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Abstract 

As a result of climate change, the pan-Arctic region has seen greater temperature increases than other geographical 
regions on the Earth’s surface. This has led to substantial changes in terrestrial ecosystems and the hydrological cycle, 
which have affected the distribution of vegetation and the patterns of water flow and accumulation. Various remote 
sensing techniques, including optical and microwave satellite observations, are useful for monitoring these terrestrial 
water and vegetation dynamics. In the present study, satellite and reanalysis datasets were used to produce water 
and vegetation maps with a high temporal resolution (daily) and moderate spatial resolution (500 m) at a continen-
tal scale over Siberia in the period 2003–2017. The multiple data sources were integrated by pixel-based machine 
learning (random forest), which generated a normalized difference water index (NDWI), normalized difference 
vegetation index (NDVI), and water fraction without any gaps, even for areas where optical data were missing (e.g., 
cloud cover). For the convenience of users handling the data, an aggregated product is provided, formatted using 
a 0.1° grid in latitude/longitude projection. When validated using the original optical images, the NDWI and NDVI 
images showed small systematic biases, with a root mean squared error of approximately 0.1 over the study area. 
The product was used for both time-series trend analysis of the indices from 2003 to 2017 and phenological feature 
extraction based on seasonal NDVI patterns. The former analysis was used to identify areas where the NDVI is decreas-
ing and the NDWI is increasing, and hotspots where the NDWI at lakesides and coastal regions is decreasing. The latter 
analysis, which employed double-sigmoid fitting to assess changes in five phenological parameters (i.e., start and end 
of spring and fall, and peak NDVI values) at two larch forest sites, highlighted a tendency for recent lengthening 
of the growing period. Further applications, including model integration and contribution to land cover mapping, will 
be developed in the future.
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1 Introduction
The pan-Arctic region, which includes Siberia, is known 
for its extremely cold climate. However, it has recently 
been experiencing a higher rate of temperature increase 
than other regions of the Earth’s surface, mainly as a 
result of global climate change (Hantemirov et  al. 2022, 
Arctic Monitoring and Assessment Programme (AMAP) 
2021). The higher temperatures increase the risk of cli-
matic extremes and disasters, such as heatwave-induced 
wildfires (Witze 2020), thawing permafrost that pro-
motes the release of greenhouse emissions from these 
areas (Yokohata et al. 2020), and river ice jams and con-
sequent flooding (Madaeni et al. 2020; Sakai et al. 2015).

In order to evaluate the impact of climate change on 
the pan-Arctic region, detailed monitoring of specific 
environmental parameters is essential. This has been 
accomplished using remote sensing techniques. Water-
related parameters (Suzuki and Matsuo 2019) such as 
total water storage, snow water equivalent (SWE), soil 
moisture, and surface water coverage (Velicogna et  al. 
2012; Suzuki et al. 2020; Yang et al. 2007; Bartsch et al. 
2009; Watts et  al. 2012; Mizuochi et  al. 2021a) have 
been used to investigate local and global hydrological 
cycles. Another focus is vegetation parameters (Nagai 
et  al. 2019) such as plant functional type (i.e., land 
cover) map, aboveground biomass, leaf area index, and 
growing season duration (Leroy et  al. 2006; Myneni 
et al. 2001; Kushida et al. 2007; Buitenwerf et al. 2015), 
which are important for ecological monitoring and 
carbon cycle research. Water and vegetation param-
eters are closely interlinked via energy budgets and 
meteorological and ecological schemes in relation to 
evapotranspiration, albedo, vegetation growth, canopy 
interception of precipitation, and surface aerodynamic 
properties (e.g., Mizuochi et al. 2021b).

Optical remote sensing has been traditionally used 
in such environmental studies to monitor changes in 
surface water and vegetation. Band indices, such as the 
(modified) normalized difference water index (NDWI: 
Xu 2006) and the normalized difference vegetation index 
(NDVI: Hatfield et  al. 1984; Perry and Lautenschlager 
1984), are widely used to characterize spectral reflectance 
features and enhance the appearance of water and veg-
etation bodies in satellite imagery, respectively.

Another promising approach is microwave remote 
sensing using either active radar or passive radiometers, 
which has the advantage of being less sensitive to cloud 
cover than optical sensors. Backscatter signals observed 
by synthetic aperture radar (SAR) can be used to extract 
open water and forest areas and to estimate surface soil 
moisture content (Twele et al. 2016; Zakharov et al. 2020; 
Reiche et al. 2018). Microwave radiometers also can esti-
mate the surface water fraction, soil moisture content 

and vegetation optical depth (Fily et al. 2003; Owe et al. 
2008; Moesinger et al. 2020).

When using satellite data to retrieve physical param-
eters, the divergent characteristics of the data and the 
technical difficulty in data handling often result in trade-
offs between the spatial and temporal resolutions of the 
resulting product. For example, previous broad-scale 
water maps (e.g., open water and wetland distribution, 
water fraction within pixels) have resolution ranging 
from tens to hundreds of meters (Lehner and Döll 2004; 
Fluet-Chouinard et  al. et  al. 2015; Yamazaki et  al. 2015; 
Pekel et al. 2016). While they offer detailed spatial infor-
mation, they often provide no temporal information, or 
if such information is provided, the time intervals are 
long. Conversely, maps with high temporal resolutions 
(i.e., daily to monthly) typically provide relatively coarse 
spatial information (e.g., several tens of kilometers) (Papa 
et al. 2010; Schroeder et al. 2015).

To overcome such trade-offs, researchers have used 
multiple datasets in a synergistic manner (i.e., data 
fusion; Belgiu and Stein 2019). There has been particu-
lar interest in combining image data obtained by optical 
and microwave sensors (Suzuki and Matsuo 2019; Beam-
ish et al. 2020). This is because information that is miss-
ing from optical sensor observations due to cloud cover 
or insufficient solar illumination can be compensated for 
using data obtained by microwave sensors. Many applica-
tions of such data fusion approaches have been reported 
for wetland mapping (Chasmer et  al. 2020; Zhang et  al. 
2021; Mizuochi et al. 2021a), snow and thawing detection 
(Armstrong and Brodzik 2001; Kim et al. 2012) and veg-
etation and ecosystem monitoring (Kimball et  al. 2009; 
Mavrovic et  al. 2023). These studies involved intercom-
parison of different data sources and/or complementary 
inputs for process-based models or machine learning 
(ML). However, there have been few studies on simul-
taneous mapping of areas of water and vegetation that 
are interlinked. In addition, the creation and handling of 
broad-scale datasets that combine both high temporal 
resolution (e.g., daily) and moderate spatial resolution 
(e.g., sub-kilometer scale) are challenging, although there 
has been one report on the creation of daily maps of soil 
moisture content with a spatial resolution of 1 km (Zhu 
et al. 2023).

The goal of the present study was to produce simulta-
neous continental-scale inundation and vegetation maps 
for Siberia. By integrating optical and microwave satellite 
data with other ancillary data, maps were obtained with a 
daily temporal resolution and a moderate spatial resolu-
tion of 500 m. In this paper, the map generation process 
and the characteristics and utility of the created prod-
ucts are described in detail. It is expected that this data 
will provide fundamental information that can be used 
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to analyze the impacts of climate change on the risk of 
disasters, and also to clarify changes in water and carbon 
cycles in the pan-Arctic region. As example applications, 
we performed a time-series analysis of the NDWI and 
NDVI on a continental scale and extracted phenological 
features at two experimental sites.

