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METHODOLOGY

Validation of appropriate estimation criteria 
for the number of components for separating 
a polymodal grain-size distribution 
into lognormal distributions
Naofumi Yamaguchi1*   

Abstract 

Polymodal particle size distributions are generally analyzed by separating them into lognormal distributions, but esti-
mating the precise number of lognormal components required remains a considerable problem. In the present study, 
appropriate evaluation criteria for the estimation of the number of components were examined by using artificial 
data for which the true number of components was known. The characteristics of estimations of the number of com-
ponents by four evaluation criteria, the mean square error (MSE), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), and adjusted R-squared (ARS), were investigated. The results showed that the MSE and ARS were 
less sensitive to the true number of components and tended to overestimate the number of components. By con-
trast, the AIC and BIC tended to underestimate the number of components, and their correct answer rates decreased 
as the true number of components increased. The BIC tended to include the true number of components among its 
higher ranked models. The present evaluation results suggest that the MSE, although frequently used, is not necessar-
ily the most appropriate evaluation criterion, and that the AIC and ARS may be more appropriate criteria. Furthermore, 
checking whether the number of components estimated by the AIC or ARS is included among higher ranked BIC 
models might prevent overestimation and thereby allow for more valid estimation of the number of components. 
When the criteria were applied to grain-size distributions of lacustrine sediments, it was possible to estimate the num-
ber of components that reflected differences in grain-size distribution characteristics.
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1 Introduction
The sediment grain-size distribution is fundamental 
information for various types of sediments and is used in 
many different fields because it reflects the origin of the 
sediments, the transport processes that acted on them, 
and the strength of the experienced transport forces. 
Sediment grain-size characteristics have been used, for 

example, to reconstruct past climate events and changes 
of depositional environments. The grain-size distribu-
tions of lake sediments have been used as an indicator 
of hydrological conditions associated with climatic and 
environmental changes in the region where the lake is 
located (e.g. Håkanson and Jansson 1983; Xiao et  al. 
2009; Dietze et al. 2014; Lu et al. 2018). Grain-size char-
acteristics of aeolian sediments, including loess, have 
been regarded as a meaningful paleoclimatic proxy (e.g. 
Vandenberghe et al. 1997; Sun et al. 2002; Sun 2004; Qin 
et  al. 2005; Lim and Matsumoto 2006; Machalett et  al. 
2008; Antoine et al. 2009; Vandenberghe 2013; Lin et al. 
2016; Schulte et al. 2018). Tephra grain-size distributions 
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have been used to estimate the characteristics of volcanic 
eruptions and the dispersal of particles in the atmos-
phere (e.g. Rose and Durant 2009; Burden et  al. 2011; 
Engwell and Eychenne 2016; Rossi et  al. 2019; Miwa 
et al. 2020). In addition, several methods have been pro-
posed to estimate the transport pathways of modern sur-
face clastic sediments based on spatial trend analyses of 
their grain-size characteristics (McCave 1978; McLaren 
1981; McLaren and Bowles 1985; Gao and Collins 1992; 
Le Roux and Rojas 2007; Yamashita et  al. 2018). There-
fore, accurate methods of grain-size analysis and suitable 
interpretation of grain-size distributions are an impor-
tant topic in Earth science.

One major issue in the analysis of sediment grain-size 
data is how to deal with a complex distribution. Previous 
studies have commonly assumed a unimodal distribution 
and used representative statistical parameters such as 
median diameter, sorting, skewness, and kurtosis to char-
acterize the sediment grain size (Folk 1966). However, 
the grain-size distribution of sediments in various natu-
ral environments is frequently complex and polymodal 
rather than unimodal. In particular, with the advent of 
laser grain-size analyzers, which reveal grain-size distri-
butions over a wide size range at high resolution, it has 
become clear that polymodal distributions are frequent 
for various types of sediments. For example, lake sedi-
ments, which may have multiple sources and be affected 
by multiple sedimentary processes, frequently have 
polymodal grain-size distributions. Such distributions 
complicate the analysis and interpretation of the repre-
sentative parameters calculated by assuming unimodal-
ity. Aeolian deposits, including loess, also frequently have 
complicated polymodal grain-size distributions. Such 
polymodal grain-size distributions are thought to reflect 
multiple sediment sources and sedimentary processes, 
and each mode is thought to preserve environmental 
information associated with them (Tanner 1964; Visher 
1969; Middleton 1976; Ashley 1978). Therefore, it is not 
appropriate to use just a few representative parameters 
based on assumed unimodality to interpret polymodal 
grain-size distributions. Appropriate analysis of such 
complex grain-size distributions can potentially allow 
each of the multiple origins and transport processes that 
produced the sediment deposit to be reconstructed and 
to provide additional valuable information.

