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Abstract 

Proposed in 1954, Alisov’s climate classification (CC) focuses on climatic changes observed in January–July in large-
scale air mass zones and their fronts. Herein, data clustering by machine learning was applied to global reanalysis data 
to quantitatively and objectively determine air mass zones, which were then used to classify the global climate. The 
differences in air mass zones between two half-year seasons were used to determine climatic zones, which were then 
subdivided into continental or maritime climatic regions or according to east–west climatic differences. This study 
renews Alisov’s CC for the first time in almost 70 years and employs data-driven machine learning to establish a stand‑
ard for causal CC based on air masses.
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1  Introduction
Climate classification (CC) divides the Earth’s surface 
into regions based on the similarity of climatic features. 
The shift of climatology from the classical approach of 
describing the characteristics of climatic elements to the 
modern approach of explaining the formation of climatic 
phenomena is reflected in CC (Yazawa 1980). In other 
words, CC methods can be divided into two categories: 
resultant CC based on classical climatology and causal 
CC based on modern climatology.

With the development of synoptic meteorology and 
weather forecasting, modern climatology has been able 
to reveal the physical processes behind and causal rela-
tionships among climatic phenomena. Bergeron (1930) 
first introduced the concept of an “air mass,” which has 
since been refined into air mass climatology (Fukui 1962). 

An air mass is a large-scale atmospheric volume with 
uniform temperature and humidity that forms over vast 
oceanic or continental surfaces until their properties 
reach near-equilibrium. An air mass tends to form with a 
large-scale stationary anticyclone. The boundary between 
different air masses is defined as a transition zone or 
front, where cyclonic disturbances such as extratropical 
cyclones frequently occur, develop, and move eastward. 
Because the weather and climate are inherent to an air 
mass, an air mass can give comprehensive information 
on a climate and the area covered by the climate (Fukui 
1962). However, air mass climatology has two drawbacks 
(Yoshino 1978). First, determining the area of an air mass 
in a globally applicable manner is difficult. A global clas-
sification tends to ignore local climatic features, but 
a local classification would divide Earth’s surface into 
many small areas. Second, the difficulty in determining 
air masses can result in an arbitrary determination of 
fronts. To overcome these two difficulties, an objective 
and quantitative approach to determining air masses is 
required.

Figure  1 shows Alisov’s CC (ACC) (Alisov 1936, 
1954), which aims to understand global climatic fea-
tures based on air masses. While the Köppen–Geiger 
CC (KGCC) (Köppen 1918; Köppen and Geiger 1936) 
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is a representative resultant CC system based on dif-
ferences in the vegetation landscape due to climate, the 
ACC is a representative causal CC system based on the 
mechanisms and physical processes caused by air mass 
zones and their fronts. The mean positions of large-scale 
air mass zones and fronts usually shift by season due to 
seasonal changes in general atmospheric circulations. 
The north–south variations of air mass zones and fronts 
can be used to divide climatic zones into two categories: 
those that remain year round, and those that change sea-
sonally. The ACC (1954) divides the global climate into 
four air mass zones according to temperature (i.e., lati-
tude): equatorial, tropical, polar, and Arctic/Antarctic. 
Then, the differences between air masses in January and 
July are used to determine seven climatic zones. In this 
study, the air mass zone was defined as the distribution 
of each air mass in the summer and winter seasons, and 
the climatic zone was defined as the spatial extent of a 
climate superimposed on a single map accounting for 
seasonal changes. However, the fronts at both latitudi-
nal edges do not correspond to large precipitation lines, 
which made Suzuki (1961) question whether the loca-
tions of the fronts were correctly determined. Wadachi 
(1997) argued that the ACC could not identify areas with 
a prevailing subtropical high. Despite some shortcom-
ings, the ACC demonstrates the most crucial circulation 

processes in different climatic zones and may be used as a 
basis to explain global climatic types (Khlebnikova 2009).

