p. (Wieczorek et al. 2006) at a level of a few
nano-Teslas (see Fig. 8). The paleomagnetic data younger
than 3.19 Ga are, however, also consistent with no field,
and further laboratory analysis is needed. Alternative expla-
nations to a dynamo-generated global field for the lunar
magnetic record suggest that at least part of the remanent
magnetization was acquired from plasma clouds that had
been generated by impacts antipodal to the magnetic
anomaly (Hide 1972; Hood and Vickery 1984; Hood and
Huang 1991; Hood et al. 2001). A comprehensive review of
the Apollo-era measurements and recent paleomagnetic
studies can be found in Weiss and Tikoo (2014).

A lunar dynamo requires an iron-rich core, whose exist-
ence is largely uncontroversial. A core of 250-450 km ra-
dius is consistent with both the lunar polar moment of
inertia (Konopliv et al. 1998) and electromagnetic sounding
data from the Lunar Prospector (Hood et al. 1999; Shimizu
et al. 2013). Reanalyses of Apollo seismic data (Garcia et al.
2011; Weber et al. 2011) have confirmed the existence of a
core with a radius between 340 and 420 km but disagree
on the existence of a solid inner core. Recent analysis of
lunar laser ranging data by Williams and Boggs (2015) re-
quired a region of high dissipation with a radius =535 km,
consistent with a (partially molten?) high-dissipation layer
on top of a core (see also Weber et al. 2011).

The paleomagnetic data show characteristic features that
any magnetic field generation model needs to explain. First,
there is no remanently magnetized rock older than 4.25 Ga.
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Fig. 8 Paleomagnetic data of the Moon. Summary of lunar
paleomagnetic data. Black points represent Apollo-era measurements
(Fuller and Cisowski 1987; Wieczorek et al. 2006) and red points indicate
modern, more reliable data produced using the isothermal remnant
magnetization (IRM) and Thellier-Thellier methods (Weiss and Tikoo 2014).
Arrows indicate data points that only provide an upper limit to the field
strength and/or age. The two horizontal dashed lines represent the
calculated maximum surface field obtained from the power scaling law
(Eq. 9) for both precession dynamo (Dwyer et al. 2011) and thermal
and/or chemical dynamo (Evans et al. 2014; Laneuville et al. 2014).
Figure adapted from Scheinberg et al. (2015)
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Two alternative explanations have been suggested. (1) The
remanent magnetization of older crustal rock could have
been destroyed by impact gardening and/or volcanic activ-
ity in the first 250 Ma failed to produce enough rock that
could have acquired significant remanent magnetization.
Alternatively, (2) the internal field may have been triggered
only about 250 Ma after core formation. Second, the paleo-
intensity between 3.56 and 3.85 Ga b.p., inferred for the
magnetizing field from the measured magnetization, was
about two orders of magnitude higher than suggested by
estimates from magnetic field scaling laws for typical ther-
mal or chemical dynamos (e.g., Evans et al. 2014; Laneuville
et al. 2014; Weiss and Tikoo 2014). Finally, no lunar dy-
namo model exists to date that is capable of explaining the
rapid decline of the field intensity with time until 3.3 Ga
b.p. while continuing to produce a weak field thereafter
(but still one order of magnitude larger than that from con-
ventional dynamo scaling models). The latter predict fields
of about 1 pT or smaller.