Several methods have been proposed for analyzing 
complex polymodal distributions of grain size, includ-
ing end-member mixing analysis (e.g. Weltje and Prins 
2007; Parris et  al. 2010; Dietze et  al. 2012, 2013; Ijmker 
et al. 2012; Yu et al. 2016) and discrete parametric curve 
fitting. The latter method of separating grain-size dis-
tributions includes the use of prescribed distribution 
functions such as the Weibull distribution (Lim and 

Matsumoto 2006; Park et al. 2014; Wu et al. 2020; Peng 
et al. 2022a) and lognormal distributions as components 
of the polymodal distribution. In particular, a number of 
previous studies have used lognormal distributions (Qin 
et  al. 2005; Xiao et  al. 2009, 2012, 2013, 2015; Fettweis 
et  al. 2012; Wang et  al. 2014; Gammon et  al. 2017; Lu 
et  al. 2018; Miwa et  al. 2020). The curve-fitting method 
with lognormal distributions is based on the assumption 
that various grain-size distributions can be represented 
as a single lognormal distribution or a mixture of sev-
eral: for example, a unimodal grain-size distribution with 
an asymmetrical or skewed shape can be regarded as a 
mixture of several lognormal distributions (e.g. Tanner 
1964; Ashley 1978). Thus, a given polymodal grain-size 
distribution can be decomposed into several components 
consisting of normal distributions on a logarithmic scale. 
Methods based on parametric curve fitting, including 
the lognormal distribution function fitting method, have 
the advantage that they can be used for a single sample, 
whereas end-member modeling analysis requires multi-
ple samples. The lognormal distribution function fitting 
method has been successfully used to obtain information 
on past environmental changes from both lacustrine and 
aeolian sediments (Qin et al. 2005; Xiao et al. 2009, 2012, 
2013, 2015; Gammon et al. 2017; Lu et al. 2018).

The lognormal distribution function fitting method 
involves two processes: (1) estimation of the parameters 
of the appropriate lognormal distributions (i.e. the mean 
and standard deviation of each, and their mixing propor-
tions) and (2) determination of the number of compo-
nents. Commercial data analysis software (e.g. Igor Pro, 
PeakFitNagashima et  al. 2004; Wang et  al. 2014; Gam-
mon et al. 2017; Miwa et al. 2020), original programs (e.g. 
Sun et al. 2002; Sasaki and Kiyono 2003; Xiao et al. 2012, 
2013), and R platform packages (e.g. Buckland et al. 2021) 
have all been used to estimate the lognormal distribution 
parameters. In particular, several easy-to-use R packages 
that have appeared in recent years have made parameter 
estimation easier. By contrast, a method for determining 
the number of components has not yet been established 
so this process remains arbitrary. The number of com-
ponents has been estimated from the number of peaks 
in the grain-size distribution (e.g. Xiao et  al. 2012), or 
by using the mean square error (MSE) as an evaluation 
criterion (e.g. Xiao et  al. 2013). When the MSE is used 
as an evaluation criterion, the model for the number of 
components with the smallest MSE is adopted, or that 
model is adopted having the smallest number of com-
ponents with the MSE value below a certain threshold 
value. Using the number of peaks in the grain-size dis-
tribution may lead to underestimation of the number of 
components because it can fail to find a small component 
hidden by a larger adjacent component. In addition, it 
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has been generally pointed out that use of the MSE has 
the statistical problem that the number of components 
may be overestimated in evaluations based solely on the 
agreement of the curve fitting to the original data using 
the MSE value (Bishop 2006). Although several other 
evaluation criteria, including the Akaike information cri-
terion (AIC; Akaike 1973) and the Bayesian information 
criterion (BIC; Schwarz 1978), have seen generally wide 
use for the estimation of the number of components, 
they have not yet been applied to the separation of grain-
size distributions, nor has their validity been examined. 
In the present study, therefore, appropriate criteria for 
evaluating the number of components and their estima-
tion characteristics when separating a grain-size distri-
bution into lognormal distributions were investigated. 
Separation tests were carried out on artificial grain-size 
distributions for which the number of components and 
their parameters were known, and the estimation char-
acteristics of each of four commonly used evaluation cri-
teria were investigated to clarify the points that need to 
be considered when they are used. In addition, the four 
evaluation criteria were applied to an actual lake sedi-
ment sample, and the results were evaluated.

