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Abstract 

The determination of the temperature in and above the slab in subduction zones, using models where the top 
of the slab is precisely known, is important to test hypotheses regarding the causes of arc volcanism and interme-
diate-depth seismicity. While 2D and 3D models can predict the thermal structure with high precision for fixed slab 
geometries, a number of regions are characterized by relatively large geometrical changes over time. Examples 
include the flat slab segments in South America that evolved from more steeply dipping geometries to the pre-
sent day flat slab geometry. We devise, implement, and test a numerical approach to model the thermal evolution 
of a subduction zone with prescribed changes in slab geometry over time. Our numerical model approximates 
the subduction zone geometry by employing time dependent deformation of a Bézier spline that is used as the slab 
interface in a finite element discretization of the Stokes and heat equations. We implement the numerical model 
using the FEniCS open source finite element suite and describe the means by which we compute approximations 
of the subduction zone velocity, temperature, and pressure fields. We compute and compare the 3D time evolving 
numerical model with its 2D analogy at cross-sections for slabs that evolve to the present-day structure of a flat seg-
ment of the subducting Nazca plate.
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1 Introduction
1.1  The importance of the thermal structure of flat slab 

segments
Upon subduction the oceanic lithosphere warms and 
undergoes metamorphic phase changes. These can 
release fluids that may lead to arc volcanism and inter-
mediate-depth seismicity. These regions have signifi-
cant potential for major natural hazards that include 
underthrusting seismic events along the plate interface 
and explosive arc volcanism. The geophysical and geo-
chemical processes that cause such hazards are strongly 

controlled by temperature (for a recent review see 
van Keken and Wilson 2023a) and it is of great interest to 
a broad community of Earth scientists to understand the 
thermal structure of subduction zones.

Of particular interest to us is the intermediate-depth 
and deep seismicity that occurs at depths below the brit-
tle–ductile transition and require mechanisms other 
than brittle failure. Shear heating instabilities (Kelemen 
and Hirth 2007), dehydration embrittlement (Jung et al. 
2004; Raleigh and Paterson 1965), and hydration-related 
embrittlement (e.g., Shiina et al. 2013; Shirey et al. 2021; 
van  Keken et  al. 2012) are three such mechanisms. The 
difference between the last two is that dehydration 
embrittlement would limit the seismicity to the location 
of metamorphic dehydration whereas hydration-related 
embrittlement may occur wherever fluids that have been 
liberated by such dehydration reactions migrate. The 
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wide distribution of these fluids that is predicted by fluid 
flow modeling (Wilson et al. 2014), observed at locations 
of intermediate-depth seismicity (Bloch et al. 2018; Shiina 
et  al. 2013, 2017), and seen in petrological studies of 
exhumed oceanic crust (Bebout and Penniston-Dorland 
2016) provides strong support for the latter hypothesis. 
Thermal modeling suggests intermediate-depth seismic-
ity is limited to be above major dehydration reactions 
such as that of blueschist-out or antigorite-out phase 
boundaries (Sippl et al. 2019; van Keken et al. 2012; Wei 
et  al. 2017). Further indications of petrological controls 
on the locations of seismicity are provided by Abers et al. 
(2013) who showed that the upper plane of seismicity in 
cold subduction zones tends to be limited to the oceanic 
crust whereas the seismicity in warm subduction zones 
occurs in the mantle portion of the subducting slab. See 
van Keken and Wilson (2023a) for a broader discussion of 
the relationship between metamorphic dehydration reac-
tions, fluids, and intermediate-depth seismicity.

The observational evidence, combined with modeling 
constraints, strongly suggests fluids and intermediate-
depth earthquakes are related but how can this relation-
ship be further constrained and quantified? Wagner et al. 
(2020) lay out an elegant motivation that a number of flat 
slab regions provide natural experiments to study this 
question. In a number of regions on Earth, such as below 
Southern Alaska (Finzel et al. 2011), Colombia (Wagner 
et al. 2017), Mexico, Peru, and Chile (Manea et al. 2017), 
subduction zones are characterized by flat slabs where 
upon subduction the slab top stays flat over significant 
distances after it reaches a certain depth below the con-
tinental lithosphere. Periods of flat slab subduction in the 
geological past have also been suggested to cause oro-
genic events and ore deposits far from paleogeographi-
cally constrained plate boundaries. These include the late 
Cretaceous to Paleocene Laramide orogeny (see, e.g., 
Carrapa et al. 2019; Fan and Carrapa 2014) and the Mes-
ozoic South China fold belt (Li and Li 2007). It is gener-
ally understood that these slab segments form by trench 
rollback with the continental lithosphere overriding the 
slab at shallow depth causing effective flattening.

Specific modern-day flat slab regions that would allow 
us to further quantify the fluid-seismicity relationship 
include the present-day Pampean slab (beneath Chile and 
Argentina) and the Peruvian flat slab segment. Both likely 
evolved from steeper subduction to near flat subduction 
due to the subduction of more buoyant thickened ridges 
such as the Juan Fernández and Nazca Ridges (Antoni-
jevic et  al. 2015; Contreras-Reyes et  al. 2019; Gutscher 
et al. 1999). These regions are of particular interest as the 
intermediate-depth seismicity varies significantly along-
trench. This may be caused by a variable hydration state 
of the incoming lithosphere and the thermal evolution of 

the subducting crust and mantle (see Wagner et al. 2020, 
for observational evidence and the development of a test-
able  hypothesis). These locations therefore suggest at 
least a qualitative correlation between fluids and seismic-
ity. In order to further test and quantify this correlation 
we need a good understanding of the thermal structure 
of the flat slab as it evolves.

Numerical modeling provides an important com-
plement to observational studies as it can predict the 
subduction zone thermal structure by computing 
approximate solutions to the partial differential equa-
tions governing the conservation of mass, momentum, 
and thermal energy. Thermal models of flat slab seg-
ments have provided insights into the thermal evolution 
of the slab and overriding lithosphere but have generally 
been predicted using 2D cross-sections (e.g., Axen et al. 
2018; Currie and Copeland 2022; English et al. 2003; Liu 
et al. 2022; Manea and Manea 2011; Marot et al. 2014). 
The geological evolution of the South Peruvian and Pam-
pean slabs is influenced by strong temporal changes in 
3D geometry over time. This makes reliable predictions 
of their thermal evolution challenging as it needs to be 
approached with methods that can prescribe such 3D 
geometrical evolution in a paleogeographically consist-
ent fashion. A few 3D model simulations exist for flat slab 
reconstructions (Liu et  al. 2008; Schmid et  al. 2002) or 
their geodynamical evolution (Jadamec and Haynie 2017; 
Jadamec et al. 2013; Taramón et al. 2015) that are useful 
for their intended comparisons with, for example, seismic 
tomography or plate motions. The employed numerical 
resolution is generally low and it is difficult to precisely 
determine the slab surface, which makes it difficult to use 
these models for the prediction of the precise thermal 
structure of the subducting slab needed to understand 
the relationships between earthquake locations, slab stra-
tigraphy, and water content. For this purpose the slab top 
location should be precisely known and models should 
have numerical grid spacings of less than a few km in the 
thermal boundary layers (van Keken et al. 2002, 2008).