Most previous thermal and magnetic field evolution
models have considered a thermally driven dynamo dur-
ing the early evolution of the Moon (Konrad and Spohn
1997; Spohn et al. 2001; Laneuville et al. 2014). These
models show that a thermally driven dynamo would have
been active since core formation and may have lasted a
maximum of 500 Myr, until 4 Ga b.p.,, if the core was su-
perheated by a few hundred degrees with respect to the
mantle. These thermal evolution models, however, neglect
any chemical stratification of at least the lower mantle. A
recent study by Evans et al. (2014) showed a long-standing
thermal dynamo of up to 2 Gyr if the lower mantle rhe-
ology is weakened by water, but they also assume a low
thermal conductivity of the iron-rich core of 25 W m™" K™
and an adiabatic heat flux of 2.4 mW m™>,

Models of a late onset of dynamo action invoked
the thermal and chemical consequences of a magma
ocean (Stegman et al. 2003; Zhang et al. 2013). After
crystallization of the magma ocean, a dense ilmenite and
pyroxene cumulate layer, located just below the enriched
KREEP layer, sinks to the deep lunar mantle and thermally
insulates the core. (The KREEP layer is enriched in potas-
sium (K), rare earth elements (REE), and phosphorous (P).)
The core is thus prevented from cooling convectively and
also from developing a dynamo. Eventually, because of the
heating by radiogenic elements, the dense lower mantle be-
comes buoyant and convection currents rise toward the
surface. With the removal of the thermal blanket, the core
begins to convect vigorously, cooling and producing a
short-lived thermal dynamo, although the heat flux from
the core is less than 8 mW m > in that scenario and, there-
fore, is just at the limit of or even below the critical heat
flux along the adiabat. The period it takes the thermal blan-
ket to heat up and rise back toward the surface is essential
in these models and is broadly consistent with the time of
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the eruption of the mare basalts and the magnetization of
lunar rocks between 4.25 Ga and 3.55 Ga b.p.

Other models explain the magnetic signatures by
mechanically stirring the core through either precession
(Williams et al. 2001; Dwyer et al. 2011) or changes in
the lunar rotation rate from large impacts (Le Bars et al.
2011). In particular, the precession dynamo (see Fig. 9)
can be long lasting (until 3.4-2.5 Ga b.p.) and may be
capable of producing the strong surface magnetization,
since the power caused by differential motion can be
much larger compared with the power driving thermal
or chemical convection (Tian et al. 2014). Although the
precession dynamo can be viable for the strong early
lunar field, the possible long-lasting and weak field until
recent times may still require an alternative explanation.

A recent interpretation of Apollo seismic data sug-
gested that the core may be stratified with a liquid
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outer and a solid inner core (Weber et al. 2011) of
240 km radius. The core radius is 330 km in this
model. If correct, a chemical dynamo may become a viable
alternative, a possibility that has been discarded by previous
evolution models (e.g., Konrad and Spohn 1997). These lat-
ter authors argued that the absence of a present-day mag-
netic field would be difficult to reconcile with a growing
inner core and a chemical dynamo supporting inner-core
growth would be difficult to stop in a continuously cooling
planet. This is consistent with the conclusion of Laneuville
et al. (2014) but inconsistent with that of Scheinberg et al.
(2015). In the former study, however, the authors neglected
the partial derivative of the liquidus temperature owing to
light-element enrichment in the outer core, similar to the
approach of Nimmo (2007). Considering this contribution,
sufficient power is indeed not available to drive a present-
day dynamo, even with a growing inner core (Scheinberg
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Fig. 9 Precession dynamo: the total power deposited into the lunar core. The solid line shows the total power deposited into the lunar core, Ps,
as a function of semimajor axis (bottom x axis) for a precession dynamo: continuous mechanical stirring caused by the differential motion, due to
Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core below. The adiabatic threshold value is marked
as Py, (dashed line). The dash-dotted line is for Py =3 x 10" W, which represents an estimate of the power available to drive the dynamo in the
Earth. The time before the present is plotted at the top. There is 7 x 10°® J of energy available for dynamo generation between the time of the
Cassini state transition (at a lunar semimajor axis of 34 Rg) and the cessation of the dynamo (when the power decreases to below Py, ie, ~2.8 Ga b.p).
The results suggest that a mechanically driven dynamo could persist for at least ~1.6 Gyr. The inset shows the geometry of the situation. The mean
motion, n, of an orbit is related to the semimajor axis, a, through n = (GM./a*)®?, where M. is the mass of Earth. Figure after Dwyer et al. (2011)
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et al. 2015). The growth rate of the core and, therefore, the
compositional buoyancy becomes too small to overcome
the stable temperature gradient for subadiabatic core
cooling. These models, which assume Earth-like core
crystallization, further suggest a field strength that is two
orders of magnitude too low to explain the observed early
strong magnetization and one order too low to explain the
weaker, younger magnetization (Laneuville et al. 2014). Al-
ternatively, for a sulfur content above about 8 wt.%, iron
snow fall is a likely mechanism for core solidification
(Laneuville et al. 2014), as has been suggested for
Ganymede (e.g., Hauck et al. 2006), Mars (Stewart et al.
2007), and Mercury (Chen et al. 2008). In the iron snow
regime, the formation and growth of the inner core
would mark the demise of dynamo action (Christensen
2015; Riickriemen et al. 2015).