2  Method
2.1  Test procedure
The tests were carried out through the following 
procedure.

 (i) Given an artificial grain-size data at phi scale 
(= −  log2(D/D0); D is particle size in milimeters and 
D0 is a reference diameter, equal to 1  mm) con-
sisting of a mixture of normal distributions, for 
an assumed number of components n of 1–9, the 
parameters of each component (mean, standard 
deviation and mixing proportion) were estimated.

 (ii) The values of the criteria to be validated were 
obtained for each of the cases in (i).

The artificial data used in this procedure, the method 
for estimating parameters by fitting, and the evaluation 
criteria considered are described in detail below.

2.2  Artificial datasets used for testing
A total of five artificial datasets were generated, each 
consisting of a different number (ranging from 2 to 6) of 
mixed normal distributions (components). Each dataset 
consisted of 1000 cases of mixed normal distributions 
of grain size at phi scale. For each case, the parameters 
of the normal distribution components used for the 
mixing were chosen as follows: The mean value of one 
component was fixed at 0 phi, and the distance between 
the mean values of adjacent components was set to a 
uniform random number ranging from 0.4 to 2 phi. The 

standard deviation of each mixed normal distribution 
was set to a uniform random number ranging from 0.2 
to 0.8 phi. The mixing proportions were set by generat-
ing uniform random numbers that summed to 100% in 
increments of 1%. The minimum value of a mixing pro-
portion was set at 5%.

2.3  Separation into normal distributions
To decompose the artificial grain-size distributions (i.e. 
mixed normal distributions at phi scale) and to esti-
mate their parameters, the expectation–maximization 
(EM) algorithm (Dempster et  al. 1977) was employed. 
The EM algorithm is a frequently used iterative method 
for finding (local) maximum likelihood estimates of 
unknown parameters in statistical models (McLa-
chlan and Krishnan 2007). The EM iteration alternates 
between an expectation step and a maximization step: 
the expectation step creates a function for the expec-
tation of the log-likelihood using the current estimates 
of the parameters, and the later maximization step 
calculates parameters that maximize the expected log-
likelihood found in the previous expectation step. This 
algorithm yields the mixing proportions, means, and 
standard deviations of the normal distributions that 
compose a given grain-size distribution. The analyses 
were performed in R (version 4.1.2; R Core Team 2021), 
using the package ‘mixR’ (version 0.2.0; Yu 2022) to run 
the EM algorithm.

The quality of the fitting of the mixture of normal dis-
tributions to the artificial distributions was evaluated 
by calculating the figure-of-merit (FOM) value (Peng 
et al. 2022b) as follows:

where yi is the volume percentage of the measured grain 
size (i.e. the given artificial grain size in the present study) 
in the i-th grain-size interval, ŷi , is the fitted grain-size 
volume percentage in the i-th grain-size interval, and m 
is the number of grain-size intervals.

2.4  Criteria for determining the number of components
A total of four evaluation criteria were tested: the mean 
square error (MSE), which has been used in lake sedi-
ment studies (e.g. Xiao et  al. 2013), and three other 
evaluation criteria commonly used for model selec-
tion in various fields: the Akaike information criterion 
(AIC), the Bayesian information criterion (BIC), and 
the adjusted R-squared (ARS). Each of these criteria 
were calculated as follows:

FOM =

m
i=1

yi − yi
m
i=1

yi
× 100%
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where L is the maximized value of the likelihood func-
tion, K is the number of degrees of freedom, y is the 
mean of yi, and n is the number of components. In the 
present study, the number of degrees of freedom was 
3n−1. Note that for the criteria MSE, AIC, and BIC, the 
preferred model is the one for which the value of the cri-
terion is smaller, whereas for ARS, the preferred model 
is the one for which the value of the criterion is larger. 
MSE is simply the goodness of fit of the estimated mix-
ture of fitting curves to the original data. Therefore, MSE 
tends to select excessively complex models, as described 
above (Bishop 2006). By contrast, the other three criteria 
are proposed to select the appropriate model by penal-
izing the increase in the number of components and the 
complexity of the model.