Finite Element (FE) models have the particular advan-
tage of being able to precisely prescribe model interfaces 
(such as the top of the slab or the Moho of the overriding 
plate) and to be able to use grid refinement that allows for 
high resolution near thermal boundary layers with coarse 
grids where the velocity and temperature solutions have 
small gradients, allowing for high precision and compu-
tational efficiency at the same time (see, e.g., Peacock and 
Wang 1999; Syracuse et  al. 2010; van  Keken et  al. 2002, 
2019; Wada and Wang 2009). In this paper we will lay 
the computational groundwork for such high-resolution 
FE models that, due to advances in computational meth-
ods and software design, can be used to study the thermal 
structure of subduction zones in both 2D and 3D and with 
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time-varying geometry in a consistent fashion. This mode-
ling approach will allow us (and other researchers) to study 
the relationship between intermediate-depth seismicity, 
mineralogy, and water content as laid out in, for example, 
Wagner et al. (2020). While the examples presented here 
are specific for models that evolve from intermediate dip 
to flat slab, the open-source modeling framework we pre-
sent here is sufficiently general to be used for the thermal 
modeling of any deforming slab geometry.

1.2  Finite element modeling of subduction zones
Thermal modeling of subduction zones aids in the inter-
pretation of the chemical and physical processes that take 
place in the descending slab. To study the thermal struc-
ture of present-day subduction zones with known geom-
etry and forcing functions (such as age of the oceanic 
lithosphere at the trench and convergence speed), most 
existing 2D models (see summary in van Keken and Wil-
son 2023a) combine a kinematically prescribed slab (or 
slab surface) and a dynamic mantle wedge (in addition to 
a dynamic slab if only the slab surface velocity is kinemat-
ically prescribed). This approach works well for regions 
where the slab geometry is fixed (even if the forcing 
functions may change with time). The use of numerical 
methods also allows for the exploration of 3D geometries 
enabling the study of subduction obliquity, along-trench 
variations in slab geometry, and interactions between 
multiple slabs (Bengtson and van  Keken 2012; Knel-
ler and van Keken 2012; Rosas et al. 2016; Plunder et al. 
2018; Wada and He 2017) that can lead to complicated 
3D wedge flow that regionally affect the temperature dis-
tribution in the subducting slab.

The kinematic-dynamic approach described above has 
significant limitations when changes in geometry occur 
over the lifetime of a subduction zone. This occurs, for 
example, when slabs change from intermediate or steep 
dip to shallower dip or even to flat slab subduction.

The thermal structure of flat slabs has been investi-
gated with 2D steady-state kinematic-dynamic models 
(e.g.,  Gutscher and Peacock 2003; Manea et  al. 2017) 
but the steady-state nature of these models may obscure 
important effects of the geometrical evolution of the slab. 
An alternative approach is to model subduction evolu-
tion with dynamical models (e.g., Gerya et  al. 2009; Liu 
et al. 2022) but the modeled evolution may not conform 
closely to paleogeographic constraints and models of slab 
evolution. It may also be difficult to precisely trace out 
the subducting oceanic crust within the evolving slab. 
The inherent and complex 3D nature of these regions 
also suggests the best approach to understanding the 
thermal evolution is achieved in a framework that allows 
for 3D time-dependent modeling where both geometry 
and forcing functions can be described.

Developing such a framework lays forth a number of 
requirements that extend beyond the standard FE dis-
cretization scheme. The subduction zone computational 
model must support: (a)  a flexible description of the 
time-dependent slab interface geometry; (b)  imposition 
of arbitrary geometry dependent boundary conditions; 
and (c)  scalable distribution of the discretized problem 
for solution with parallel linear algebra packages (i.e., 
support efficient computation of small 2D models on 
local machines and large 3D models on high performance 
computers).

To address these requirements we use the compo-
nents of the FEniCS project for assembly of our FE sys-
tems (Logg et al. 2012). The work presented here builds 
on our extensive experience using FEniCS for flexible 
solution of the equations governing subduction zone 
thermal structure and mantle dynamics. This includes 
the modeling of the thermal structure of the subduc-
tion slab with and without shear heating (Abers et  al. 
2020; van Keken et al. 2019) and the role of fluid trans-
port through the slab and mantle wedge (Cerpa et  al. 
2017; Wilson et  al. 2014, 2017). We have demonstrated 
the precision of the FEniCS applications by comparison 
to semi-analytical approaches (with comparisons, for 
example, to solutions from Molnar and England (1990) 
as in van Keken et al. (2019)), published subduction zone 
benchmarks (van Keken et al. 2008), and intercode com-
parisons involving detailed reproductions of published 
models (as shown in van Keken and Wilson 2023b) that 
were made using fully independent FE software such 
as Sepran (van  den  Berg et  al. 2015). Other useful geo-
dynamical applications using FEniCS include studies of 
oceanic crust formation and recycling in mantle convec-
tion models (Jones et al. 2021) and the accurate modeling 
of buoyancy driven flows in incompressible and slightly 
compressible media (Sime et al. 2021, 2022).

In this paper we will use FEniCS for evolving subduc-
tion zone models where the final subduction zone geom-
etry is defined by the approximation of a seismically 
determined slab surface position (see, e.g., Fig.  1) by a 
Bézier spline (B-spline). These B-splines may be manipu-
lated such that a time evolving geometry may be defined. 
The specification of the B-spline further provides con-
venient interfacing with Computer-Aided Design (CAD) 
software such that 2D and 3D volumes of the domain of 
interest may be generated. These CAD geometries fur-
thermore interface with mesh generators in a straight-
forward manner yielding the spatial tessellation of the 
domain necessary for discretization of the model by the 
FE method. The nature of the flow on the slab interface 
is handled by employing Nitsche’s method for the weak 
imposition of boundary data (Nitsche 1971). This pro-
vides us with much greater flexibility when prescribing 
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the geometry-dependent flow direction along the slab 
interface. Finally, interfacing with the linear algebra solv-
ers provided by the Portable Extensible Toolkit for Sci-
entific Computation (PETSc) library gives us the ability 
to tailor scalable solution methods for the underlying dis-
cretized FE linear system (Balay et al. 2023).

In the remainder of this paper we will provide the 
mathematical and technical description for this new 
modeling approach, describe the numerical implemen-
tation, provide examples of modeling the evolution of a 
flat slab segment loosely based on the Chilean/Argentin-
ian geometry in both 2D and 3D, and provide a detailed 
comparison of how the 3D models differ from simplified 
2D cross-sectional models to show that 3D time-depend-
ent evolution is important for determining the thermal 
structure of the subducting crust. In a future article we 
will use this new modeling ability to specifically test the 
hypotheses regarding the cause of intermediate-depth 
seismicity as laid out in Wagner et al. (2020).

2  Methods
2.1  Time evolving domain
Let t ∈ I = [0, tslab] be the time domain of the model 
where tslab is the total time for the slab surface to deform 
from its initial to final state. Let �(t) ⊂ R

D be the spatial 
domain of interest at a given time t, where D ∈ {2, 3} is the 
spatial dimension. The domain has boundary ∂�(t) with 
outward pointing normal unit vector n̂(t) and tangential 
unit vectors τ̂ i(t) , i = 1, . . . ,D − 1 . For brevity of notation 
we assume that all quantities deriving from the domain 
are functions of time and write � = �(t) . Furthermore 

we uniquely define each point in � according to the stand-
ard Cartesian reference frame with coordinate tuples and 
orthogonal unit directions x = (x, z) and (x̂, ẑ) when 
D = 2 and x = (x, y, z) and (x̂, ŷ, ẑ) when D = 3 . We fur-
ther define the radial distance from the origin r = �x�2 , the 
unit vector pointing in the radial direction r̂ , and given the 
radius of the Earth r0 we define the depth d = r0 − r.