Mars

Since the Mars Global Surveyor (MGS) mission
(Acuna et al. 1998, 1999, Mitchell et al. (2001);
Connerney et al. 1999), it has been known that the crust
of Mars is remanently magnetized (see Fig. 10) and that
the planet must have had an active magnetic field of sig-
nificant strength some time during its history, most likely
in the Early Noachian. The magnetization of up to ~10-
30 A m™', comparable in magnitude to the remanent
magnetization of fresh extrusive basalt near the oceanic
ridge axes of Earth (Bleil and Petersen 1983), suggests a
magnetizing field of 0.1 to 10 times that of the present
Earth (Mitchell et al. 1999, 2001; Ness et al. 1999), depend-
ing on the mineralogy and the magnetic microstructure of
the Martian crust. The magnetic history of the planet has
been reviewed in a number of publications (e.g., Con-
nerney et al. 2004; Breuer et al. 2010; Breuer and
Moore 2015; Connerney 2015), some of which discuss
the subject in comparison with the histories of other
terrestrial planets, and we will therefore only briefly
summarize the present knowledge.

The most popular model to explain an early magnetic
field for Mars and the absence of a present dynamo field
goes back to the work of Stevenson et al. (1983) and
Schubert and Spohn (1990) who proposed, on the basis
of their thermal history models, that the Martian core may
be lacking an inner core and that an early thermally driven
dynamo had ceased to operate after a few hundred million
years of evolution. The model was subsequently refined
(e.g., Spohn et al. 1998; Hauck and Phillips 2002; Breuer
and Spohn 2003, 2006; Williams and Nimmo 2004; Michel
and Forni 2011) and is roughly consistent with a dynamo
lifetime of 500 Ma, as inferred from the magnetization pat-
tern (Fig. 11). The timing has been questioned, however,
by Schubert et al. (2000) who argue for younger magne-
tized rock on the surface, as suggested by the timing of
magnetized volcanic units by Hood et al. (2010). The
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hypothesis of a magnetic field at epochs later than the
Early Noachian is supported by the magnetization, albeit
weak, of Martian meteorites with formation ages of 1.3 Ga
to 180 Ma. Their magnetization is consistent with a weak
surface field of a few hundred to a few thousand nano-
Teslas (Collinson 1997; Rochette et al. 2001). Although it
cannot be excluded that the dynamo became somehow
reactivated, it is more likely that the young Martian mete-
orites were magnetized by the older, strongly magnetized
crust rock (for a review, see Connerney et al. 2004).