2  Methods
2.1  Target area and product specifications
The target is a wide area of Siberia, approximately cor-
responding to 50–70° N and 31–180° E at maximum 
(Fig.  1). Considering potential applications (i.e., large-
scale monitoring and model integration), computational 
resources and the spatial coverage of permafrost over 
Siberia (Shestakova et al. 2021), the specifications of our 
product are shown in Table 1.

To meet these requirements, we relied mainly on 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) to identify vegetation and water distributions 
at optimal spatiotemporal resolutions. In this way, the 
spatiotemporal resolution of our target product is con-
sistent with those of MODIS: the original spatial resolu-
tion was 500  m, and the temporal resolution was daily. 
The product duration (2003–2017) was determined after 
considering the temporal characteristics of all of the data 
sources (see Sect. 2.2.1).

In polar regions in particular, commonly used geo-
graphic projections (i.e., latitude/longitude) exaggerate 
distances along the longitude direction, so distorting the 
shape of objects on the map and increasing pixel-based 
computational costs. Consequently, in the present study, 
data fusion processing was conducted using a MODIS 
sinusoidal projection (Fig. 1), which is originally provided 
at a resolution of 500 m. For convenience, an aggregated 
product using a latitude/longitude projection with a 0.1° 
grid resolution is also provided as a postprocessing out-
put (see Sect. 2.2.5).

2.2  Algorithm and data sources
The basic algorithm used for map generation was pre-
viously developed by us for use in a limited study area 

(Mizuochi et al. 2021a). In the ML-based algorithm used 
in this study, a pixel-based random forest (RF; Breiman 
2001) approach is used to fill observation gaps in MODIS 
data (explained variable) by referring to other match-
ing data sources (explanatory variable). Subsequently, 
bias correction is applied using a conditional generative 
adversarial network (pix2pix; Mirza and Osindero 2014; 
Isola et al. 2017). This study expands the previous study 
area to a pan-Arctic scale and includes an update to 
the NDVI map, the details of which are summarized in 
Table 1. To conserve computational resources, no pix2pix 
bias correction was used, as the procedure only improved 
the RMSE accuracy by ~ 1% (Mizuochi et al. 2021a).

The overall procedure involves (1) data download, (2) 
preprocessing including extraction of feature variables, 
map translation and coregistration, (3) ML training and 
prediction, and (4) postprocessing including validation, 
visualization, creation of the water fraction maps, and 
product format conversion.

Freely available optical and microwave satellite data, 
together with reanalysis data, were downloaded from the 
relevant websites (see the ‘Availability of data and mate-
rials’ section). Preprocessing and postprocessing treat-
ments that include geospatial analysis were implemented 
mainly using GRASS GIS (ver. 7.8.2) and QGIS (3.10.4). 
ML processing was implemented using Python 3.8.10 
with PyCaret 2.3.10 for preliminary model selection and 
hyperparameter tuning, scikit-learn 1.2.1 was used for 
ML training and prediction, and ray 2.2.0 was used for 
multiprocessing. Detailed explanations of each step are 
provided in the following subsections.

2.2.1  Data preparation
The data sources and physical parameters were similar 
to those used by Mizuochi et  al. (2021a); however, veg-
etation optical depth (VOD) data (Moesinger et al. 2020) 
were newly added since they may be useful for NDVI pre-
diction. The data sources and retrieved physical param-
eters are summarized in Table 2.

Surface reflectance data obtained by the MODIS 
instrument on the Aqua satellite (MYD09GA, collec-
tion 6.1) were used to calculate the NDWI and NDVI as 
follows:

where G, R, NIR, SWIR are the green, red, near infra-
red, and short-wave infrared surface reflectance, which 
correspond to MODIS band 4 (545–565  nm), band 1 

(1)NDWI = G−SWIR
G+SWIR

(2)NDVI = NIR−R
NIR+R

Fig. 1 MODIS tiles used in this study. The tiles (h20–h25, v02–v03) 
were superimposed on a sinusoidal map projection of the study area
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(620–670 nm), band 2 (841–876 nm), and band 7 (2105–
2155 nm), respectively.

Cloud, cloud shadow, snow, and cloud-adjacent pix-
els were screened out (i.e., treated as missing data to be 
filled by ML) by referring to accompanying quality assur-
ance data (“state_1km” subset with bitmask that indicates 
cloud and snow states). Also, pixels recorded during 
shadow time in the high-latitude winter were also treated 
as missing data to be filled using ML. The quality con-
trolled NDWI and NDVI were the explained variables to 
be predicted from the following low-resolution explana-
tory variables.

Level-3 brightness temperature data, obtained by 
the Advanced Microwave Scanning Radiometer-EOS 
(AMSR-E) on the Aqua satellite and AMSR-2 on the 
Global Change Observation Mission-Water (GCOM-W) 
satellite, were used to calculate the polarization index 
(e.g., Moradizadeh and Srivastava 2021; Sawada et  al. 
2017) and surface water fraction. These indices are sensi-
tive to soil moisture and/or abundance of surface water. 
The calculation method employed for the indices was the 
same as that in Mizuochi et al. (2021a). In addition, the 
SWE product retrieved from the AMSR series was used 
to determine snow masks. To maintain consistency with 
the AMSR series (on the Aqua satellite or a satellite with 
a similar overpass time), the other MODIS product on 
the Terra satellite platform (MOD09GA) was not used.

Sixteen meteorological parameters provided by ERA5-
land (ECMWF 2023) along with the VOD product 
(Moesinger et  al. 2020) estimated from multiple micro-
wave satellite data sources (i.e., SSM/I, TMI, AMSR-
E, AMSR2 and WindSat), were also used. These were 
selected because they were likely to be sensitive to the 
water and vegetation conditions on the surface. In addi-
tion, day of year (DOY) information was used to repre-
sent the season. To ensure continuity between the end of 

one year and the beginning of the next, DOY was calcu-
lated in cosine and sine forms as follows:

In total, 23 low-resolution maps (derived from AMSR 
series, ERA5-Land, VOD and DOY) were assumed to 
be the common explanatory variables to predict the two 
explained variables (MODIS NDWI and NDVI), since 
the NDWI (water) and NDVI (vegetation) are likely to be 
closely interlinked.

2.2.2  Preprocessing
Preprocessing consisted of calculating the abovemen-
tioned variables, converting map projections, coregister-
ing maps, and performing climatology calculations. All of 
the processes were managed on individual MODIS sinu-
soidal tiles, which encompassed 12 tiles in total (vertical 
tile numbers 02–03 and horizontal tile numbers 20–25). 
First, the MODIS HDF files were converted into raw 
binary images containing 2400 × 2400 pixels using a sinu-
soidal projection with the HDF-EOS-to-GeoTIFF-con-
version tool (HDF-EOS Tools and Information Center 
2023). Using GIS software, data from other data sources 
(i.e., explanatory variables) were processed to align them 
with the MODIS sinusoidal image. This involved resam-
pling, cropping (i.e., cutting out the region of interest), 
and converting different data formats and on different 
projections into raw binary images with matching loca-
tions and dimensions (i.e., coregistration). Importantly, 
the process employed nearest-neighbor resampling, 
which involves oversampling (i.e., dividing a coarse pixel 
into multiple pixels while retaining the same pixel value). 
This step was necessary as the other data sources have 
lower resolution than MODIS.