The exterior boundary is divided into components 
∂�i such that ∂� = ∪i∂�i and no component overlaps 
∩i∂�i = ∅ . On the interior of the geometry we prescribe 
an interior boundary, Ŵslab , with unit normal n̂slab . This 
interior boundary aligns with an approximation of the 
subduction zone’s slab interface geometry. This interface 
defines the surface of bisection of the domain � into �slab 
and �wedge ∪�plate such that � = �slab ∪�wedge ∪�plate 
(see Fig. 2). �slab extends a depth dslab beneath Ŵslab while 
�plate occupies a thickness of dplate at the top of the domain 
and above Ŵslab . Each of these subdomains has a boundary 
with outward pointing unit normal vector n̂slab , n̂wedge, and 
n̂plate , respectively.

The interior boundary Ŵslab is further subdivided into 
components above a coupling depth, dc , that is embedded 
in Ŵslab (a point when D = 2 or a curve when D = 3 ). This 
coupling depth is the component of Ŵslab below which the 
slab and wedge velocities will become fully coupled and 
above which a fault discontinuity will be modeled. To facili-
tate this the slab and wedge domains are separated above 
dc such that the slab interface is labeled Ŵslab fault from the 
slab side and Ŵwedge no slip from the wedge side. The specific 
boundary conditions to be applied on each of these compo-
nents will be introduced in Sect. 2.3. A schematic diagram 
of an abstract representation of the D = 2 subduction zone 
domain is shown in Fig.  2. The extrusion of the shown 
domain in the ŷ direction yields a D = 3 subduction zone 
domain. In this case we label the near and far faces ∂�near 
and ∂�far , respectively.

2.2  Underlying partial differential equations (PDEs)

The subduction zone evolution is modeled by the incom-
pressible Stokes approximation where we seek veloc-
ity u : � → R

D , pressure p : � → R and temperature 
T : � → R that satisfy

with a stress tensor

(1)−∇ · σ = 0,

(2)∇ · u = 0,

(3)ρcp
∂T

∂t
+ u · ∇T − ∇ · (k∇T ) = Q,

Fig. 1 Subduction zone interface geometry data points as retrieved 
from seismological observations. The resolution of the data 
is highlighted along the border of Chile and Argentina. Geometry 
of the present-day structure of the flat slab segment is based 
on Anderson et al. (2007)
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Here ρ is the density, cp is the heat capacity, and k is the 
thermal conductivity, which are all considered piecewise 
constant across the domain. I ∈ R

D×D is the identity ten-
sor, η : � → R

+ is the viscosity, and Q : � → R
+ ∪ {0} 

is the volumetric heat production rate. Equations  (1) 
and (2) comprise the Stokes system of equations con-
serving momentum and mass, respectively. Equation (3) 
expresses the conservation of energy of the system under 
our incompressible approximation. In our numerical sim-
ulations we solve a rescaled formulation of Eqs. (1) to (3) 
as described in Appendix A.

The viscosity model employed is that of diffusion creep 
combined with a near-rigid crust modeled by a constant 
high viscosity such that

Here Adiff = 1.32043× 109 Pa s is a constant pref-
actor, Ediff = 335× 103 kJmol−1 is the activation 
energy, R = 8.3145 Jmol−1 K−1 is the gas constant, and 
ηmax = 1026 Pa s is the maximum viscosity within �slab 
and �wedge . Here we limit ourselves to this temperature-
dependent rheology, that is based on diffusion creep in 
olivine (Karato and Wu 1993). Detailed comparisons have 
shown that the near-steady state thermal structure is very 
similar to that when an olivine dislocation creep rheology 

(4)σ = η

(

∇u+ ∇u⊤
)

− pI .

(5)

η(x,T ) =

{

min
(

ηmax,Adiff exp
(

Ediff
RT

))

x ∈ �slab ∪�wedge,

105ηmax x ∈ �plate.

is used (van Keken et al. 2008). A full list of assumed con-
stants used in the modeling is provided in Table 1.

2.3  Boundary conditions

The domain boundary ∂� is subdivided into components 
as shown in Fig.  2 (plus ∂�near and ∂�far when D = 3 ). 
The conditions to be imposed on the velocity and tem-
perature fields are tabulated in Table 2. Here we specify 
the functions that are imposed.

2.3.1  Slab convergence and deformation direction
The down going slab velocity is decomposed into two com-
ponents, a convergence speed uconv acting in the direc-
tion τ̂ conv and the velocity of the geometry’s time evolving 
deformation, uslab , such that u = uconvτ̂ conv + uslab on 
Ŵslab ∪ Ŵslab fault . We define τ̂ conv in terms of a prescribed 
direction, d̂conv . The vector τ̂ conv is the unit vector lying 
tangential to Ŵslab , parallel to d̂conv and in the direction of 
d̂conv . This may also be interpreted as τ̂ conv being the vec-
tor pointing in direction d̂conv and tangential to the inter-
section of the surface Ŵslab and the surface defined by the 
normal vector r̂ × d̂conv (see Fig. 3). We therefore define

(6)τ̂d = n̂slab ×
(

r̂ × d̂conv

)

,

(7)τ̂ conv =

{

τ̂d τ̂d · d̂conv ≥ 0,

−τ̂d τ̂d · d̂conv < 0.

Fig. 2 Schematic diagram of the subduction zone geometry employed in the model when D = 2 . The inset axis highlights the subdivision 
of the slab interface above the coupling depth dc . Extension to D = 3 can be envisaged as the extrusion of this geometry in the ŷ direction
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Table 1 Summary of physical quantities and reference values used in the model

Quantity Symbol Values, reference values and/or SI units

Velocity u uconv = 5 cm yr−1

Dynamic pressure p Pa

Temperature T T0 = 273 K , Tmax = 1573 K

Time t tslab = 11Myr

Position x km

Radial distance r r = �x�2

Radius of the Earth r0 6371 km

Depth d d = r0 − r

Plate depth dplate 50 km

Coupling depth dc 75 km

Slab thickness dslab 200 km

Dynamic viscosity η Pa s (Eq. (5))