The hypothesis of the absence of an inner core can be
tested based on geochemical evidence for the composition
of the Martian core. A molten core for the entire evolution
is possible if the core contains at least ~5 wt.% of sulfur
(Williams and Nimmo 2004), although the more recent
Fe—FeS melting data of Stewart et al. (2007) suggest a sul-
fur threshold of at least 10 wt.% or even higher, depending
on the efficiency of core cooling (see Fig. 12). In the latter
study, it was also suggested that iron snow would become
active in the future of Mars because of further cooling. A
core sulfur concentration of 14.2 wt.% has been suggested
(Dreibus and Winke 1985; McSween 1985) based on
chemical analysis of SNC meteorites. The estimate as-
sumed, however, that the all available sulfur went into the
core during core formation. Recent experiments showed
that it is impossible to simultaneously account for the Mar-
tian mantle depletion of moderately siderophile elements if
the Martian core sulfur content exceeds 10.5 wt.% under
reducing conditions; ie., one logarithmic unit below the
iron-wiistite buffer (Rai and van Westrenen 2013). Note
that these high sulfur concentrations also indicate the par-
titioning of oxygen into the core (Tsuno et al. 2011).

Alternative scenarios that explain the magnetic field his-
tory invoke changes in tectonic style and in the heat trans-
port mechanism, from plate tectonics to stagnant lid
(Nimmo and Stevenson 2000; Stevenson 2001; Breuer and
Spohn 2003; see Fig. 11), or consider the effects of im-
pacts. Some of the latter models suggest that a late impact
may have heated the mantle to the extent that convection
and dynamo action in the core stopped (e.g., Roberts et al.
2009; Arkani-Hamed and Olson 2010), while Reese and
Solomatov (2010) argued that a late large impact may have
triggered the onset of the dynamo. Which of these con-
flicting scenarios is more likely depends mainly on the dy-
namics in the core during the merging of an iron diapir
with a preexisting core, a process that is poorly under-
stood (Monteux et al. 2013).

The dichotomy of the observed magnetization, with the
southern hemisphere being more strongly magnetized
than the northern hemisphere (e.g, Langlais et al. 2004;
Morschhauser et al. 2014), is an important feature that
must be explained. Two general types of models
have been suggested. A once more or less homoge-
neous magnetization may have been destroyed in the
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northern hemisphere by, for example, hydrothermal alter-  explanation suggests that the dynamo itself produced a
ation (Solomon et al. 2005) or impacts (e.g., Rochette et al.  hemispherical field owing to lateral heat flow variations at
2003; Mohit and Arkani-Hamed 2004). The alternative the CMB (Stanley et al. 2008; Amit et al. 2011). This
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Fig. 11 Evolution of Martian core heat flow. Core-mantle heat flow
as a function of time for models with early plate tectonics (solid line)
and stagnant-lid convection throughout their entire evolution (dashed
line), with initial temperature differences across the CMB of AT, =0 K
and AT, =250 K. The gray region marks the range of the critical core-
mantle heat flux along the adiabat and the orange region the suggested
time period of the global magnetic field (after Breuer and Spohn 2003)

hemispherical dynamo would produce strong magnetic
fields in the southern hemisphere if the heat flow from the
core below the southern hemisphere was stronger than
that below the northern hemisphere. A recent numerical
model by Dietrich and Wicht (2013) showed, however,
that these hemispherical dynamos reverse on timescales of
about 10 kyr: too quickly to allow for the unidirectional
magnetization of a thick crustal layer required to explain
the strong magnetization in the southern hemisphere.
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Ganymede

In 1996, the Galileo mission measured a magnetic field
around the Jovian moon Ganymede (Kivelson et al. 1996),
which was interpreted as a field of internal origin embedded
in the Jovian magnetic field. The field would have an
equatorial surface field strength of approximately 719 nT
(Kivelson et al. 2002). The discovery of a self-sustained mag-
netic field at Ganymede came as a surprise, since it was
commonly believed that the icy moon—with an average
density of 1936 kg m>—was composed of a rocky core sur-
rounded by a large mantle of water or water ice with an ice
surface. The magnetic field has an anomalously low quadru-
pole moment relative to its dipole moment (Kivelson et al.
2002), placing a strong constraint on the dynamo mechanism.