3  Results
The FOM for the optimal fitting curve obtained by the 
EM algorithm for each mixed normal distribution case 
was less than 2.9%. The parameters of the normal distri-
bution components were not always estimated correctly 
even when the number of true components was given, 
and errors in parameter estimation were more frequent 
the higher the true number of mixture components in the 
artificial grain-size distribution (Fig. 1, Additional file 1: 
Fig. S1). Note that the accuracy of the parameter estima-
tion depended on the degree of overlap of the adjacent 
components in the artificial data. Details on this point 
are described in Additional file 2.

The rate at which the number of components esti-
mated as optimal matched the true number of compo-
nents (Nt) (i.e. correct answer rate) differed among the 
criteria and depended on the value of Nt for the given 
grain-size distribution (Fig. 2). For all criteria, the cor-
rect answer rate tended to decrease as Nt increased 
(Fig.  2). When Nt was relatively small, the AIC and 
BIC tended to have higher correct answer rates than 
the other criteria, whereas when Nt was larger, the 
ARS and MSE tended to have higher correct answer 
rates than the AIC and BIC. When Nt was two, the BIC 
had the highest correct answer rate (89.6%), followed 

MSE =
1

m

m∑

i=1

(
yi − ŷi

)2

AIC = −2lnL+ 2K

BIC = −2lnL+ K lnm

ARS = 1−

∑m
i=1 (yi−ŷi)

2

m−3n−1
∑m

i=1 (yi−y)
2

m−1

by the AIC (81.3%), ARS (69.6%), and MSE (62.9%). 
However, compared to the other criteria, the BIC 
showed a greater decrease in the correct answer rate 
as Nt increased, and its correct answer rate was lowest 
when Nt was larger than four (44.9% for Nt = 4; 30.7% 
for Nt = 5; 22.7% for Nt = 6). By contrast, the MSE did 
not decrease as rapidly as Nt increased, and its cor-
rect answer rate was second highest among the crite-
ria when Nt was 5 or more (49.0% for Nt = 5; 41.4% for 
Nt = 6). The correct answer rate of AIC was high for 
Nt counts up to 4 (75.1% for Nt = 3; 59.6% for Nt = 4), 
and it was comparable to those of the MSE for Nt of 
5 and above (46.2% for Nt = 5; 37.5% for Nt = 6). The 
ARS showed a similar trend to the MSE, but its correct 
answer rate was higher than that of the MSE regardless 
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of Nt, and its correct answer rate was highest for true 
component counts of 4 and above (62.3% for Nt = 4; 
58.8% for Nt = 5; 47.6% for Nt = 6). The trend in the rate 
at which the difference between the estimated number 
of components was within Nt ± 1 also differed among 
criteria and depended on Nt. For the BIC, that rate 
decreased markedly when Nt was 4 or above, whereas 
for the MSE and ARS, it remained approximately con-
stant at around 81% and 88%, respectively, regardless of 
Nt. The rates for the AIC were roughly comparable to 
those for the ARS, but the AIC rate was highest when 
Nt was 4.

The difference between the number of components 
estimated as optimal (Ne) and Nt (Ne minus Nt) tended to 
differ among the criteria (Fig. 3). The MSE and ARS often 
overestimated the number of components regardless of 
Nt, whereas the AIC and BIC often underestimated the 
number of components, especially as Nt increased. The 
BIC more often estimated the number of components to 
be one fewer than the true number of components when 
Nt was 4 or more. When the AIC was used to estimate 
the number of components for data with low Nt, it rarely 
overestimated the number of components by more than 
five.

Among the nine models (i.e. with an assumed number 
of components of 1–9), the frequency with which the 
model with the true number of components was selected 
in the higher ranks of the criterion also tended to vary 
among the criteria (Fig. 4). In the present study, the per-
centage of cases with the true component number was 
highest for the BIC, exceeding 95%. Even when the true 

number of components was 6, the top four ranked mod-
els contained the true number of components in 95% of 
the cases (Fig. 4e).