Stress tensor σ Pa

Density ρ
{

2700 kgm−3
x ∈ �plate and 0 km ≤ d < 40 km

3300 kgm−3 otherwise

Thermal conductivity k
{

2.5Wm−1 K−1
x ∈ �plate and 0 km ≤ d < 40 km

3Wm−1 K−1 otherwise

Heat capacity cp 1250 J kg−1
K
−1

Radiogenic heat source Q






1.3µWm−3
x ∈ �plate and 0 km ≤ d < 15 km

0.27µWm−3
x ∈ �plate and 15 km ≤ d ≤ 40 km

0 otherwise

Surface heat flux qsurf 65mWm−2

Table 2 Boundary conditions imposed in the subduction zone model domain

See Sect. 2.3 regarding specific choices of the functions to impose

Description Condition Location

Velocity

Free slip u · n̂ = 0
and (σ · n̂) · τ̂ i = 0,
i = 1, . . . ,D − 1

∂�top ∪ ∂�near ∪ ∂�far ∪ ∂�bottom

Natural in/outlet σ · n̂ = 0 ∂�slab inlet ∪ ∂�slab outlet ∪ ∂�wedge outlet

Velocity coupled
driven slab

u = uconvτ̂ conv + uslab Ŵslab ∪ Ŵslab fault

Fault zone no slip u = uslab Ŵwedge no slip

Temperature

Surface temperature T = T0 ∂�top

Inlet slab temperature T = Tin ∂�slab inlet

Outlet temperature
influx

T = Tout ∂�wedge outlet ∪ ∂�slab outlet

where u · n̂ < 0

Outlet temperature
outflux

k∇T · n̂ = 0 ∂�wedge outlet ∪ ∂�slab outlet

where u · n̂ ≥ 0

Zero heat flux k∇T · n̂ = 0 ∂�near ∪ ∂�far ∪ ∂�bottom

Temperature coupling Tslabn̂slab = −Tplaten̂plate

and Tslabn̂slab = −Twedgen̂wedge Ŵslab ∪ Ŵwedge no slip ∪ Ŵslab fault
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Furthermore we define the remaining vector lying tan-
gential to Ŵslab and perpendicular to τ̂ conv and n̂slab.

A schematic diagram of these vectors is shown in Fig. 3.
In addition to the prescribed slab convergence veloc-

ity we include the slab deformation velocity as a result 
of time-dependent geometry changes. We write uslab 
and d̂slab to be the slab deformation velocity and direc-
tion, respectively. These quantities will be fully defined 
in Sect. 2.4 where we will also describe the mathematical 
representation of Ŵslab.

2.3.2  Temperature models
The surface temperature is assumed to be a constant 
value

The slab inlet temperature is selected from a half space 
cooling model

where Tmax = 1573K is the maximum temperature, erf(·) 
is the error function, κin = k/(ρcp)

∣

∣

x∈∂�slab inlet
 is the ther-

mal diffusivity at the slab inlet and t50Myr is 50Myr.
The outlet temperature is

(8)τ̂
⊥
conv = n̂slab × τ̂ conv.

(9)T0 = 273K.

(10)Tin = T0 + (Tmax − T0) erf

(

d

2κint50Myr

)

,

(11)Tout = min {T1D,Tmax},

where T1D(d) is the solution of the initial value problem

where qsurf is the surface heat flux.

2.4  Discretization and solution
In this section, we introduce the discretization and solu-
tion schemes we employ to compute numerical approxi-
mations of the evolving subduction zone model. We 
summarize our procedure in Algorithm 1.

Algorithm 1 Computational model summary.

Obtain point clouds from assumed slab geometry (e.g., Fig. 1)

Transform point cloud data to Cartesian coordinates (Sect. 2.5)

Project data to B-splines as final surface approximation (Sect. 2.6)

Generate sequence of domains and meshes of time evolving slab 
surface (Sects. 2.7 and 2.8)

Compute initial velocity, pressure and temperature approximation 
(Sect. 2.10)

for each time step do
 Compute velocity, pressure and temperature approximation 
using algorithm 2 (Sect. 2.10)

 Transfer temperature field to next mesh (Sect. 2.9)

end for

2.5  Mapping slab surface geometries to coordinate data
Seismic readings provide observations of the slab inter-
face geometry. These data consist of coordinate tuples of 
longitude, latitude, and depth. Our aim is to transform 
these data into a Cartesian system where a central radial 
vector aligns with the ẑ direction.

Let the set of Ni longitude �i , latitude µi, and depth di 
data points for a given point on the slab surface be

where longitude and latitude are measured in degrees 
and depth in kilometers. Initially these data are trans-
formed to align the central radial vector with the ẑ axis of 
the Cartesian system. We define

such that

(12)

−
d

dd

(

k
dT1D

dd

)

= Q, T1D(d = 0) = T0 ,

(

k
dT1D

dd

)∣

∣

∣

∣

d=0

= qsurf,

(13)�slab = {�i,µi, di}
Ni
i=1,

(14)
�mid =

1

2

(

max
i=1,...,Ni

�i + min
i=1,...,Ni

�i

)

and

µmid =

1

2

(

max
i=1,...,Ni

µi + min
i=1,...,Ni

µi

)

(15)�slab = {�i − �mid,µi − µmid, di}
Ni
i=1,

Fig. 3 Schematic of the slab convergence direction. The 
surface Ŵslab is colored by depth for visual aid. The plane defined 
by r̂ × d̂conv and its intersection with Ŵslab are highlighted. The 
slab surface normal vector n̂slab , the slab convergence direction 
τ̂ conv and the perpendicular vector τ̂⊥conv are drawn as arrows 
on the surface
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with spherical and Cartesian coordinate representations

respectively. The transform to each system is given by

2.6  Surface data to B‑spline approximation
We seek a smooth and continuous approximation of the 
slab interface surface from the seismic observation data 
Xslab . To this end, the data Xslab are approximated by an 
l2 projection to a non-periodic B-spline of order p (see, 
e.g., Piegl and Tiller 1997).

We define a non-periodic B-spline by

where p = m− n− 1 is the B-spline order, C i , 
i = 0, . . . , n , are the control points, � = {ξi}

m
i=0 is the knot 

vector where each knot lies in the unit interval ξi ∈ [0, 1] , 
i = 0, . . . ,m , each knot is ordered such that ξi ≤ ξi+1 , 
i = 0, . . . ,m− 1 , and Bi,p(ξ) , i = 0, . . . ,m , are the 
B-spline basis functions. On the unit interval ξ ∈ [0, 1] 
these basis functions are

A B-spline surface of order p = (p1, p2) is defined by a 
tensor product of B-splines on the orthogonal coordi-
nates ξ = (ξ1, ξ2) ∈ [0, 1]2 such that

With the definition of the B-spline surface in place we 
define the evolution of the slab surface with time. Let 

(16)�slab = {ri, θi,φi}
Ni
i=1, Xslab = {xi, yi, zi}

Ni
i=1,

(17)

�slab =





ri
θi
φi



 =





r0 − di
radians(�i − �mid)

radians(90− (µi − µmid))



 ,

Xslab =





xi
yi
zi



 =





ri cos θi sin φi
ri sin θi sin φi

ri cosφi



 .

(18)S(p,�)(ξ) =

n
∑

i=0

C iBi,p(ξ),

(19)Bi,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1,
0 otherwise,

(20)

Bi,k(ξ) =

(

ξ − ξi

ξi+k − ξi

)

Bi,k−1(ξ)

+

(

ξi+k+1 − ξ

ξi+k+1 − ξi+1

)

Bi+1,k−1(ξ), k > 0.

(21)S(p,�)(ξ) =

n1
∑

i=0

n2
∑

j=0

C i,jBi,p1(ξ1)Bj,p2(ξ2).

ϑ(t) : I → [0, 1] be a parameterization of the evolution 
period of the slab. We write the slab surface B-spline

where Sinitial(p,�) (ξ) and Sfinal(p,�)(ξ) are the initial and final slab 
geometries, respectively. We emphasize that Sinitial and 
Sfinal share a common order, p1 = p2 , and knot vector, � . 
Their individual definition is determined by their distinct 
control points C initial

i,j  and Cfinal
i,j .