The origin of Ganymede’s magnetic field is most likely
found in an iron-rich core, because alternative mecha-
nisms such as remanent magnetization of a silicate layer
containing magnetic minerals below the ice mantle or a
dynamo in an electrically conducting, salty subsurface
ocean are implausible (Schubert et al. 1996). For remanent
magnetization, both the concentration of magnetic min-
erals and the external field (i.e., the present Jovian mag-
netic field at Ganymede’s orbit, ~100 nT) are too low to
reasonably explain the observed field. On the other hand,
the flow velocity in its ocean must be implausibly large, on
the order of 1 m s, to explain the observed magnetic
field through a dynamo in a subsurface ocean.

The existence of an iron-rich core is further supported by
the small mean moment-of-inertia factor (Mol = 0.3105) de-
rived from Galileo gravity and rotation data (e.g, Anderson
et al. 1996; Sohl et al. 2002; Schubert et al. 2004). Fixing the
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silicate and ice-shell densities to plausible values and allow-
ing for core compositions ranging from pure iron to pure
FeS, Sohl et al. (2002) found core radii between ! /4 and /3
Ganymede radii for a three-layer model (see Fig. 13). As a
light and siderophile element, sulfur is the main candidate
(e.g., Schubert et al. 2004). Assuming a composition identi-
cal to a type I carbonaceous chondrite (CI), experiments by
Scott et al. (2002) indicate that the alloying of iron and
sulfur may form FeS-dominated cores. However, be-
cause of the unknown oxidation state of Ganymede’s
interior during core differentiation, it is difficult to say
whether the core composition is likely to be of Fe- or
FeS-rich eutectic composition.

Compositional-driven convection is the preferred mech-
anism for driving Ganymede’s dynamo (Hauck et al. 2006;
Bland et al. 2008) although Kimura et al. (2009) have sug-
gested a model including a present-day thermal dynamo.
This model could work if Ganymede accreted cold and was
subsequently heated by the decay of radioactive elements.
They assumed a thermal expansivity of 1.7107> K%,
which is, unfortunately, not consistent with recent data
for liquid iron at Ganymede’s core pressure (e.g., Wil-
liams 2009), and they used a heat flux along the adiabat
as small as 1 mW m™ to meet the necessary condition
for a thermal dynamo.

The melting behavior of Fe—FeS alloys at Ganymede’s
core pressure, between 6 and 10 GPa (Sohl et al. 2002),
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Fig. 13 Interior structure of Ganymede. Radial distribution of density
as a function of the relative radius (R/R,) for variable core compositions
of Ganymede (bold curve 100 wt% Fe; semi-bold curve 50 wt% Fe and
50 wt9% FeS; light curve 100 wt.% FeS). Figure after Sohl et al. (2002)
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motivated Hauck et al. (2006) to consider the iron snow
model for Ganymede. In addition, they introduced an FeS
flotation model (see above). Assuming a linear interpolation
between the iron liquidus and the Fe-Fes eutectic
temperature, they found that Fe snow can occur for bulk
core sulfur concentrations greater than 6 wt.% and FeS
flotation for bulk core sulfur contents above 22.5 wt.%. Re-
cent data by Buono and Walker (2011), however, suggest
that the iron snow regime should work even at sulfur con-
centrations below 6 wt.%. Because of the pressure gradient
in the core, it is possible that the iron snow regime is estab-
lished in the outer core, while an inner core begins to freeze
independently at the center for certain ranges of sulfur con-
centration (Riickriemen et al. 2015). With cooling, the
crystallization mechanisms can evolve further, depending
on the bulk sulfur content (see Fig. 14).