Many causal CCs have the disadvantage of sometimes 
not corresponding to actual climatic conditions (Nishina 
2019). The subtropical and polar climatic zones in the 
ACC have been criticized for their low correspondence 
with the vegetation landscape of arid and temperate cli-
mates in the KGCC (Khlebnikova 2009). Although the 
KGCC is based on vegetation rather than the actual cli-
mate, it is widely used to explain agricultural and cultural 
regions as one of the CC systems that best reflects real 
climate differences (Nishina 2019). The latest revisions to 
the KGCC (Kottek et  al. 2006; Peel et  al. 2007; Kriticos 
et  al. 2012; Beck et  al. 2018) refer to terrestrial climatic 
variables (i.e., monthly temperature and precipitation) 
to approximate the vegetation distribution on land but 
still exclude climatic zones over the ocean. Because the 
KGCC is based on vegetation distribution, it is inherently 
unable to classify the climate over oceans.

Alisov (1954) attempted to subdivide the seven major 
climatic zones (Fig. 1) into 22 smaller regions using sur-
face conditions such as continent vs. ocean, eastern vs. 
western, and plains vs. mountains. However, he failed to 
reveal the figures with methodology behind such detailed 
types (Mizukoshi and Yamashita 1985), which is prob-
ably because data with sufficiently long periods and high 
spatial resolution were unavailable in the 1950s. The 

Fig. 1  Alisov’s seven climatic zones (Alisov 1954). 1: Equatorial zone, 2: Subequatorial zone, 3: Tropical zone, 4: Subtropical zone, 5: Polar zone, 6: 
Subarctic zone, 7: Arctic/Antarctic zone
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ACC, thus, does not consider east–west climatic differ-
ences in a climatic zone (e.g., Tokyo with a large amount 
of summer precipitation and Rome with the slight one 
are included in the same climatic zone (Nishina 2019)). 
Such subdivision is now possible with the presently avail-
able sophisticated data. Brunschweiler (1957) attempted 
to divide air masses into continental and maritime types 
and investigated the monthly occurrence frequency of 
individual air masses based on analysis of daily data at 
significant sites in the Northern Hemisphere. Then, he 
used the monthly changes in air mass areas to redefine 
the annual mean distribution of air masses in the North-
ern Hemisphere. Although Brunschweiler’s methodology 
is clear, some researchers have questioned the ration-
ale of using air mass frequencies of 80%, 50%, and 20% 
(Suzuki 1961). Oliver (1970) classified Australia in a simi-
lar manner using the annual prevailing air masses.

In recent years, weather observatories have been 
exploited globally, and several studies have tried apply-
ing machine learning to clustering such data for global 
CC (Mahlstein and Knutti 2010; Zscheischler et al. 2012; 
Metzger et  al. 2013; Zhang and Yan 2014; Rohli et  al. 
2015; Netzel and Stepinski 2016; Sathiaraj et  al. 2019; 
Gardner et  al. 2020). Most of these studies focused on 
reproducing or comparing their work with the revised 
KGCC (Kottek et  al. 2006; Peel et  al. 2007). Rohli et  al. 
(2015) used global reanalysis data to extend the KGCC 
over the whole Earth. Netzel and Stepinski (2016) showed 
that an information-theoretic measure of clustering 
called the V-measure (Rosenberg and Hirschberg 2007) 
could be used to quantitatively assess the homogeneity 
within a climatic type and differences between climatic 
types. Sathiaraj et  al. (2019) compared three clustering 
techniques at their ability to identify climatic types in 
the United States: K-means (MacQueen 1967), DBCAN 
(Ester et al. 1996), and BIRCH (Zhang et al. 1996). Other 
studies have used clustering techniques to classify upper-
level air masses (Vrac et  al. 2012; Pernin et  al. 2016; 
Watanabe et  al. 2020). However, the above studies sub-
jectively determined the number of clusters or air masses 
for classification.

In this study, we applied a technique of data cluster-
ing by machine learning to global reanalysis data in an 
attempt to objectively determine the global air mass dis-
tribution and develop a revised causal CC based on air 
masses. Because reliable objective reanalysis data with 
high spatiotemporal resolution are now available for 
Earth over a period of more than 40 years, it can be used 
to revise the causal CC system to reflect actual climatic 
conditions more accurately. This will allow us to classify 
the global climate in a data-driven manner by focusing 
on climatic causes (i.e., air masses and fronts) instead of 
observed responses such as vegetation. Thus, this study 

renews the classical ACC for the first time in almost 
70 years. We subdivide air mass zones into regions that 
distinguish between land and ocean and that reflect 
east–west differences. Objective estimation of the global 
distribution of large-scale air masses, including over the 
oceans, will lead to better understanding of future cli-
mate change and will be helpful for determining appro-
priate mitigation and adaptation measures (Mahlstein 
and Knutti 2010).