With appropriate choices of ϑ(t) the putative evolution 
of the slab may be prescribed in the model. In our experi-
ments we employ a straightforward linear transition such 
that

This linear transition also favors a simple definition of 
the deformation path undertaken by the modeled slab 
surface

along with the velocity of the slab deformation

A schematic of the evolution of Sslab(p,�) is shown in Fig. 4. 
We highlight that this method may be extended to arbi-
trary numbers of prescribed initial, intermediate, and 
final subduction zone geometries yielding more sophis-
ticated evolution.

2.7  Enveloping the slab surface
With the representation of the slab evolution using a 
B-spline we now require its envelopment in a model 
volume geometry as described in Fig.  2. A motivating 
advantage of a B-spline representation of Ŵslab is its typi-
cal compatibility with CAD software such as Open CAS-
CADE (www. openc ascade. com) that leverages splines to 
describe complicated geometries. These splines may be 
manipulated with a number of geometric operations, of 
which we employ:

• Extrusion: Transform a spline along a path generating 
a higher dimensional shape from the swept path.

• Union, intersection and difference: On a collection 
of shapes generate a single shape composed of their 
boolean union, intersection or difference, respectively.

(22)
Sslab(p,�)(ξ , t) = (1− ϑ(t))Sinitial(p,�) (ξ)+ ϑ(t)Sfinal(p,�)(ξ)

(23)ϑ(t) =
t

tslab
.

(24)dslab = Sfinal(p,�)(ξ)− Sinitial(p,�) (ξ)

(25)uslab =
1

tslab
dslab.

http://www.opencascade.com
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With these operations we describe the process we 
employ, in a qualitative sense, which provides us with the 
geometry volumes demonstrated in this work. A diagram 
of this process is shown in Fig. 5.

To generate the slab volume, �slab , the spline 
Sslab(p,�)(ξ , t) is extruded in the −ẑ direction by a distance 
of dslab . To generate the plate and wedge volumes, 
�plate ∪�wedge , the spline Sslab

(p,�)

(ξ , t) is extruded in the 
ẑ direction by a distance greater than the maximum 
extent of the depth of the spline. This volume is then 
intersected with a sphere of radius r0 yielding 
�plate ∪�wedge . The distinct volumes �plate and �wedge 

are then formed by embedding the surface of a sphere 
of radius r0 − dplate . The coupling depth is also embed-
ded in 

S
slab
(p,�)

 by finding the intersection with a sphere of 

radius r0 − dc.

2.8  Spatial and temporal discretization
The time interval I = [0, tslab] is discretized into time 
steps I�t = {t0, t1, . . . , tslab} where t0 < t1 < · · · < tslab . 
We write the time step size �tn = tn+1 − tn and we use 
the superscript index n to denote the evaluation of a 
function at a particular time step, e.g., Tn = T (tn) . At 
each time step, the domain �n = �(tn) is subdivided 
into a tessellation of simplices (triangles when D = 2 
and tetrahedra when D = 3 ) which we call a mesh. Each 
simplex in the mesh is named a cell and denoted κ such 
that the tessellation T n = {κn} . The meshing procedure 
accounts for the internal boundary Ŵslab(tn) ensuring 
facets of cells are aligned with the surface providing an 
appropriate approximation.

The spatial components of Eqs.  (1), (2) and (3) are 
discretized by the FE method. We employ a P2-P1 Tay-
lor-Hood element pair for the Stokes system’s velocity 
and pressure approximations (Taylor and Hood 1973) 
and a standard quadratic continuous Lagrange element 
for the temperature approximation. The boundary con-
ditions enforced on Ŵslab fault and Ŵwedge no slip require 
a discontinuous velocity solution. Furthermore a dis-
continuous pressure solution is required on Ŵslab fault , 
Ŵwedge no slip and Ŵslab . The jump conditions of the tem-
perature approximation are satisfied by enforcing C0 
continuity across Ŵslab fault , Ŵwedge no slip and Ŵslab . To this 
end we define the following spaces: 

Fig. 4 Schematic diagram of the slab interface geometry designed as a B-spline in physical space, (x, z), evolving over parameterized time, ϑ . The 
putative initial and observed final coordinates of points on the assumed slab surface are interpolated to splines with an equal number of control 
points and equal number of knot vectors yielding Ŵslab(ϑ = 0) and Ŵslab(ϑ = 1) . The slab interface surface at intermediate time is generated 
according to Eq. 22. The displacement vector of the slab surface, dslab , is shown from the initial to the final configuration

Fig. 5 Schematic of the slab surface envelopment into a volume 
by employing spline manipulations typically offered by CAD software
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1 V h,n = {D-dimensional piecewise polynomials of 
degree 2 defined in each cell of the mesh T n and con-
tinuous across cell boundaries except those that over-
lap the interior boundaries Ŵslab fault and Ŵwedge no slip} 

2 Qh,n = {scalar piecewise polynomials of degree 1 
defined in each cell of the mesh T n and continuous 
across cell boundaries except those that overlap the 
interior boundaries Ŵslab fault , Ŵwedge no slip and Ŵslab },

3 Sh,n = {scalar piecewise polynomials of degree 2 
defined in each cell of the mesh T n and continuous 
across all cell boundaries}.

On I�t the time derivative in the the heat equation is 
discretized using a finite difference scheme such that

Using a backward Euler discretization allows us to write 
the fully discrete FE formulation for the model: find 
(un+1

h , pn+1
h ,Tn+1

h ) ∈ (V h,n+1 × Qh,n+1 × Sh,n+1) such 
that

(26)
∂T

∂t
≈

(Tn+1 − Tn)

�tn
.

for all (vh, qh, sh) ∈ (V h,n+1 × Qh,n+1 × Sh,n+1) . Here 
(a, b) =

∑

κ∈T n+1

∫

κ
a : bdx is the inner product on the 

mesh and the terms Ai
∂�(·, ·) are the terms arising from 

the weak imposition of the boundary conditions via 
Nitsche’s method stated in Sect.  2.3. We refer to Hou-
ston and Sime (2018) regarding the formulation of these 
terms. With this discretization scheme we also define the 

(27)

F
momentum(un+1

h , pn+1

h ,Tn+1

h )

= (σ n+1

h ,∇vh)+ Amomentum
∂� ((un+1

h , pn+1

h ,Tn+1

h ), vh) ≡ 0,

(28)

Fmass(un+1
h , pn+1

h ,Tn+1
h )

= (∇ · un+1
h , qh)+ Amass

∂� ((un+1
h , pn+1

h ,Tn+1
h ), qh) ≡ 0,

(29)

F
energy(un+1

h , pn+1

h ,Tn+1

h )

=
(

ρcp

(

(Tn+1

h − Tn
h )/�tn + u

n+1

h · ∇Tn+1

h

)

, sh

)

+ (k∇Tn+1

h ,∇sh)

+ A
energy

∂� ((un+1

h , pn+1

h ,Tn+1

h ), sh)− (Q, sh) ≡ 0,

discretized slab deformation velocity component used in 
the velocity boundary condition

2.9  Nonmatching mesh interpolation
An operator P(·) is necessary to transfer the temperature 
field from the previous time step, Tn

h (T
n) , to the mesh at 

the subsequent time step, Tn
h (T

n+1) , such that

The choice of P(·) must account for cases where sub-
sequent meshes do not overlap. In this work we design 
P(·) to be a nearest-neighbor interpolation such that 
P(Tn

h (T
n)) interpolates Tn

h (T
n) in the overlapping vol-

ume T n+1 ∩ T n . In the remaining volume, T n+1 \ T n , 
P(Tn

h (T
n)) interpolates the value of Tn

h (T
n) that lies clos-

est to the interpolation point. Specifically for each inter-
polation point xi of Tn

h (T
n+1) we have

Our choice of P(·) here is the motivation for selecting the 
backward Euler finite difference scheme in the temporal 
discretization. A higher order finite difference scheme 
would have to carefully account for fields defined on both 
T n+1 and T n in the FE formulation.