The implications of the Fe snow regime for the core dy-
namics and magnetic field evolution are controversial
Hauck et al. (2006) proposed that the sinking iron particles
may cause motions within the fluid of the stable snow
zone and, thereby, provide the driving force for the mag-
netic field of Ganymede. By applying the magnetic field
strength scaling law of Christensen and Aubert (2006),
they found surface magnetic field strengths between 600
and 1600 nT. However, Hauck et al. (2006) failed to ex-
plain why particle settling in a stably stratified fluid would
cause the large-scale fluid motions that are necessary
for a dynamo (Christensen and Wicht 2007). Zhan and
Schubert (2012) used a magneto-hydrodynamic dynamo
model and assumed that the sinking of iron crystals in
the snow zone would be equivalent to internally heated
convection. They found multipolar solutions for the mag-
netic field, at variance with the observed strong dipolarity
of the field (Kivelson et al. 2002). Their main assumption
that Fe snow resembles internally heated convection is
questionable, because they did not model the particular
flow. These authors suggested that dipole-dominated mag-
netic fields are only possible for FeS floating dynamos and
inner-core growth, the latter implying a low concentration
of sulfur.

Zhan and Schubert’s (2012) conclusions are consistent
with the thermal and magnetic field evolution models of
Bland et al. (2008). The former authors suggested that
the power requirement for dynamo action can only be
satisfied if the sulfur mass fraction in Ganymede’s core is
either very low (<3 wt.%, with freezing starting at the
core center) or very high (>22.5 wt.%; i.e., solidification
of FeS deep within the core). They further argued that the
conditions for magnetic field generation cannot be met in
the iron snow regime, because the latent heat released by
the solidification of iron would readily be removed by the
mantle above and thus be unavailable to power the dy-
namo. However, the assumption of latent heat being re-
leased close to the CMB is only correct initially, when the
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Fig. 14 Evolution of crystallization regimes in Ganymede’s core. Evolution of the core state for four bulk core sulfur contents and Cl chondritic
heat production. The model with 4 wt.% sulfur passes through a period with an Earth-like core evolution prior to beginning precipitation of Fe
snow. With increasing sulfur content, crystallization starts later because of the lower melting temperature and commences directly with Fe snow
until a solid inner core starts to grow (after Hauck et al. 2006)

snow zone starts to grow. For continuous cooling, the
snow zone extends into deeper core regions, thereby trig-
gering the release of latent heat in the deeper core as well.
In a recent study, Christensen (2015) proposed that
the deeper, entirely fluid core below the zone snow could
be the locale of the dynamo. Compositional convection
would be driven by the sinking and remelting of iron
crystals in the lower core region underlying an electric-
ally conducting snow zone with a strongly stabilizing
density gradient. For plausible values of the buoyancy
flux from Riickriemen et al. (2015) and an upper stable
layer that is thinner than the fluid layer below, the
model can reproduce Ganymede’s observed dipole. Such
a dynamo would be restricted in its lifetime by the time
the snow zone takes to grow through the core. Riickrie-
men et al. (2015) found values of 320-800 Myr, depend-
ing mainly on the initial core sulfur content and the heat
flow from the core. To best explain the present magnetic
field with such a model, high sulfur concentrations (but
lower than the eutectic concentration) were favored. The
dynamo would then start late in the evolution and could
easily last to the present day. Moreover, the model
would predict the absence of a solid inner core.
Magnetic field generation for a core composition on the
sulfur-rich side of the eutectic has been studied less often.
FeS floating, where FeS crystals form first in the core center
and rise, is considered a viable mechanism for dynamo
action in Ganymede (Hauck et al. 2006; Bland et al.
2008; Zhan and Schubert 2012). Thermal evolution
models showed that the power requirements for a dynamo
can be met (Bland et al. 2008) and magneto-hydrodynamic
models showed that dipole-dominated magnetic fields are
possible with this specific freezing mechanism, since
buoyancy sources are located at the bottom of the

convective zone, similar to the Earth-like case (Zhan
and Schubert 2012). However, at Ganymede’s core pres-
sures, FeS crystallization at the CMB or in the core is
more likely (see Fig. 2) than in the center, and a solid
outer-core layer would grow inward, similar to the Earth’s
inner-core growth but in reverse (see Fig. 1c, d). Such a
dynamo could be long lasting (at least longer than the dy-
namo in the Fe snow regime), because compositional con-
vection in a cooling Ganymede would only stop when the
eutectic composition is reached in the liquid inner core.
However, whether enough power for dynamo action can
be generated with this scenario still needs to be tested.