The remainder of this paper is organized as follows. 
Section  2 explains the data and methodology. Section 3 
presents the global distribution of air mass zones after 
the optimal number of clusters is determined and com-
pares the causal CC of this study with the conventional 
ACC. Section 4 summarizes the findings of this study and 
briefly discusses remaining issues.

2 � Data and methodology
2.1 � Data
We used Fifth-Generation ECMWF Atmospheric 
Reanalysis of the Global Climate (ERA5) data (Hers-
bach et  al. 2020) compiled by the European Centre for 
Medium-Range Weather Forecasts (ECMWF). ERA5 
data are available at high quality for more than 70 years 
with a spatial resolution of 0.25° × 0.25° (Hersbach et al. 
2020). The air mass analysis was based on monthly mean 
data for the temperature ( T ) and specific humidity ( q ) 
over the 40-year period of 1981–2020 at altitudes of 925–
775 hPa (i.e., seven pressure surfaces), which corresponds 
to the lower troposphere. To correctly follow the defini-
tion of air mass, this study chose T and q , not employing 
precipitation. Although the vertical extent of air masses 
has not been clearly determined, we defined 775  hPa 
(i.e., about 2000  m) as the maximum altitude of air 
masses in the lower troposphere. For instance, the Sibe-
rian High forms from wintertime cold air in the bound-
ary layer as a typical continental high-pressure system, 
and the inversion layer often appears around an altitude 
of 2000 m. The downward flow of the Hadley circulation 
forms a subtropical high, and the trade wind inversion 
forms around an altitude of 1000–2000  m. Referring to 
these information, we set the altitude for an air mass to 
be affected by the surface as 2000 m, although an atmos-
pheric boundary layer typically has an altitude of around 
1500 m, which is lower than in the tropics.

To evaluate the locations of fronts, we employed 
monthly mean surface precipitation data from the Global 
Precipitation Climatology Project (GPCP) Version 2.3 
(Adler et  al. 2018) on a 2.5° global grid for the 40-year 
period of 1981–2020. To account for seasonal differences, 
a year was divided into the October–March (O–M) and 
April–September (A–S) half-years.
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2.2 � Methodology
2.2.1 � Clustering process
An air mass can be defined as a large-scale three-dimen-
sional air volume with homogeneous temperature and 
humidity. To identify an air mass, we took the vertical 
mean of an atmospheric variable in the lower troposphere 
from 925 to 775 hPa:

where x is an atmospheric variable, the overbar (‾) indi-
cates the vertical mean, g is the acceleration of gravity, 
and p is the atmospheric pressure. In this study, we sub-
stituted the air temperature T (K) and specific humidity 
q (g kg−1) into x . Equation (1) defines the mass-weighted 
vertical mean of x . To remove small-scale disturbances, 
x was calculated for the O–M and A–S half-years (i.e., 
6-month means), as shown in Fig. 2. To align the scales 
of the climatic variables ( T and q ), we applied z-score 
normalization (Raschka and Mirjalili 2020) to the global 
horizontal data of both half-years using the means and 
standard deviations.

To unify the clusters (i.e., air mass zones) identified in 
the two half-years, the normalized data of both half-years 
were simultaneously employed as input data. Multiplying 
the number of features, number of grid points in the global 
reanalysis data, and number of half-years resulted in input 
data with an array size of 2 ( T , q) × 1440 (longitudes) × 721 
(latitudes) × 2 (half-years) = 4,152,960. We then applied 
K-means++ clustering (Arthur and Vassilvitskii 2007) to 
the input data. Clustering is a statistical technique of group-
ing samples based on the similarity of features. K-means 
clustering is a well-known non-hierarchical clustering tech-
nique (MacQueen 1967) that is widely used in industry and 
academia. K-means clustering is suitable for analyzing big 
data, because it requires less computation of distances than 
hierarchical clustering techniques, in which close clusters 
are merged successively. In addition, K-means++ cluster-
ing has been reported to be more effective and more con-
sistent than conventional K-means clustering, where the 
classification results depend on the position of the initial 
centroid (Arthur and Vassilvitskii 2007; Raschka and Mir-
jalili 2020). Thus, we wed the K-means++ clustering tech-
nique to overcome the initial value dependency problem of 
conventional non-hierarchical clustering techniques such 
as K-means or K-medoids clustering.