2.10  Picard iteration and computational linear algebra 
solvers

The fully discrete system in Eqs.  (27), (28) and (29) is 
nonlinear. We use a Picard iterative scheme to com-
pute their solutions’ approximations and minimize 
the residual formulations. This requires us to split the 
solution of the Stokes system from the energy equa-
tion. Therefore we introduce a subscript index, ℓ , cor-
responding to the Picard iteration number. Given an 
initial guess of the temperature field Tn+1

h,ℓ=0 = P(Tn
h ) , 

we compute the sequence as shown in Algorithm 2.
The linear systems that underlie the FE discretization 

are typically too large to compute in reasonable time with 
direct factorization due to the spatial fidelity required from 
the mesh. This is especially pertinent in the D = 3 case 
where computation by direct factorization is unfeasible. 

(30)

un+1

slab
(x) =

1

�tn

(

Sslab(p,�)(ξ(x), t
n+1)− Sslab(p,�)(ξ(x), t

n)

)

.

(31)Tn
h (T

n+1) = P(Tn
h (T

n)).

(32)
Tn
h (T

n+1)(xi) = P(Tn
h (T

n))(xi) =

{

Tn
h (T

n)(xi) ∀xi ∈ T n,
Tn
h (T

n)(arg min
y∈T n

(�xi − y�)) otherwise,

i = 1, . . . , dim(Sh,n+1).
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We employ an iterative scheme for both the Stokes and 
heat equation sub problems in each Picard iteration. The 
Stokes system is solved by full Schur complement reduc-
tion using Flexible Generalized Minimal Residual (FGM-
RES) iterative method (Saad 1993). The velocity block is 
preconditioned using the algebraic multigrid method with 
near-nullspace informed smoothed aggregation as pro-
vided by PETSc (Balay et al. 2019). The pressure block is 
preconditioned with the inverse viscosity weighted pres-
sure mass matrix. The heat equation is solved using Gener-
alized Minimal Residual (GMRES) iterative method (Saad 
and Schultz 1986) and preconditioned with incomplete LU 
(iLU) factorization. For more details on solving such sys-
tems using iterative schemes and devising appropriate pre-
conditioners see, for example, May and Moresi (2008).

Algorithm 2 Picard iterative scheme employed to compute the approximate solution of the nonlinear system equations (27) to (29). Here 
� · �L2 =

√
(·, ·) is the L2 norm measure and TOL ≪ 1 is the convergence threshold tolerance (selected to be TOL = 10−6 in this work).

2.11  Implementation
In this section, we list the computational tools and librar-
ies that facilitate our computational model. The FE system 
assembly is enabled by the FEniCS project, this includes: 

1 Basix for pre-computation of FE bases (Scroggs et al. 
2022),

2 Unified Form Language (UFL) for the computational 
symbolic algebra representation of FE formulations 
(Alnæs et al. 2014),

3 FEniCS Form Compiler (FFC) for translation to effi-
cient FE kernels (Kirby and Logg 2006),

4 DOLFINx for the data structures and algorithms nec-
essary for computing FE functions, tabulating their 
degrees of freedom, managing meshes and facilitat-
ing the solution of FE linear systems by third party 
linear algebra packages (Logg and Wells 2010).

The components of the FEniCS project have been demon-
strated to be scalable in the context of thermomechanical 

analysis in Richardson et al. (2019) using the same linear 
operators that underlie the momentum and energy FE 
discretizations in this work.

DOLFINx-MPC (Dokken 2022) is used in combina-
tion with DOLFINx to construct the function spaces 
V h,n , Qh,n and Sh,n . Specifically DOLFINx-MPC facilitates 
strong imposition of equality of the FE functions’ degrees 
of freedom at the Ŵslab , Ŵslab fault and Ŵwedge no slip bounda-
ries as required by the velocity and temperature bound-
ary conditions.

The Python library NURBS-Python (geomdl) (Bingol 
and Krishnamurthy 2019) is employed for the B-spline 
approximation of Ŵslab . Its data structures and functions 
are necessary for B-spline initialization and manipulation 
along with its facilitation of the l2 minimization of point 
cloud positional data to the B-spline surface geometry.

The computational domain is defined using the CAD 
framework offered by the aforementioned Open CAS-
CADE Technology. These geometries are then inter-
preted by the meshing library gmsh (Geuzaine and 
Remacle 2009) for generation of the sequence of simpli-
cial meshes for each time step between the initial and 
final slab geometry configurations.

The PETSc library (Balay et al. 2019, 2023) is used for 
its data structures and algorithms facilitating distributed 
parallel computation of the linear algebra systems’ solu-
tions. This includes the implementations of the FGM-
RES and GMRES methods, along with construction of 
iLU factorization and construction of algebraic multigrid 
preconditioners.

Automatic formulation of the variational forms arising 
from the weak imposition of Dirichlet boundary data in 
Eqs.  (27) to (29) is provided by dolfin_dg (Houston and 
Sime 2018). Finally, to build the necessary environment 
required to run our model on a high performance computer 
we use the Spack package manager (Gamblin et al. 2015).
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3  Results
Our examples derive their geometric definition of Sfinal(p,�) 
from a flat slab geometry within the subducting Nazca 
plate shown in Fig. 1. The initial slab geometry, Sinitial(p,�) , is 
defined by a straight slab dipping at an angle of 30°  with 
the trench aligned with the final state. These initial and 
final states will describe the evolution of the slab from 
the reference frame of a stationary trench. The D = 3 
volumes for each time step are constructed as described 
in Sect.  2.7 with dplate = 50 km , dc = 75 km , and 
dslab = 200 km . We choose the slab convergence direc-
tion d̂conv = x̂ and speed uconv = 5 cmyr−1 . The total 
slab deformation time is tslab = 11Myr that is appropri-
ate for the modeled subduction zone (Antonijevic et  al. 
2015).

From this D = 3 geometry we further form D = 2 
slices by taking cross-sections along the planes defined 
by constant y = −200 km , 0 km , and 200 km . We seek 
to compare the D = 2 model solutions with correspond-
ing cross-sections of the D = 3 results found by post 
processing.

The splines Sinitial(p,�) , S
final
(p,�) and implicitly Sslab(p,�) are 

defined with order pi = 2 and number of control points 
ni + 1 = 8 , i = 1, . . . ,D − 1 . In each model, the meshes 
are generated with cell size constraints of 2  km within 
25 km of the velocity coupling depth dc , 5 km along the 
slab interface Ŵslab , and 10 km in the remaining volume. 
This means the nodal point spacing varies from 1 to 5 km 
in the model. The degree 2 piecewise polynomials used 
for the velocity and temperature function spaces V h,n 
and Sh,n yield a distance between FE Degree of Freedom 
(DoF) coordinates of approximately half the cell size. 
Furthermore in each model, the initial temperature field 
Tn=0
h  is prescribed from the computation of the steady 

state solution of the nonlinear model, (un=0
h , pn=0

h ,Tn=0
h ) , 

on the initial mesh T n=0.