(3)
DOYcos = cos 2π ×

DOY
365.25

and DOYsin = sin 2π ×
DOY
365.25

Table 1 Specifications of developed product

For user convenience, both original resolution maps on sinusoidal projection (i.e., MODIS tile base) and merged maps on latitude–longitude projection are provided. 
Differences from our previous product (Mizuochi et al. 2021a, b) are also described

MODIS: Moderate Resolution Imaging Spectroradiometer, NDWI: normalized difference water index, NDVI: normalized difference vegetation index

Items This study Previous study

Spatial resolution 500 m (original sinusoidal output) 0.1° (aggregated lat–
long map)

500 m

Observation frequency Daily Daily

Spatial extent Latitude: 50.00–70.00°N, Longitude: approx. 31.12–
180.00°E
(Corresponding to MODIS sinusoidal tile v02–03, h20–25)

Latitude: 62.02–63.08°N, 
Longitude: 129.32–
130.38°E

Duration 2003.1.1–2017.12.31 2012.3.7–2018.3.31

Number of explanatory variables 23 4, 6, or 23

Output parameters NDWI, NDVI, water fraction NDWI, water fraction
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After coregistration, daily climatology maps were pre-
pared for the explanatory variables by averaging the maps 
for the same DOY over the period 2003–2017. These 
daily climatology maps were assumed to represent typical 

values of the variables on a given DOY and were used to 
fill any missing pixels in the explanatory maps for ML 
prediction (see Sect. 2.2.3).

Table 2 Data source and physical parameters for data fusion

AMSR: Advanced Microwave Scanning Radiometer, DOY: day of year, ECMWF: European Centre for Medium-Range Weather Forecasts, ERA5: ECMWF Reanalysis v5, 
JAXA: Japan Aerospace Exploration Agency, MODIS: Moderate Resolution Imaging Spectroradiometer, NDWI: normalized difference water index, NDVI: normalized 
difference vegetation index, USGS: United States Geological Survey, VODCA: vegetation optical depth climate archive

Parameter 
number

Data name Spatial resolution Observation 
frequency

Duration Source Physical parameters

1 MODIS 500 m Daily 2002–present USGS (2023) NDWI

2 MODIS 500 m Daily 2002–present USGS (2023) NDVI

3 AMSR-E, AMSR2 10 km Daily 2002–2011 (AMSR-E), 
2012–present (AMSR2)

JAXA (2023) Polarization index

4 AMSR-E, AMSR2 10 km Daily 2002–2011 (AMSR-E), 
2012–present (AMSR2)

JAXA (2023) Fraction of water sur-
face (estimated at 18.7 
and 36.5 GHz bands)

5 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Dewpoint temperature 
at 2 m height (K)

6 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Surface and subsurface 
runoff (m)

7 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Skin reservoir water con-
tent (meters of water 
equivalent)

8 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Land surface tempera-
ture (K)

9 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Snow depth (meters 
of water equivalent)

10 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Soil temperature 
in 0–7 cm layer (K)

11 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Soil temperature 
in 7–28 cm layer (K)

12 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Soil temperature 
in 28–100 cm layer (K)

13 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Soil temperature 
in 100–289 cm layer (K)

14 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Air temperature at 2 m 
height (K)

15 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Total evaporation 
(meters of water equiva-
lent)

16 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Total precipitation (m)

17 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Volume of water 
in 0–7 cm soil layer  (m3/
m3)

18 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Volume of water 
in 7–28 cm soil layer 
 (m3/m3)

19 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Volume of water 
in 28–100 cm soil layer 
 (m3/m3)

20 ERA5-Land 0.1° Hourly (aggregated 
into daily mean)

1981–present ECMWF (2023) Volume of water 
in 100–289 cm soil layer 
 (m3/m3)

21 DOY – Daily – – Cosine and sine of DOY

22 VODCA 0.25° Daily 2002–2018 (C-band), 
1997–2018 (X-band)

Moesinger et al. (2020) Vegetation optical 
depth
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2.2.3  ML processing
In our data fusion scheme, pixel-based ML was used to 
train matching pairs of explanatory and explained vari-
ables, allowing the prediction of explained maps without 
any gaps (Mizuochi et al. 2018; 2021a). Before initiating 
ML processing, a preliminary study was conducted to 
select the ML model and to tune the hyperparameters 
using a limited number of sampling pixels (100 pixels) 
from several tiles. In total, 25 ML algorithms (different 
types of regression models) were compared based on ten-
fold cross validation using PyCaret. RF was chosen as a 
robust regressor, with the following hyperparameters: 
maximum tree depth 5, minimum impurity decrease 
0.005, minimum samples at leaf node 2, minimum sam-
ples for internal node splitting 7 and number of trees 60.

Strictly speaking, the rank of the models fluctuated 
depending on the tile, the presence of absence of snow, 
the NDWI or NDVI (detailed below), and the referred 
accuracy criteria. However, ensemble models of deci-
sion trees (RF and extremely randomized trees) usually 
showed top scores. For simplicity, we decided to use RF 
for all the tiles, since it is widely used in remote sensing 
(Zhao et al. 2022) and is also consistent with our previous 
research (Mizuochi et al. 2021a).

The spectral features of snow are characterized by a 
continuous decrease in reflectance from the visible to 
the infrared region (Petty 2006), a pattern that resembles 
that for water bodies in NDWI and NDVI maps. To con-
sider the sensitivity of the snow pixels to the NDWI and 
NDVI, RF models with and without snow were created 
separately by checking if the SWE retrieved by AMSR-E/
AMSR2 was positive or zero. Four original images taken 
in May, August, November, and February of a randomly 

picked year during the study period were selected for 
validation of each season. Each variable was then normal-
ized by subtracting the spatiotemporal mean from the 
original values and dividing by the spatiotemporal stand-
ard deviation for the RF training.

For each pixel, historical match-up pairs were searched 
during the period 2003–2017, where all the explained and 
explanatory variables existed altogether. In other words, 
one matching pair containing a full set of 23 explanatory 
and 2 explained variables was used as one training sam-
ple for each the pixel.

SWE and ERA5-Land included permanently missing 
pixels for water and ocean masks. To avoid wasting infor-
mation for the other variables and to make a wall-to-wall 
product, ML was performed on these pixels by filling 
zero for SWE and the spatially averaged values of clima-
tology maps for ERA5-Land.

After RF training, RF prediction was performed for 
each pixel: explanatory maps were again input to the 
trained RF model to predict the explained maps (i.e., 
MODIS NDWI and NDVI) without gaps. To this end, it 
was ensured that the explanatory maps at this stage had 
no missing values. Temporary gaps (much fewer than in 
the explained maps but still non-negligible) were filled 
by daily climatology maps. It should be noted that this 
treatment was applied only during the prediction pro-
cess, not during the training process, to avoid overfitting 
to the average map. Ancillary flag maps indicating the 
absence/presence of this treatment (0: original explana-
tory variables, 1: explanatory variables filled by climatol-
ogy data) and maps showing the presence of snow were 
also produced.