K-means++ clustering creates clusters from the K 
points located farthest each other as the initial centroid 
position based on the probabilistic distribution of the 
samples. Then, samples are clustered by iteratively mini-
mizing the sum of squared errors (SSE), which is esti-
mated as follows:

(1)x ≡
1

g

925 hPa
∫

775 hPa
x dp /

1

g

925 hPa
∫

775 hPa
dp,

where i is the number of a cluster from 1 to K , ci is the 
centroid of i-th cluster (i.e., Ci ), and an is a sample 
belonging to Ci . The SSE is the sum of the squared Euclid-
ean distances between an and ci for all clusters (i.e., the 
total variance of the clusters). A smaller SSE indicates 
that clusters are more compact in the feature space, and 
the SSE can be used to quantitatively evaluate the cluster-
ing performance. To further reduce the dependency on 
the initial position, we performed K-means++ clustering 
20 times using different initial centroid positions, and the 
clustering results with the smallest SSE were selected as 
the best.

One advantage of using K-means++ clustering rather 
than hierarchical and density-based clustering techniques 
is that the former retains the coordinates of the centroid’s 
final position in feature space, which allows different 
datasets (i.e., air temperature and specific humidity) to 
be clustered using the same coordinates. We performed 
K-means++ clustering by using the scikit‐learn Python 
packages (Pedregosa et al. 2011).

2.2.2 � Finding the appropriate number of clusters
Clustering techniques, including K-means++ clustering, 
requires setting the number of clusters a priori. To deter-
mine the appropriate number of clusters, we utilized four 
quantitative evaluation indices.

The first evaluation index was the Davies–Bouldin 
index (DBI) (Davies and Bouldin 1979):

where si is the average distance between all samples 
belonging to a cluster Ci , and di,j =� ci − cj �2 is the L2 
norm or Euclidean distance between the centroids of two 
clusters Ci and Cj . The DBI represents the average simi-
larity between a cluster Ci and its nearest cluster Cj for 
i, j = 1, . . . , K . A lower DBI indicates a greater distance 
separating the nearest cluster pair Ci and Cj . Thus, a small 
DBI indicates that the number of clusters is appropriate.

The second evaluation index was the silhouette coeffi-
cient (SC) (Rousseeuw 1987), calculated for a single sam-
ple an:

(2)SSE =

K

i=1 an∈Ci

� an − ci �
2,

(3)DBI =
1

K

K
∑

i=1

max
i �=j

(

si + sj

di,j

)

,

(4)SCn =
en − fn

max
(

en , fn
) ,
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where fn is the average distance of sample an to all other 
samples in the same cluster, and en is the average distance 
of sample an to samples in the next nearest cluster. The 
SCn value varies between –1 and 1, with a value near 1 
indicating that the clustering result is satisfactory on the 
sample an . The average of SCn for an in the entire dataset, 

SC = 1
N

N
∑

n=1

SCn (N is the number of all samples), can be 

used to evaluate the overall performance of the clustering 
results.

The third evaluation index was the Cailnski–Harabasz 
index (CHI) (Caliński and Harabasz 1974):

Fig. 2  Vertical mean distributions (925–775 hPa) of the temperature (K; contour) and specific humidity (g kg−1 ; shading) in the (a) O–M half-year 
and (b) A–S half-year for 1981–2020. The contour interval is 5 K. The scale of shading is shown at the bottom, and the warm and cold colors indicate 
relatively high and low specific humidity, respectively
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where WK =
K
∑

i=1

∑

an∈Ci

(an − ci)(an − ci)
t is a variance 

matrix within clusters, and BK =
K
∑

i=1

ni(ci − co)(ci − co)
t 

is a variance matrix between clusters ( ni is the number of 
samples belonging to cluster Ci and co is the centroid of 
all samples). The superscript t denotes transposition. A 
larger value for CHI indicates a denser sample distribu-
tion in each cluster and greater distance between clus-
ters. In other words, a large CHI indicates that the 
number of clusters is appropriate.