4  Discussion
From the FOM values, it can be assumed that the param-
eter estimation in the present study resulted in good fit-
ting. However, the parameter estimation of the normal 
distributions was not always correct, even when the true 
number of components was given (Fig.  1; Additional 
file 1: Fig. S1). In the case of estimation using actual natu-
ral grain-size distributions, the parameters of the true 
components are not known. For this reason, the discus-
sion here is based on the values of the evaluation crite-
ria obtained for each case, irrespective of the correctness 
of the parameter estimates. Note that the accuracy of 
parameter estimation and the correct answer rate for 
each criterion decreased with the degree of overlap of 
adjacent components, while it did not affect the char-
acteristics of each criterion, discussed below. Caution 
should be paid with regard to the accuracy of the estima-
tion of parameters and the number of components for 
cases with significant overlap of adjacent components, 
but this effect of the degree of overlap does not need to 
be taken into account in the comparison of the character-
istics of each evaluation criterion in the following discus-
sion. Details are described in Additional file 2.

The present results suggest that it is important to esti-
mate the number of components by taking into account 
the estimation characteristics of each criterion: the AIC 
and BIC can be calculated with high accuracy when the 
actual number of components is small, but they tend to 
be slightly underestimated as the true number of compo-
nents increases (Figs.  2 and 3). For this reason, caution 
should be exercised in their use when the grain size dis-
tribution is complex and may consist of more than five 
normal distributions. In contrast, the present results 
suggest that MSE and ARS are less sensitive to the value 
of the true number of components than AIC and BIC 
(Fig. 2); therefore, they may be effectively used for com-
plex grain-size distributions. It should be noted, however, 
that the MSE and ARS may be overestimated.

The results of the present validation using artificial data 
suggested that the AIC or ARS would be preferable for 
estimating the number of components by using a single 
criterion for natural grain-size data where the true num-
ber of components is unknown. The present results indi-
cate that the correct answer rate of the MSE, which has 
been used in previous studies of sediment grain size, is 
not higher than the rates of the other criteria; thus, it is 
not necessarily the most suitable criterion for estimating 
the correct number of components (Fig. 2). The correct 
answer rate of the ARS, which similarly tends to be less 
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within Nt ± 1 (white symbols) were estimated by each of the criteria 
in relation to Nt
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dependent on the value of the true number of compo-
nents, is higher in all component numbers from 2 to 6. 
Although the correct answer rate of the AIC is lower than 
that of the ARS when the true number of components is 
large, the AIC successfully estimates the true component 
number ± 1 at a higher rate overall; this finding suggests 
that use of the AIC is less likely to result in large esti-
mation failures. Use of the AIC would be also preferred 
when analysing less complex grain-size distributions. 
Furthermore, more appropriate component number 
estimation might be achieved by taking into account the 
estimation characteristics of each criterion and using 
ones with complementary characteristics. For example, 
for the BIC, the top four models contained the correct 

number of components with a probability of more than 
95% (Fig. 4). Considering this feature of the BIC, it should 
be possible to avoid the overestimation problem of, for 
example, the AIC or ARS, by checking whether the num-
ber of components they selected was among the higher 
ranked models of the BIC.

5  Application to natural grain‑size data: 
an example

5.1  Sample and method of analysis
The four criteria tested in the present study were applied 
to the grain-size distribution of sediment samples from 
Lake Kitaura (Fig. 5). Lake Kitaura is a freshwater lake in 
central Japan, with an area of 35.2  km2, a maximum depth 
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of 7 m (except where it has been artificially deepened by 
dredging), and a mean depth of 4 m (Fig. 5). Samples of 
bottom surface sediment were collected with an Ekman–
Birge grab sampler (15 cm × 15 cm) from two sites close 
to the center of the lake, KT2104-06 and KT2104-07 
(Fig.  5c), in April 2021, where the water depth was 6.5 
and 5.9 m, respectively. Sites KT2104-06 and KT2104-07 
were 916 and 424 m, respectively, from the nearest shore. 
Approximately 2 g of each sample was placed in a beaker 

and pre-treated with 50  mL of 10%  H2O2 to remove 
organic matter. Then, each sample was rinsed with puri-
fied water and dispersed with 30 mL of 5.5 g/L  (NaPO3)6. 
The grain-size distributions were measured with a laser 
grain-size analyzer (SALD-2300, Shimadzu Corporation, 
Kyoto, Japan).

The resulting grain-size distributions of the two sam-
ples were polymodal and exhibited their highest values 
at around 6.0 phi (Fig. 5d). The two distributions shared 
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some peaks and inflexion points; for example, both distri-
butions had peaks at around 6.0 and 7.6 phi and an inflex-
ion point at around 8.6 phi (Fig.  5d). The sample from 
site KT2104-07, which was closer to the shore and at a 
shallower water depth, also had a slope inflexion point at 
around 4.3 phi, whereas the sample from site KT2104-06 
lacked this feature.