3.1  2D slab
The temperature and velocity fields computed on the 
D = 2 cross-sections of the D = 3 geometry are shown in 
Figs. (6), (7), and (8), respectively. Each row corresponds 
to time snapshots taken over the tslab = 11Myr model 
maximum time that has been discretized with 100 time 
steps such that �t = 0.11Myr . The slab B-spline is over-
laid in each plot as a dotted line. Tracers are added in the 
velocity plots showing pathlines between the shown time 
snapshots. Should a tracer leave the geometry between 
each snapshot, it is removed from the visualization leav-
ing only its remaining tail. The geometry deformation 
is not shown between snapshots and the tracers do not 
cross over Ŵslab at any time in the simulation (though 
their pathlines may appear to do so).

Convergence of the surface temperature as a function 
of time step size in the temporal discretization is shown 
in Fig.  9. In Fig.  10 we show the slab surface tempera-
ture as a function of depth as computed in the steady 
state on the initial geometry Sinitial(p,�) , as computed in the 
full time dependent D = 2 model at time t = tslab and as 
the steady state on the final geometry Sfinal(p,�) . Finally, the 
temperature as a function of depth along Ŵslab at the final 
time t = tslab are shown in Fig. 15.

3.2  3D slab
Snapshots of the D = 3 case temperature and velocity 
approximations evaluated on the slab interface are shown 
in Fig. 11. As in the D = 2 case, we discretize the tempo-
ral domain with 100 time steps such that �t = 0.11Myr . 
Overlaid on the velocity plot are arrows indicating the 
horizontal velocity of flow on the surface in the x̂ and 
ŷ directions along with cross markers with sizes cor-
responding to speed in the −ẑ direction (into the page). 
Cross-sections of the temperature and velocity solution 
at y = −200 km , 0 km , and 200 km are shown in Figs. 12, 
13 and 14, respectively. Tracers and their pathlines are 
not added to these velocity cross-sections due to the ina-
bility to visualize their ŷ component.

Cross-sections of the temperature field taken at con-
stant y = −200 km , 0 km , and 200 km as a function of 
depth along Ŵslab at final time t = tslab is shown in Fig. 15. 
These data overlay the slab surface temperatures as a 
function of depth computed from the corresponding 
D = 2 models. Furthermore, convergence of the surface 
temperatures as a function of time step size in the tem-
poral discretization at these cross-sections is shown in 
Fig.  9. The volume of the D = 3 model at t = tslab with 
these cross-sections and additional path tracers is shown 
in Fig. 16.

The model presented in Fig. 16 gives rise to the largest 
linear systems solved in this work, comprising ∽ 14 × 106 
DoFs at initial time t = 0 and ∽ 20× 106 DoFs at final 
time t = tslab . The wall time required to complete the 
simulation was approximately 16 h when distributed over 
64 processes on two AMD EPYCTM 7452 processors. 
This includes 100 time steps, each requiring an average 
of 6.5 Picard iterations to resolve the nonlinearity of the 
coupled system (Eqs. (27), (28) and (29)).

4  Discussion
The surface temperatures computed from the D = 2 
and D = 3 models shown in Fig.  15 indicate a warming 
of the slab above the coupling point. This appears to be 
caused by the slab surface transitioning to a shallower 
angle than the initial condition, pushing the surface into 
a warmer region of the wedge (see Figs.  6, 7 and 8, 12, 
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Fig. 6 Temperatures and speeds around the evolving slab over 11 Myr. The model is solved with D = 2 where the geometry is taken 
from a cross-section of the D = 3 volume parallel to the y-axis at location y = −200 km . The time interval is discretized with 100 time steps such 
that �t = 0.11Myr . Tracers are added in the speed plots showing pathlines between the time snapshots
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Fig. 7 As Fig. 6 but now for y = 0 km
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Fig. 8 As Fig. 6 but now for y = 200 km
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13, and 14). Examining the y = 200 km cross-section in 
Fig. 14 the slab surface does not reach as shallow a depth 
as in the y = −200 km and y = 0 km cross-section cases. 
This leads to less significant warming of the slab surface 
above dc . Consider also the slab surface temperatures 
shown in Fig.  10 that increase as the slab evolves from 
the initial steady state to t = tslab and that are reduced 
when evolved to the steady state with no further slab 
deformation.

In all cases, the steady-state solution used for the ini-
tial temperature field Tn=0

h  exhibits a diffusive thickening 
of the plate within the approximate depths of 50 km and 
100 km . This feature persists through the simulation and 
is displaced by the slab deformation. Future models may 
be improved by prescribing the initial temperature field 
computed from an unsteady simulation run to a time just 
after transient effects in the slab become negligible.

Fig. 9 Temporal convergence test of the D = 2 models shown in Figs. 6, 7 and 8 and D = 3 models shown in Figs. 12, 13 and 14. Here, in each 
case, we plot the surface temperatures as a function of depth along Ŵslab at final time t(ϑ = 1) = 11Myr . We also overlay the initial temperature 
along the slab at t = 0 as a dotted line. For each case, the temporal domain is discretized by 25, 50 and 100 time steps yielding the time step sizes 
shown in the legend
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The configuration of the slab surface temperature in 
the D = 3 case shown in Fig. 11 is largely dictated by the 
velocity boundary condition applied to Ŵslab . Choosing 
d̂conv = x̂ restricts the velocity profile to be very similar 
to the D = 2 cases along Ŵslab . Deviating from this deci-
sion, one avenue is to choose d̂conv = −ẑ that would 
yield a convergence velocity in the direction of steep-
est descent. However in this case, the flow above and 
below Ŵslab will become unreasonable for the subduc-
tion zone model as a result of satisfying mass conver-
sation, ∇ · u = 0 . These flows, that are not realistic in a 
subduction zone model, typically form as velocity fields 
impinging or jetting out from Ŵslab in order to account 
for diverging and converging flows on the Ŵslab topology, 
respectively. An approach to alleviate this issue is to solve 
for some component of the flow, u , on Ŵslab implicitly. 
For example, the velocity prescription on Ŵslab could be 
changed such that only the τ̂ conv component is imposed 
allowing the remaining tangential component in the 
τ̂
⊥
conv direction to be implicit in the model. This, however, 

introduces an issue where the deformation velocity com-
ponent, (uslab · τ̂

⊥
conv)τ̂

⊥
conv , must be neglected. Another 

approach would be to impose a convergence velocity 
uconv , such that u|Ŵslab

= uconv + uslab , which is com-
puted from a Stokes problem of topological dimension 
D − 1 defined on Ŵslab . The divergence free constraint 
defined on the topology of the surface would then ensure 
no regions of converging or diverging flow. However, the 
complexity of the mathematical formulation of this prob-
lem as well as its implementation for parallel computa-
tion is challenging.