The fourth evaluation index was the Bayesian infor-
mation criterion (BIC) (Schwarz 1978), which is used 
to select models from a finite set of models. Under the 
assumption that the samples in cluster Ci follow a Gauss-
ian distribution, BIC can be defined as follows:

where L is the likelihood function of the model, θi is the 
set of parameters of the likelihood function, and D is the 
number of parameters of the model with K components. 
The second term represents a penalty term imposed to 
prevent model overfitting due to an increase in the num-
ber of parameters. Note that we calculated BIC with the 
opposite sign of the usual definition. Thus, a larger value 
for the BIC indicates a better model prediction of the 
sample data and true unknown distribution.

2.2.3 � Sea–land contrast and east–west climatic differences
Figures 2 and 3 show the distributions of the temperature 
and specific humidity in the lower troposphere and their 
anomalies from the zonal means in the O–M and A–S 
half-years, respectively. According to the ACC, latitudinal 
differences in the downward surface solar radiation flux 
determine the global surface temperature. Therefore, the 
number of latitudinal air mass zones may be increased by 
simply increasing the number of clusters (Fig.  2). Thus, 
we also considered anomalies from the zonal (0°–360° E) 
mean at each latitude to clarify the sea–land or east–west 
distribution of air masses (Fig.  3). In addition, z-score 
normalization shown in Sect.  2.2.1 is applied to global 
anomalies in the mean data of the O–M and A–S half-
years. The normalized anomalies were used to classify air 
mass zones into two for both half-years to represent dry 
and moist air masses.

(5)CHI =
trace(BK)

trace(WK)
×

N− K

K− 1
,

(6)BIC =

K
∑

i=1

[

log L(θi; an ∈ Ci)−
D

2
log ni

]

,

3 � Results and discussion
3.1 � Determination of number of clusters
Figure  4 shows the values of the evaluation indices for 
the number of clusters. The DBI (blue) significantly 
decreased as the number of clusters was increased from 
two to four and reached its minimum at four, after which 
it rapidly increased with more clusters. This suggests 
that four clusters are optimal. The SC (red) decreased 
as the number of clusters increased from two to six, and 
it increased from six to eight and decreased again after 
eight. The decreasing trend was partially mitigated from 
three to four. Therefore, we judged that four clusters were 
applicable.

The CHI (green) and BIC (orange) both increased 
as the number of clusters was increased from two to 
ten. Both indices rapidly increased in value from two 
to four clusters but increased gradually from four to 
ten clusters. Based on these results, we determined 
the statistically optimal number of clusters to be four, 
which indicates that the global climate can be divided 
into four air mass zones. Thus, Alisov’s four air mass 
zones from the 1950s are supported from a data-driven 
perspective using high-quality global reanalysis data.

3.2 � Global distributions of air mass zones
Figure  5 shows the global distributions of the four air 
mass zones in the O–M and A–S half-years from low to 
high latitudes: tropical (red), subtropical (yellow), polar 
(light blue), and Arctic/Antarctic (purple). The tropi-
cal and subtropical air mass zones correspond to the 
equatorial and tropical air mass zones in the ACC (not 
shown). The seasonal changes in the general atmos-
pheric circulations caused the air mass zones to move 
toward the poles in the summer hemisphere and toward 
the equator in the winter hemisphere (Figs. 5a and b). 
This indicates that the north–south seasonal shift was 
accurately captured. The Arctic air mass zone was 
shown to dominate from the North Pole to northeast-
ern Siberia and Canada in the O–M half-year (Fig. 5a), 
but it disappeared in the A–S half-year (Fig. 5b).

We then investigated the sensitivity of the air mass 
zone distribution to differences in altitude by com-
paring the distributions estimated using the vertical 
means over 925–775 hPa and 925–850 hPa. The overall 
distribution of the four air mass zones showed almost 
no changes. Using the 925–850  hPa mean somewhat 
expanded the distribution of the tropical air mass zone 
over the ocean and shrank the distribution of the sub-
tropical air mass zone (not shown). We attributed this 
to the reduced influence of trade wind inversion in and 
around subtropical anticyclones. Thus, the air mass 
zone distribution seemed to be robust against differ-
ences in the altitude range for the lower troposphere.
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The white contours in Fig.  5 indicate areas where 
the half-year mean precipitation was greater than 
3 mm  day−1. The large rain bands or fronts in the mid-
latitudes are located near the boundary between the 
subtropical (yellow) and polar (light blue) air mass zones 
in the Northern Hemisphere during the O–M half-year 