Table 3 Rate of missing pixels in each explanatory variable (parameter numbers 3–22) and number of available explanatory variables

Each value was temporally averaged over the study duration, and spatially averaged within each tile and masked for ocean area. The correspondence between the 
parameter numbers and the explanatory variables is detailed in Table 2 (number 1 and 2 were excluded because they are explained variables)

MODIS tiles No. 3, 4 
(36.5 GHz)

No. 4 (18.7 GHz) No. 5–21 No.22 Mean number of 
available variables

Minimum number 
of available 
variables

h20v02 0.64 0.61 1.00 0.74 21 18

h21v02 0.64 0.61 1.00 0.80 21 18

h22v02 0.64 0.61 1.00 0.86 22 18

h23v02 0.64 0.61 1.00 0.89 22 18

h24v02 0.64 0.61 1.00 0.90 22 18

h25v02 0.64 0.61 1.00 0.89 22 18

h20v03 0.64 0.61 1.00 0.66 21 18

h21v03 0.64 0.61 1.00 0.76 21 18

h22v03 0.64 0.61 1.00 0.78 21 18

h23v03 0.64 0.61 1.00 0.80 22 18

h24v03 0.64 0.61 1.00 0.87 22 18

h25v03 0.64 0.61 1.00 0.90 22 18
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Table  3 summarizes the tile-averaged rate of miss-
ing pixels filled by climatology data in each explanatory 
map, and the number of available explanatory varia-
bles. AMSR-related parameters (no. 3, 4) were approxi-
mately 60% available, and ERA-related parameters (no. 
5 to 21) were 100% available, both of which were insen-
sitive to the tile location. VOD (no. 22) was sensitive to 
the tile location, fluctuating in the range 66–90%. In all 
cases, 21–22 of a total of 23 parameters were available 
in the spatiotemporal average for all tiles. 18 param-
eters were obtained even in the worst case, which is 
understandable because ERA5-Land and DOY are at 
least available at any time. Therefore, if some variables 
were missed and filled by climatology data, the remain-
ing variables are expected to offer realistic input data to 
some extent.

2.2.4  Postprocessing: creating water maps by NDWI 
thresholding

Inundation pixels were extracted as physically intuitive 
information by thresholding the NDWI created by ML. 
Through visual interpretation of NDWI maps and high-
resolution satellite imagery from Google Earth, ground 
references were established for three typical land cover 
categories (barren land, vegetation and water). Three 
hundred samples for each category were then used to 
produce category-dependent NDWI histograms (Fig. 2). 

A Gaussian distribution was fitted to each histogram, and 
the intersection between the Gaussian curve represent-
ing water and those representing the other categories was 
extracted as the tentative NDWI threshold for the data 
(i.e., the maximum likelihood approach).

The tentative thresholds between vegetation and water, 
derived from 12 (snow-free) monthly averaged maps 
for a particular tile (h24v02), showed a limited fluctua-
tion range (Table  4). Consequently, the average value 
(NDWI =  − 0.043) with a standard error of 0.003 (N = 12) 
was assumed as the fixed threshold for all seasons. Utiliz-
ing this threshold, binary maps were generated to show 0 
(non-water) and 1 (water).

To assess the uncertainty in the water map, a sensitiv-
ity analysis of the threshold setting was conducted. In the 
average map derived from the 12 monthly NDWI scenes, 
the threshold was slightly adjusted from the average value 
(NDWI =  − 0.043) within one standard deviation (0.012) 
using Gaussian noise. This process was repeated 12 times 
to calculate variations in the water fraction across the 
entire tile (h24v02). The mean water fraction and the 
standard error (N = 12) were 0.032 ± 0.001, corresponding 
to 3% uncertainty in water fraction estimation.

This study also considered fluctuating wetlands, i.e., 
areas where the extent of inundation changes season-
ally, rather than permanent open water bodies such as 
lakes, ponds, rivers and reservoirs, which often attract 

Fig. 2 Scheme of NDWI thresholding. (Top) Visual interpretation of three land cover categories (red: barren ground, green: vegetation, and blue: 
water); (bottom left) Summary table of extracted thresholds for different seasons; (bottom right) Example of maximum likelihood approach using 
data obtained in August 2017
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special interest in estimating methane emissions, a key 
process affecting climate change (Zhang et  al. 2021). 
Thus, the mode value for the summer season was sub-
tracted from the original water maps to create what we 
refer to as “floating water maps”, which likely repre-
sent areas that are intermittently inundated, and which 
exclude permanent open water.

2.2.5  Postprocessing: creation of analysis‑ready data (ARD)
In addition to the raw binary maps based on MODIS 
tiles, which cover the wall-to-wall NDVI, NDWI, water, 
and quality flags at the original spatial resolution of 
500 m, a merged product was also created using a com-
monly used latitude/longitude projection. The product 
was resampled using the nearest neighbor method and 
stored in GeoTiff format. To reduce the cost of data han-
dling on a continental scale, the original resolution was 
aggregated into a 0.1° pixel spacing. Within these pixels, 
the average NDVI and NDWI values were stored, along 
with the fractional coverage of both permanent and 
intermittent wet areas.

2.3  Validation
The ML result was validated for each tile over four sea-
sons (Table  5), by comparing the generated MODIS 
NDVI and NDWI images with the original images that 
were not used in the ML training process (i.e., by employ-
ing a hold-out approach). Spatial patterns and statisti-
cal criteria were evaluated, with the latter including the 
mean error, root mean squared error (RMSE), correla-
tion coefficient ®, slope and offset of the regression line 
between the original and created images. These values 

were summarized for each MODIS tile and image acqui-
sition season.

Spatiotemporal patterns were also checked for the 
0.1° ARD product. In addition to visualizing the NDVI 
and NDWI, spatially averaged time series and tempo-
rally averaged spatial patterns of the original and float-
ing water maps were compared with a previous wetland 
map (WAD2M; Zhang et  al. 2021). WAD2M primarily 
draws upon water fraction maps derived from multiple 
microwave satellite data sources (SWAMPS; Jensen and 
McDonald 2019), supplemented with ancillary satel-
lite data and static maps for snow and permanent water 
masking, plus bias correction. The recent product, which 
emerged from the integration of multiple data sources 

Table 4 Summary of estimated NDWI thresholds in different seasons

NDWI: normalized difference water index

Year/Month Threshold between 
vegetation and water

Threshold between barren 
land and water

Sample size of barren 
land (pixels)

Sample size of 
vegetation (pixels)

Sample size 
of water 
(pixels)

2007/06  − 0.04  − 0.07 286 295 291

2007/07  − 0.05  − 0.15 299 300 297

2007/08  − 0.05  − 0.16 299 300 300

2007/09  − 0.07  − 0.12 144 194 185

2012/06  − 0.04  − 0.12 159 189 178

2012/07  − 0.05  − 0.14 284 288 274

2012/08  − 0.05  − 0.13 297 298 297

2012/09  − 0.03  − 0.10 116 113 121

2017/06  − 0.02  − 0.05 229 272 256

2017/07  − 0.04  − 0.15 299 300 300

2017/08  − 0.04  − 0.16 300 300 300

2017/09  − 0.04  − 0.08 130 124 139

Table 5 Acquisition date of original MODIS images used for 
validation in each tile

MODIS: Moderate Resolution Imaging Spectroradiometer

MODIS tile Spring Summer Fall Winter

h20v02 2009/05/16 2006/08/27 2004/11/01 2009/02/19

h21v02 2005/05/01 2007/08/19 2008/11/02 2005/02/22

h22v02 2015/05/05 2016/08/11 2017/11/01 2004/02/13

h23v02 2004/05/13 2012/08/09 2006/11/02 2013/02/11

h24v02 2011/05/09 2013/08/31 2008/11/03 2016/02/15

h25v02 2011/05/29 2014/08/28 2003/11/15 2015/02/27

h20v03 2003/05/06 2008/08/09 2014/11/04 2004/02/03

h21v03 2011/05/06 2015/08/02 2016/11/14 2014/02/09

h22v03 2017/05/03 2017/08/16 2004/11/16 2005/02/03

h23v03 2007/05/03 2003/08/01 2015/11/21 2010/02/26

h24v03 2017/05/07 2014/08/11 2006/11/15 2015/02/22

h25v03 2012/05/09 2010/08/18 2004/11/01 2006/02/11
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through different schemes and at varying spatiotempo-
ral resolutions (0.25°, monthly), seems useful for assess-
ing the advantages and potential disadvantages of our 
product.