Conclusions

Our perception of the cores of terrestrial planets and
moons and their crystallization have changed substan-
tially during the past few years. Improved Fe—FeS phase
diagrams and melting relations have motivated novel
models of core dynamics and dynamos, in particular for
planetary bodies with masses significantly smaller than
the Earth’s. The most important findings are that the
melting temperature at the eutectic decreases with in-
creasing pressure up to 14 GPa and that the eutectic com-
position decreases with increasing pressure up to about
60 GPa (see Fig. 3). Both effects imply Fe crystallization at
the CMB and iron snow fall for wide ranges of sulfur con-
centrations if d7/dP,q > dT/dP e Iron snow can provide
a viable dynamo mechanism for the Moon, Mercury, and
Ganymede and would even be likely for Martian core
pressures up to 40 GPa, suggesting that dynamo gener-
ation may occur in the future through this mechanism. In
iron-rich cores that comprise a large pressure range, as for
Mercury, even several zones of iron snow can emerge.
The lunar case is less clear, however, since Fe may start to
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crystallize in the center for a sulfur concentration below
about 8 wt.%, while for higher sulfur contents, iron snow
would be the dominant mechanism.

Crystallization of FeS for sulfur-rich compositions is a less
well-developed scenario, but it would also differ from the
classical Earth case of solid inner-core growth from the
center. Here, FeS would precipitate either at the CMB, in
the core, or at the core center, depending on the sulfur con-
centration and the temperature profile. The situation on
the sulfur-rich side of the eutectic can be even more com-
plex, because the solid phase depends on pressure and may
change to Fes3S, or FesS, crystal phases that differ in density
from FeS. In summary, a rich variety of crystallization sce-
narios and dynamos have become apparent and it has be-
come clear that the Earth-like dynamo is probably not
typical. While we observe this for the comparatively simple
Fe—FeS system, we note that more realistic models incorp-
orating other light elements should be even more varied
and complex.

The models we have reviewed in this paper further
show that better knowledge of the adiabatic temperature
gradient and the adiabatic heat flux is required. First, the
relation between the slopes of the adiabatic temperature
and the melting temperature as a function of pressure
determines the crystallization process; i.e., whether the
first crystals form at the CMB, in the center, or some-
where in the core. Note, however, that it is not obvious
that the core temperature must vary along an adiabat at
the time of first crystal formation. For thermal evolution
models, we typically attain a subadiabatic core heat flux
after a few hundred million years of evolution and prior to
crystallization. The core is then likely thermally stable,
exhibiting a conductive core temperature profile. Second,
there is an inverse correlation between the heat flux along
the adiabat and the lifetime of the dynamo. In the contem-
porary literature, we find differences in the dynamo life-
time for either a thermal or compositional dynamo from
100 Ma to several billion years, depending on the parame-
ters adopted for the thermal conductivity and thermal ex-
pansivity and, thus, for the adiabatic heat flux.

In conclusion, the crystallization processes in the cores
of the terrestrial planets and moons are diverse and imply
diversity in the mechanisms and efficiency of dynamo ac-
tion. To improve our understanding, better constraints on
the thermal properties, the melting relations, as well as the
compositions of the cores are required through experi-
mental work on phase diagrams and transport properties,
numerical modeling, and space mission data to constrain
the core compositions. Open questions to be answered are
manifold. A few that result immediately from the present
discussion are as follows: Can a dynamo be generated in
the stable iron snow zone or only in the fluid core below?
Is the concept of thermochemical equilibrium for iron
snow appropriate, and what are the consequences if iron
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does not remelt during descent? What is the composition
of the core of the terrestrial planets and moons and how
does the composition alter the thermal properties and the
melting temperatures?
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