The grain-size data were separated into normal distri-
butions at phi scale, and the values of the four criteria 
were obtained in the same manner as in the validation on 
the artificial data described above (Sects. 2.1, 2.3 and 2.4).

5.2  Estimating the number of components using the four 
evaluation criteria

For the sample from site KT2104-06, which was further 
away from the shore, different numbers of components 
were estimated by each of the four criteria (Fig.  6a–d): 
in the MSE-, AIC-, BIC-, and ARS-based estimations, 

the optimal number of components was 9, 4, 3, and 6 
respectively. Both the AIC-preferred model of 4 compo-
nents and ARS-preferred model of 6 components were 
among the top four BIC models (Fig. 6c). In contrast, the 
MSE-preferred model of 9 components was not included 
among the higher ranked BIC models; this result suggests 
that the MSE-preferred model may be an overestimation. 
Different numbers of components were also estimated 
by the four criteria for the sample from site KT2104-07, 
which was closer to shore (Fig. 6f–i): in the MSE-, AIC-, 
BIC-, and ARS-based estimations, 8, 5, 4, and 8 compo-
nents, respectively, were found to be optimal. The MSE-
preferred and ARS-preferred model of 8 components 
was not included among the higher ranked BIC mod-
els (Fig.  6h); this result suggests overestimation. When 
the grain-size distributions of the samples from sites 
KT2104-06 and -07 were separated into normal distribu-
tions at phi scale with 4 and 5 components, respectively, 

Fig. 5 Study site location and grain-size distributions of the two samples. a Location and b bathymetry of Lake Kitaura, and c locations 
of the sampling sites (KT2104-06 and -07) and d grain-size distributions of the sediment samples from those two sites. The depth isobath interval 
is 0.5 m. Bathymetric data are from the Geospatial Information Authority of Japan (2018)
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based on the AIC criterion results given above, normal 
distribution components with shared mean values at 5.8–
5.9, 7.5–7.6, 8.7, and 9.4 phi were estimated (Fig. 6e and 
j). Of these shared components, those at 5.8–5.9, 7.5–7.6, 
and 8.7 phi were generally consistent with the peaks and 
slope inflexion points visually observed in the grain-size 
distributions (Fig. 5d). A component with a mean value 

of 4.1 phi, which was estimated only for the sample from 
site KT2104-07, corresponds to the slope inflexion point 
at around 4.3 phi visually observed in the grain size dis-
tribution (Fig. 6j). Although one advantage of the method 
of separation into lognormal distributions for finding the 
number of component is that it can be applied to a sin-
gle sample (Peng et al. 2022b), as in the present example, 
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the number of components can be estimated with greater 
validity and geological meaning by analyzing samples 
from the same vicinity and comparing the results.

6  Conclusions
To investigate appropriate estimation criteria for the 
number of components when separating a grain-size 
distribution into lognormal distributions, four estima-
tion criteria were evaluated by using artificial grain-size 
data where the number of components was known. The 
criteria mean square error (MSE), Akaike information 
criterion (AIC), Bayesian information criterion (BIC), 
and adjusted R-squared (ARS) were evaluated, and the 
estimation characteristics of each were investigated. The 
results showed that estimation characteristics of the 
number of components differed among the criteria: the 
MSE and ARS were less affected by the true number of 
components and tended to overestimate the number of 
components. In comparison, the AIC and BIC showed a 
tendency to underestimate the number of components, 
with the correct answer rate decreasing as the true num-
ber of components increased. The BIC tended to include 
the true number of components among its higher ranked 
models. These evaluation results suggest that the fre-
quently used criterion MSE is not necessarily the most 
appropriate evaluation criterion and that the AIC and 
ARS may be more appropriate. Furthermore, by checking 
whether the number of components estimated by the AIC 
or ARS is included among the higher ranked BIC models, 
the possibility of overestimation can be avoided, and the 
estimation of the number of components may be more 
valid. As an example, the four evaluation criteria were 
applied to the estimation of the number of components 
in grain-size distributions of bottom surface sediments 
from Lake Kitaura. The number of components obtained 
with the AIC appeared to reflect observed differences in 
the characteristics of the grain-size distributions.
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