The terrestrial water storage (TWS) anomaly is also 
useful for time-series comparisons with surface water 
(Suzuki et al. 2018). Gravity Recovery and Climate Exper-
iment (GRACE) monthly water mass datasets were pre-
pared (Swenson 2012; Landerer and Swenson 2012), with 
contributions from the Center for Space Research (CSR), 
GeoForschungsZentrum Potsdam (GFZ), and NASA Jet 
Propulsion Laboratory (JPL), culminating in the calcula-
tion of the ensemble mean of the three datasets (Saku-
mura et al. 2014). In addition, as in Suzuki et al. (2018), 
reanalysis data from Global Land Data Assimilation Sys-
tem (GLDAS) version 2 (Li et  al. 2019) were also com-
pared for the other TWS data source. The TWS includes 
snowpack, river runoff and groundwater and is not 
directly comparable to the NDWI and NDVI. However, it 
is helpful for interpreting time-series NDWI (and derived 
surface water area) data in relation to the water budget.

2.4  Application: trend analysis and phenological feature 
extraction

The first application of the product developed in this 
study involved trend analysis at a continental scale. Time-
series of snow-masked NDVI and NDWI maps were used 
to calculate the 15-year trend (i.e., Theil Sen’s regression 
slope) for each 0.1° pixel. The statistical significance of 
the trends was calculated using the Mann–Kendall test. 
The results were compared with previous reports for 
15-year trends in vegetation and water in polar regions.

The second application involved the extraction of phe-
nological features at two study sites covered by larch 

forest (Spasskaya Pad: 62°15′ 17’’N, 129°37′ 10’’E; Elgeeii: 
60°01′ 01’’ N, 133°49′ 53’’ E), utilizing the high observa-
tion frequency of our product (Fig. 3); detailed descrip-
tions of each study site can be found in Nagano et  al. 
(2022). As a useful approach for phenological monitor-
ing in terrestrial ecosystems, a moving average (win-
dow size = 5  days) of snow-masked NDVI time series 
data was fitted using a double sigmoid function (e.g., Ide 
and Oguma 2013; Myers et  al. 2019; Yan et  al. 2019) as 
follows:

where  NDVIb is the baseline value,  NDVIa is the ampli-
tude, Di is the day of year when the NDVI increases most 
rapidly, Dd is the day of year when the NDVI decreases 
most rapidly, and p and q determine the rate of increase 
and decrease of the NDVI, respectively. The initial 
parameter values were set to  NDVIb = 0.4,  NDVIa = 0.2, 
Di = 150, Dd = 250, and p = q = 0.001, based on a prelimi-
nary investigation of interannual phenology patterns over 
the sites. These parameters were then precisely fitted to 
the actual NDVI time-series data during the growing 
season (assumed to be from DOY = 100 to DOY = 280), 
employing the curve_fit function of the Python SciPy 
library.

Then, local maximum and minimum values of the 
second derivative in the fitted function were identi-
fied, allowing for the determination of four commonly 
used phenological features (i.e., D1, D2, D3, and D4), 
which correspond to the start of spring (SOS), end 
of spring (EOS), start of fall (SOF), and end of fall 
(EOF), respectively. The date of the peak NDVI (D5) 
was also extracted, and the 15-year trends in these 

(4)
NDVI(t) = NDVIb +

1
2
NDVIa[tanh (p(t − Di))− tanh (q(t − Dd))] ,

Fig. 3 Examples of double sigmoid fitting for seasonal NDVI. The NDVI with a 5-day moving average, sigmoid fitting and second derivative plots 
for sites at Spasskaya Pad (left) and Elgeeii (right) during 2017 are shown
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five parameters were investigated. A summary of the 
individual definitions of these phenological features is 
given in Table 6.

3  Results and discussion
3.1  Created data and validation
Data fusion using RF produced wall-to-wall MODIS-like 
NDWI and NDVI maps for the period 2003–2017 with 
enhanced the spatiotemporal extent compared to the 
existing data fusion product (Mizuochi et al. 2021a).

Examples of comparisons between the original and 
newly created maps in a tile are shown in Figs. 4 and 5. 
The examples show that the cloud gaps present in the 
original images were completely filled in the images cre-
ated by RF regression, closely resembling the original 
spatial patterns and values of the NDWI and NDVI. The 
scatterplots show that images in the fall season deviated 
from the 1:1 (i.e., unity) lines, and that spatially discon-
tinuous patterns were observed in the southwest area.

The discrepancy in the scatterplot analysis was quan-
tified by Theil-Sen’s regression slope for each tile and 
season (Table  7). While the regression slope was close 
to unity for both the NDWI and NDVI in summer, large 
deviations representing uncertainties in the values were 
observed in the seasons affected by snow or soil freezing. 
Since the RF models were trained separately for snow 
and no-snow pixels, the mixture of these pixels within a 
scene resulted in discontinuous spatial patterns and poor 
regression among multiple clusters in the scatterplots 
(Fig.  6, h22v03). The other reason for the poor regres-
sion may have been that the limited variable range of the 
NDWI and NDVI in the snow-covered winter season 
creates a featureless spectral pattern over the entire scene 
(Fig. 6, h23v02). Different tiles likely had different snow 
or soil freezing event distributions, resulting in varying 
accuracies among tiles (Table 7).

Table  7 also shows the small mean error for all tiles 
(-0.01 ± 0.04 for NDWI, and 0.02 ± 0.02 for NDVI), indi-
cating minimal biases in the reproduced images. The 

RMSE for all tiles was approximately 0.1 for both the 
NDWI and NDVI.

Seasonal changes were clearly observed in the snow-
masked NDWI and NDVI time-series data, averaged 
over the entire study region (Fig. 7A). The NDVI oscil-
lated between being high in the growing season and low 
in the winter season, while the NDWI was high in the 
winter season and low in the growing season. A high 
local NDWI peak was observed in the spring season, 
possibly due to spring soil thawing and/or snow melt-
ing which rapidly supplied water to rivers and wetlands. 
Given the high ratio of null pixels in the winter season 
(~ 1.0), the low NDVI and the high NDWI observed at 
this time were attributed to the limited number of pix-
els affected by snow, even after the application of snow 
masking, which produced spectral patterns that dif-
fered from the original land cover. In addition, the low 
solar incidence angle in the winter season could reduce 
the signal-to-noise ratio for the measured radiance as 
well as the reliability of atmospheric correction for the 
optical data, potentially resulting in poor quality of the 
original MODIS products. As a result, studies on vege-
tation and surface water using our ARD product should 
focus on spring through fall, with special consideration 
given to snow masking.