The slab temperature approximation close to 
∂�slab outlet and ∂�wedge outlet is significantly affected 
by the non-overlapping component of the interpola-
tion operation P(·) described in Fig.  2.9. This is indi-
cated, for example, in the t > 0 cases of Fig. 15 at depths 
below 215 km (i.e., the component of the Ŵslab closest to 
∂�slab outlet and ∂�wedge outlet ). One can see a small down-
turn in the temperature that arises from interpolation 
of Tout (Eq.  11). This is colder than the material in the 
volume that is displaced by the moving slab. This issue 
could be addressed by ensuring all meshes overlap such 
that the overall volume remains consistent negating the 
need for non-overlapping interpolation. However, this 
would introduce a large computational cost resolving a 
volume that is largely spatially removed from the domain 
of interest close to Ŵslab.

The decision to choose the B-spline properties pi = 2 
and ni + 1 = 8 , i = 1, . . . ,D − 1 , was made to balance 
production of a robust numerical model against the per-
formance of iterative solvers applied to the linear system 
underlying the Stokes problem. Choosing a greater fidel-
ity in the knot vector led to degradation of the rate of 
convergence of the FGMRES method for slab geometries 
that exhibit rapid non-smooth changes. Future develop-
ment of the model would investigate methods to retain 
the robust solution of the velocity and pressure approxi-
mations with greater spatial fidelity of Ŵslab . Additionally 
the geometric operations required to define the volume 
using CAD as described in Sect. 2.7 become prohibitively 
expensive as the B-spline approximation order and con-
trol point vectors’ cardinality increases.

Fig. 10 Comparison of the D = 2 model slab surface temperatures as a function of depth in the steady state on the initial geometry, time 
dependent t = 11Myr , and steady state on the final geometry
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Fig. 11 Computed D = 3 model slab surface temperatures and velocities with an initial 30°  straight dip evolving into the Nazca slab geometry 
over 11Myr (cf. Fig. 1). The time interval is discretized with 100 time steps such that �t = 0.11Myr . In the instantaneous velocity plot, the size 
of crosses represents speed in the −ẑ direction (into the page) and arrows correspond to the horizontal velocity component acting in the x̂ and ŷ 
directions. The colors indicate the total speed
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Fig. 12 Cross-sectional temperature and speeds of the computed D = 3 model. The data presented is measured at the cross-section of the full 
volume parallel to the y-axis at location y = −200 km (compare to D = 2 model in Fig. 6). The time domain is discretized with 100 time steps such 
that �t = 0.11Myr
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Fig. 13 As Fig. 12 but now at y = 0 km (compare to D = 2 model in Fig. 7)
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Fig. 14 As Fig. 12 but now at y = 200 km (compare to D = 2 model in Fig. 8)
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The modeling described above shares many of the 
characteristics of those developed in, e.g., Wilson and 
van  Keken (2023). Importantly, we assumed a kinematic 

slab surface and solve for the Stokes equation in slab and 
mantle wedge. We ignored buoyancy in the mantle wedge, 
but the methodology can be extended in a straightforward 
manner to include density variations caused by tempera-
ture differences, variable water content, or composition. 
Our models do not currently allow for the evolution of 
water or composition fields and we do not allow for mate-
rial exchange between the slab and mantle wedge. This 
makes it difficult to use this approach for more dynami-
cal investigations that are possible with the particle-in-cell 
methods used in, e.g., Gerya and Yuen (2003).

As in Wilson and van Keken (2023) we made the sim-
plifying assumption that the top of the slab is decoupled 
from the overriding crust and mantle wedge to a depth 
of 80  km by using a kinematic boundary condition on 
the mantle wedge that switches from zero velocity to 
full slab velocity around this depth. While this is a rea-
sonable approximation at shallow depth, where the slab 
is likely decoupled over long geological timescales by 
repeated underthrusting events along the seismogenic 
zone, it does not fully represent the likely complex rhe-
ological decoupling that occurs past the down-dip limit 
of the seismogenic zone. As such these models cannot 
be easily used to understand dynamical processes along 
the plate interface. We note that Wada and Wang (2009) 
used a thin layer of low viscosity material between slab 
and wedge to a depth of 75  km which provides a simi-
lar effective decoupling (see comparison in van  Keken 
and Wilson 2023b). Introducing this rheological separa-
tion creates a pathway to study dynamics along the plate 

Fig. 15 Comparison of the slab surface temperatures as a function of depth as modeled in the D = 2 and D = 3 cases. In each case, we plot 
the surface temperatures as a function of depth along Ŵslab at the time steps shown in the D = 2 models in Figs. 6, 7 and 8 and the cross-sections 
of the D = 3 model in Figs. 12, 13 and 14. The difference between the D = 2 and D = 3 models at time t = 0.0Myr is indistinguishable at this scale

Fig. 16 Rendering of the D = 3 model at time t = tslab . Tracers 
are added where tails show 5.5Myr long pathlines. Some pathlines 
cross through the slab interface shown; however, this is not an 
indication that the tracers have passed through the interface 
as the time evolving slab is not shown. There is very minor movement 
in the tracers located in �plate , their displacement is dictated 
by the slab deformation above the plate depth dplate highlighted 
as a translucent layer. Pathlines close to the slab surface are 
dominated by the convergence component of the velocity boundary 
condition direction d̂conv = x̂ . An animation of the slab evolution 
to this final geometry is available in the accompanying zenodo 
repository (see data availability)
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interface (e.g., Behr and Becker 2018; Sobolev and Brown 
2019) while maintaining a kinematic-dynamic approach. 
Alternatively a more fully dynamic approach could be 
used (e.g., Gerya and Meilick 2010). We note that the 
models described below can be easily extended to study 
the influence of shear heating due to brittle–ductile 
processes along the shallow plate interface. This merely 
requires the introduction of a shear heating term in the 
heat equation as discussed in, for example, van  Keken 
et al. (2019) and Abers et al. (2020).

We finish this discussion on a cautionary note. 
These models are sensu stricto based on a toy model (if 
admittedly a complicated one). The results presented 
here should be interpreted to indicate that precise 
description of the slab evolving geometry leads to sig-
nificant differences between 3D models and 2D cross-
sections, but the temperature-pressure paths should 
not be used to compare directly to existing slab models 
or observations of flat slab subduction. In future work 
we will apply this modeling framework to regions of 
flat slab subduction with locally adjusted parameters 
for geometry, coupling point, structure of the overrid-
ing plate, etc.

5  Conclusions
We have devised, implemented, and demonstrated a 
numerical model of a subduction zone that accounts for 
a kinematic prescription of a geometrically evolving slab 
surface. We do this by approximating seismic observa-
tions of slab geometries with a B-spline. By construct-
ing a deformation path for the B-spline surface from an 
initial to a final slab geometry, we are able to evolve this 
prescribed slab surface geometry over time. Envelop-
ing the slab surface spline in a volume using CAD allows 
us to create a sequence of meshes in which we compute 
approximations of the velocity, pressure and temperature 
of a subduction zone model discretized by the FE method.

Appendix A: Model equations rescaling
Using velocity, length and viscosity scales ur , hr and ηr , 
respectively we define the rescaled quantities

Employing these quantities we arrive at the rescaled 
Stokes-energy formulation of Eqs.  (1), (2) and (3) where 
we seek u′ , p′ and T such that

(33)

u = uru
′, x = hrx

′, η = ηrη
′, p =

urηr

hr
p′

∇ =
1

hr
∇′, t =

hr

ur
t ′, k = hrurk

′, Q =
ur

hr
Q′.

which after simplification reads

The numerical values used in our computations are 
hr = 1 km , ur = 5 cmyr−1 and ηr = 1021 Pa s.
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