Gap-filling by the climatology maps (i.e., an average 
value for the same date over 15  years) can potentially 
lead to bias in the prediction. This is particularly the case 
when predicting recent climatic extremes away from 
the 15-year average. In fact, slight differences in pat-
terns around the beginning of 2012 were likely caused 
by a gap in the microwave data (AMSR-E terminated 
on 2011/10/03 and AMSR2 started on 2012/07/02), 
which was filled by the daily climatology maps for ML 
prediction.

Time-series data for the original and floating water 
fraction (Fig. 7B) showed consistent seasonal variability, 
with high values recorded in the summer season (~ 0.07) 
and the spring local peak, and low values recorded in 
the winter season. The baseline for the original water 

Table 6 Definition of five phenological parameters

Spring and fall seasons were roughly assumed from DOY = 100 to DOY = 180, and from DOY = 200 to DOY = 280, respectively, during which time the local extremum in 
the second derivative was searched for

DOY: day of year, NDVI: normalized difference vegetation index

Parameter Meaning Definition

D1 Start of spring (SOS) DOY of maximum second derivative of NDVI fitting curve during spring season

D2 End of spring (EOS) DOY of minimum second derivative of NDVI fitting curve during spring season

D3 Start of fall (SOF) DOY of maximum second derivative of NDVI fitting curve during fall season

D4 End of fall (EOF) DOY of minimum second derivative of NDVI fitting curve during fall season

D5 Peak of growing season DOY of maximum NDVI in fitting curve
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Fig. 4 Comparison between original and created MODIS NDVI maps for tile h23v03. Spring image: 2007/05/03, summer image: 2003/08/01, fall 
image: 2015/11/21, winter image: 2010/02/26. Color scale of the scatterplot was configured by kernel density estimation (KDE)
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Fig. 5 Same as Fig. 4, but for MODIS NDWI
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fraction was adjusted to zero in the floating water frac-
tion. Comparison with a previous wetland map (i.e., 
WAD2M; Zhang et  al. 2021) showed similar seasonal 
changes during the spring to fall seasons, although large 
discrepancies were observed in the winter season. The 
water fraction obtained in the present study for the win-
ter season was lower than that for WAD2M, in both the 
original and floating cases. This difference was likely due 
to differences in the definitions used for snow masking. 
Specifically, our product strictly masked pixels where the 

microwave SWE was positive. This screened almost all of 
the pixels in the winter season and resulted in the water 
fraction being nearly zero. Conversely, the water fraction 
data from SWAMPS version 3.2 (Jensen and McDonald 
2019), mainly used in WAD2M, applied a more relaxed 
approach to snow masking, which resulted in a substan-
tial water fraction even in the winter season.

In the spring to fall seasons, the original WAD2M val-
ues were close to the lower limit of our original water 
fraction. In contrast, those for the offset-corrected 

Table 7 Accuracy of RF prediction averaged for each tile, for each season with standard deviation

Regression was performed using the created values as the X-axis and the original values as the Y-axis, with 1% samples randomly extracted from entire pixels. For each 
cell, the upper row is the validation of the NDWI and the lower row is that of the NDVI

RF: random forest, NDWI: normalized difference water index, NDVI: normalized difference vegetation index, RMSE: root mean squared error

Slope Offset Mean error RMSE Correlation 
coefficient

h20v02 0.72 ± 0.43 0.24 ± 0.28  − 0.01 ± 0.03 0.05 ± 0.02 0.58 ± 0.30

1.32 ± 0.33  − 0.02 ± 0.03 0.01 ± 0.02 0.09 ± 0.17 0.80 ± 0.12

h20v03 0.86 ± 0.12 0.01 ± 0.20 0.00 ± 0.11 0.12 ± 0.07 0.48 ± 0.22

0.87 ± 0.10 0.02 ± 0.05 0.03 ± 0.05 0.03 ± 0.02 0.60 ± 0.16

h21v02 1.19 ± 0.28  − 0.07 ± 0.24  − 0.01 ± 0.02 0.41 ± 0.74 0.34 ± 0.35

1.10 ± 0.15  − 0.02 ± 0.05 0.01 ± 0.05 0.12 ± 0.22 0.54 ± 0.28

h21v03 0.81 ± 0.35 0.12 ± 0.27 0.01 ± 0.09 0.09 ± 0.09 0.40 ± 0.30

0.98 ± 0.16  − 0.01 ± 0.04  − 0.01 ± 0.03 0.02 ± 0.01 0.67 ± 0.23

h22v02 0.79 ± 0.27 0.18 ± 0.25  − 0.05 ± 0.07 0.03 ± 0.02 0.43 ± 0.18

0.80 ± 0.30 0.00 ± 0.09 0.03 ± 0.06 0.01 ± 0.00 0.72 ± 0.12

h22v03 0.67 ± 0.28 0.22 ± 0.34  − 0.09 ± 0.19 0.15 ± 0.15 0.54 ± 0.29

0.74 ± 0.41 0.01 ± 0.03 0.04 ± 0.09 0.03 ± 0.02 0.58 ± 0.22

h23v02 1.03 ± 0.21  − 0.01 ± 0.22  − 0.01 ± 0.08 0.03 ± 0.03 0.56 ± 0.24

0.61 ± 0.29  − 0.01 ± 0.05 0.04 ± 0.06 0.02 ± 0.02 0.50 ± 0.19

h23v03 0.75 ± 0.34 0.08 ± 0.28 0.01 ± 0.04 0.24 ± 0.11 0.34 ± 0.29

0.92 ± 0.12 0.05 ± 0.07  − 0.01 ± 0.05 0.10 ± 0.16 0.61 ± 0.23

h24v02 1.00 ± 0.27 0.05 ± 0.13 0.02 ± 0.05 0.02 ± 0.00 0.54 ± 0.38

0.53 ± 0.35  − 0.00 ± 0.05 0.03 ± 0.01 0.01 ± 0.02 0.51 ± 0.35

h24v03 1.03 ± 0.09  − 0.05 ± 0.11 0.03 ± 0.07 0.15 ± 0.16 0.67 ± 0.19

1.05 ± 0.25 0.01 ± 0.05 0.00 ± 0.08 0.17 ± 0.13 0.49 ± 0.09

h25v02 0.82 ± 0.26 0.22 ± 0.19  − 0.05 ± 0.07 0.05 ± 0.06 0.59 ± 0.26

0.75 ± 0.37  − 0.05 ± 0.04 0.07 ± 0.07 0.16 ± 0.19 0.65 ± 0.11

h25v03 1.10 ± 0.07  − 0.06 ± 0.11 0.05 ± 0.14 0.25 ± 0.13 0.66 ± 0.04

1.01 ± 0.19  − 0.01 ± 0.12 0.03 ± 0.14 0.34 ± 0.37 0.61 ± 0.17

Spring 0.87 ± 0.23 0.02 ± 0.25 0.02 ± 0.11 0.08 ± 0.07 0.75 ± 0.11

0.83 ± 0.22  − 0.01 ± 0.05 0.04 ± 0.06 0.05 ± 0.07 0.74 ± 0.14

Summer 1.05 ± 0.14 0.03 ± 0.05  − 0.03 ± 0.05 0.20 ± 0.43 0.62 ± 0.26

1.03 ± 0.14 0.02 ± 0.10 0.00 ± 0.09 0.24 ± 0.25 0.64 ± 0.20

Fall 0.83 ± 0.43 0.11 ± 0.35  − 0.01 ± 0.13 0.16 ± 0.15 0.36 ± 0.19

0.82 ± 0.39  − 0.01 ± 0.05 0.03 ± 0.07 0.07 ± 0.13 0.45 ± 0.13

Winter 0.84 ± 0.24 0.15 ± 0.17  − 0.01 ± 0.03 0.09 ± 0.09 0.31 ± 0.16

0.89 ± 0.42  − 0.02 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.59 ± 0.21

All tile average 0.90 ± 0.17 0.08 ± 0.12  − 0.01 ± 0.04 0.13 ± 0.12 0.51 ± 0.11

0.89 ± 0.22  − 0.00 ± 0.02 0.02 ± 0.02 0.09 ± 0.10 0.61 ± 0.09
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Fig. 6 Snow-affected images. Images showing regressions adversely affected by a mixture of snow and no-snow areas (h22v03), and areas 
with fewer spectral features due to snow cover (h23v02)
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WAD2M (adjusted to make the minimum values zero) 
were close to the upper limit of our floating water frac-
tion. The WAD2M did not sense the strong peaks in the 
water fraction associated with soil thawing or snow melt-
ing in spring, probably due to its lower observation fre-
quency (monthly) and coarser spatial resolution (0.25°) 
compared to our product (daily, 0.1° in the ARD product 
and 500 m in the original product). Furthermore, differ-
ences in the variable range of the water fraction between 
the ARD product and WAD2M also seemed to be linked 
to differences in their data sources. Unlike WAD2M, our 
optical sensor-based output observes the tree canopy in 
densely vegetated areas, but cannot explicitly delineate 
inundation under the vegetation. However, our product 
does implicitly utilize sources such as microwave data 
(i.e., AMSR series) and other data sources (i.e., ERA5-
Land, VOD, DOY) that may be sensitive to inundation 
under the vegetation to some extent.

The interpretations above are also supported by TWS 
from GRACE and GLDAS, both of which account for 
snowpacks and show large values in winter. Snowmelt 
from snowpacks increases river runoff in the spring 
(Suzuki et  al. 2018), which is consistent with the peak 
observed in our water fraction data. The lowest TWS 
during the summer–fall period also likely reflected our 
water fraction, as seen in the local minimum in the sum-
mer season.

Figure 8 shows temporally averaged NDWI and NDVI 
maps, which are useful for visualizing the overall distri-
bution of surface water and vegetation (Fig. 8A, B). The 
original water fraction map largely contained perma-
nent water bodies, such as rivers, lakes, and coastal areas 
(Fig.  8C), which were mostly excluded in the floating 
water fraction map (Fig. 8D). The difference between the 
original and floating water maps exposes the intermit-
tent wetlands. Comparisons with WAD2M showed a 

Fig. 7 Time series of 0.1° ARD product spatially averaged over the entire Siberian region. A Snow-masked NDVI and NDWI time-series with ratio 
of null cells averaged over entire study region. B Comparison between original (blue line) and floating (red line) water fraction extracted from our 
product, WAD2M wetland maps (Zhang et al. 2021), and time-series anomaly of terrestrial water storage (TWS) volumes (mm) from GRACE monthly 
water mass dataset (Swenson 2012; Landerer and Swenson 2012) and Global Land Data Assimilation System (GLDAS) version 2 (Li et al. 2019). 
For comparison with our floating water fraction, the minimum value of the WAD2M time-series data was subtracted from the original WAD2M 
to adjust the baseline to zero
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Fig. 8 Temporally averaged maps during period 2003–2017. A NDWI, B NDVI, C original water fraction, D floating water fraction, and difference 
between wetland map (WAD2M) provided by Zhang et al. (2021) and E original water fraction and F floating water fraction in this study at monthly 
intervals. The maps visualized on the Arctic Polar Stereographic projection (EPSG: 3995) are convenient for comparison with previous results 
for long-term terrestrial trends in the polar region
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substantial underestimation of the water fraction on the 
west Siberian plain (Fig. 9E, F). High-resolution satellite 
images (Google Earth) confirmed the existence of abun-
dant small-scale wetlands, which may not be detected 
by our moderate-resolution product (i.e., 500 m). Differ-
ent effects of topography and vegetation cover on opti-
cal and microwave data may also cause discrepancies 
between WAD2M and our product. However, apart from 
this area, the exclusion of permanent water bodies from 
the original water map improved the consistency of the 
water fraction data between our product and WAD2M 
(Fig. 8F).

3.2  Application: trend analysis and phenological feature 
extraction

Our wall-to-wall products enable us to perform time-
series trend analyses for vegetation and surface water 
(Fig.  9). Specifically, the NDVI slope map showed an 
overall decreasing trend especially in the southwest area, 
with sporadic hotspots in western to central Siberian 
wetlands and water bodies such as Lake Baikal. Several 
studies have reported an overall greening trend (i.e., 
increasing NDVI) in the Arctic region in recent decades, 
which they have attributed to increased temperatures 
and a longer growing season (May et al. 2020). However, 
there have been also reports of browning (i.e., decreasing 
NDVI) (Myers-Smith et  al. 2020), with the distribution 
varying depending on the data sources and methodolo-
gies used. The browning patterns (i.e., negative NDVI 
values) shown in Fig. 9 are closely aligned with the spatial 
distribution of the annual maximum NDVI trend (Fig. 1 
in Myers-Smith et  al. 2020) based on the GIMMS3g 
AVHRR dataset (2000–2015) (Tucker et  al. 2005; Pin-
zon and Tucker 2014), which supports the validity of our 
NDVI product. Extensive greening is expected over the 
northernmost Arctic Tundra region, but this could not 
be investigated as this region is not covered by our prod-
uct. Consequently, expanding the map coverage area will 
be undertaken in future research. Expanding the study 
duration with similar data sources with a longer period 
is also important future work to monitor recent climate 
extremes after 2017 and to track the historical record 
before 2003.

The NDWI slope map showed an overall increasing 
trend across the study area. Given that the NDWI and 
NDVI are based on the inverse differences between vis-
ible and infrared reflectance, their overall contrasting 
spatial trends are expected. Exceptions were found in 
small hotspots around Lake Baikal, the lake around the 
Zeya Nature Reserve, and coastal areas facing the Sea of 
Okhotsk, where decreasing trends were observed even in 
NDWI slope maps. These hotspots were also observed in 

the water fraction map for WAD2M, although WAD2M 
showed an overall decreasing trend across the study area. 
Rather, our results were more consistent with previous 
findings of significant increasing trends in the water frac-
tion from 2003 to 2010 (Watts et al. 2012).

The dense time series (i.e., daily) nature of our product 
is well suited to extracting phenological parameters in 
the spring and the fall seasons through double-sigmoid 
fitting (Tables  8 and 9, Fig.  10). In both Spasskaya Pad 
and Elgeeii, D1 showed a negative trend (i.e., SOS occur-
ring earlier), whereas D3 and D4 showed positive trends 
(i.e., SOF and EOF occurring later), although only the D3 
in Spasskaya Pad was statistically significant. Therefore, 
the duration of the growing season at the two larch forest 
sites increased from 2003 to 2017.

Nagai et al. (2020) determined the start of the growing 
season (SGS) and the end of the growing season (EGS) 
for the Spasskaya Pad and Elgeeii sites, based on in-situ 
observations and a degree-day model. Although the 
parameters that they used differed from those used in 
this study, the SGS was significantly correlated with our 
D1 (SOS) (r = 0.55 with p < 0.05 for Spasskaya Pad; r = 0.93 
with p < 0.01 for Elgeeii). These findings show that our 
SOS extraction is potentially well suited for use as a proxy 
for SGS. Conversely, unlike SGS, EGS showed a weaker 
correlation with our D4 (EOF) (r = 0.34 with p = 0.21 for 
Spasskaya Pad; r = 0.54 with p = 0.17 for Elgeeii).

The D1 time series data for Spasskaya Pad seem to have 
changed at around 2005–2007, with the SOS occurring 
earlier thereafter (Fig. 10). This change was likely associ-
ated with waterlogging events and changes in the compo-
sition of the understory/overstory vegetation from 2005 
to 2008 at the site (Kotani et  al. 2014; 2019; Ohta et  al. 
2014; Nagano et  al. 2022). The DOY of the Peak NDVI 
(D5) showed larger interannual variability than the other 
parameters, and the temporal changes in D5 were simi-
lar between Spasskaya Pad and Elgeeii. Similarly, D1 and 
D2 showed time-series similarity between Spasskaya Pad 
and Elgeeii, suggesting that these parameters were sen-
sitive to large-scale meteorological factors such as tem-
perature. Nagano et  al. (2022) also observed a strong 
correlation between temperature anomalies and precipi-
tation between Spasskaya Pad and Elgeeii, supporting the 
importance of temperature as a large-scale phenological 
driver.

Nagai et  al. (2020) also stressed the complexity of the 
sensitivity of leaf senescence to air temperature, noting 
that various internal (hormones and timing of spring 
budburst) and external (precipitation, photoperiod, 
drought, and heat stress) factors need to be considered 
in order to better understand leaf senescence, as doing so 
will improve predictions of the EOF and/or EGS.
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In this study, our original and ARD products are con-
sidered to be valuable for monitoring water and vegeta-
tion distributions, and for performing trend analysis and 
phenological research. Further potential applications may 
include contributions to land surface modeling (Guim-
berteau et  al. 2018) as input and/or reference data. In 
addition, enhancing time-series land cover maps (Brown 
et  al. 2022) to explicitly quantify temporal changes in 
vegetation and water distributions could also be under-
taken in the future.

4  Conclusions
This research provided 15-years water and vegetation 
maps with daily frequency and a 500-m spatial resolution 
over the Siberia region on a continental scale, integrating 
optical and microwave satellite data, and meteorological 
data. A systematic treatment based on pixel-based RF 
techniques and further postprocessing produced maps of 
the NDWI, NDVI, and water fraction (original and float-
ing), without any gaps for the period from 2003 to 2017. 

In addition to the original sinusoidal maps with 500-m 
resolution, an analysis-ready product that merges all of 
the sinusoidal maps on a latitude/longitude projection 
was also rescaled to a resolution of 0.1° pixel spacing. The 
treated NDWI and NDVI images showed no overall sys-
tematic biases, with a RMSE of approximately 0.1 for all 
tiles. Based on the products, trend analysis showed the 
distribution of NDVI browning and increasing NDWI 
hotspots for the period from 2003 to 2017. Phenologi-
cal features were extracted for each year at two larch 
forest sites (Spasskaya Pad and Elgeeii) based on double-
sigmoid fitting of NDVI time-series data. The findings 
revealed a recent lengthening tendency in the grow-
ing period at the sites and confirmed that waterlogging 
caused an earlier start to spring at the Spasskaya Pad site. 
Our product can potentially be applied to spatiotempo-
ral monitoring of water and vegetation, including trend 
analysis, phenological research, model integration and 
contribution to land cover mapping.

Fig. 9 Maps showing time-series regression. Regression slope maps for snow-masked NDVI, NDWI, and water fraction provided by Zhang et al. 
(WAD2M 2021) are shown. Only statistically significant (p < 0.05) pixels are shown in color for the NDVI and NDWI slope maps. The map projection 
is similar to that in Fig. 8
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Table 8 Phenological parameters estimated by double sigmoid fitting of NDVI over Spasskaya Pad

D1: start of spring (SOS), D2: end of spring (EOS), D3: start of fall (SOF), D4: end of fall (EOF), and D5: peak of NDVI. Slope and p-values were calculated based on Theil-
Sen’s regression (“*” represents statistical significance p < 0.05). Start of growing season (SGS) and end of growing season (EGS) determined by a degree-day model 
were obtained from Nagai et al. (2020) for comparison with our phenological parameters

NDVI: normalized difference vegetation index

YR D1 (SOS) D2 (EOS) D3 (SOF) D4 (EOF) D5 (peak) SGS (Nagai et al. 
2020)

EGS (Nagai 
et al. 2020)

2003 151 167 244 264 201 153 281

2004 158 170 242 252 210 146 274

2005 151 157 236 267 172 129 277

2006 145 150 236 261 166 143 279

2007 134 155 243 271 194 137 278

2008 143 148 246 256 184 143 284

2009 146 151 243 264 170 137 285

2010 135 156 244 257 209 134 275

2011 136 148 242 253 197 134 270

2012 137 151 246 280 180 135 281

2013 140 157 244 258 203 130 273

2014 133 159 244 264 206 131 272

2015 149 157 247 260 192 143 276

2016 145 151 245 267 174 141 273

2017 142 160 248 266 204 143 277

Slope (anomaly/
year)

 − 0.75 0.00 0.33 0.37 0.25  − 0.67  − 0.36

p-value 0.16 1.00 0.01* 0.49 0.77 0.32 0.25

Table 9 Phenological parameters estimated by double sigmoid fitting of NDVI over Elgeeii

D1: start of spring (SOS), D2: end of spring (EOS), D3: start of fall (SOF), D4: end of fall (EOF), and D5: peak of NDVI. Start of growing season (SGS) and end of growing 
season (EGS) determined by a degree-day model were read from Nagai et al. (2020), for comparison with our phenological parameters. Slope and p-value of the SGS 
and EGS were not calculated since the available duration of the data differed from our phenological parameters

NDVI: normalized difference vegetation index

YR D1 (SOS) D2 (EOS) D3 (SOF) D4 (EOF) D5 (peak) SGS (Nagai et al. 
2020)

EGS (Nagai 
et al. 2020)

2003 134 169 238 265 206 – –

2004 151 170 243 256 212 – –

2005 143 159 247 255 214 – –

2006 139 154 235 256 188 – –

2007 128 157 244 264 206 – –

2008 144 150 248 257 191 – –

2009 144 150 249 257 194 – –

2010 134 150 245 255 208 134 276

2011 128 145 243 255 203 132 270

2012 134 151 234 263 184 131 282

2013 124 162 242 262 211 129 275

2014 123 158 248 262 219 130 273

2015 148 158 246 260 195 137 278

2016 145 154 239 257 185 138 273

2017 137 162 248 263 215 135 276

Slope (anomaly/
year)

 − 0.67  − 0.33 0.24 0.10 0.00 – –

p-value 0.52 0.62 0.55 0.58 1.00 – –
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