(Fig.  5a) and near the boundary between tropical  (red) 
and subtropical (yellow)  air mass zones in the North-
ern Hemisphere during the A–S half-year (Fig. 5b). The 
Atlantic polar front in boreal winter (Fig.  5a) is a tran-
sition zone with high baroclinicity where a subtropi-
cal air mass of the Azores high meets a polar air mass 

Fig. 3  Distributions of temperature (K; contour) and specific humidity (g kg−1; shading) anomalies from the zonal means in the (a) O–M half-year 
and (b) A–S half-year. The contour interval is 2 K .  The warm solid and cold dashed contours indicate relatively high and low temperatures, 
respectively. The scale of shading is shown at the bottom, and the red and blue colors indicate positive and negative anomalies, respectively of the 
specific humidity
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extending southward. The high baroclinicity induces the 
development of extratropical cyclones, whose eastward 
movement brings precipitation over Europe. Thus, the 
clustering results seem to capture intense mid-latitude 
rain bands as fronts with baroclinic instability. Mean-
while, the subtropical front in the north Pacific crosses 
the Yangtze River basin and Japanese archipelago in 
boreal summer and represents the Meiyu–Baiu front, 
which brings significant precipitation to East Asia 
(Fig.  5b). In other words, the Meiyu–Baiu front is cap-
tured as a pronounced subtropical front between the 
tropical (red)  and subtropical (yellow)  air mass zones, 
which is consistent with Ninomiya’s results (1984). Thus, 
the clustering results accurately captured frontal pre-
cipitation between air mass zones in the mid- and high 
latitudes. The heavy precipitation in the tropics and weak 
precipitation around 60°S seem unrelated to the bounda-
ries between air mass zones.

Figure 6 shows the sample statistics of the four air mass 
zones (i.e., clusters) in each half-year. In Fig. 6a, the cen-
troids of the clusters (black stars) are almost equidistant, 
which ensures good clustering. The distribution pattern 
may reflect the Clausius–Clapeyron relation at the left 
edge line, where the amount of water vapor increases 
exponentially with increasing temperature. The centroid 
of each cluster is located near the left edge of the fea-
ture space because the samples were concentrated near 

the edge, although colors appear equal. The subtropical 
air mass zone (yellow) had the largest area in the fea-
ture space, which may reflect the large temperature and 
humidity ranges of this zone. Figure 6b shows the sam-
ple means (error bars: standard deviations) of T and q 
for each air mass zone in the Northern Hemisphere. 
The fronts can be characterized according to differences 
between the atmospheric characteristics of two adjacent 
air mass zones. Because the latitude of each air mass zone 
shifts north or south according to the season, T and q of 
each zone did not differ significantly between half-years. 
The tropical and subtropical air mass zones had a rela-
tively small temperature difference of less than 7 K  but 
a large humidity difference of about 5.4 g kg−1. The polar 
air mass zone had a lower temperature and humidity 
than the subtropical air mass zone, and the temperature 
and humidity differences were about 16 K and 2.7 g kg−1, 
respectively. These results suggest that the subtropical 
front is characterized by a large humidity gradient while 
the polar front is characterized by both temperature and 
humidity fronts. The Arctic air mass zone had lower tem-
perature and humidity than the polar air mass zone in the 
O–M half-year with temperature and humidity differ-
ences of about 14 K  and 1.5 g  kg−1, respectively. These 
features were almost the same in the Southern Hemi-
sphere (not shown).

Fig. 4  Evaluation indices used to quantitatively determine the optimal number of clusters: DBI (blue), SC (red), CHI (green), and BIC (orange). All 
indices are dimensionless
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3.3 � Global distributions of climatic zones and comparison 
with classical ACC​

Figure 7 shows a world map of the climatic zones, which 
was created by overlapping the air mass zones of the 
O–M and A–S half-years (Fig.  5), and represents the 
renewed ACC. The hatched areas indicate regions where 
the air mass zones alternate between half-years. Table 1 

summarizes the features of the climatic zones. The sym-
bols used in Fig. 7 and Table 1 are discussed below. Note 
that the seasonal differences between the two hemi-
spheres during a half-year were considered.

The global climate can be classified into four stable 
zones that are dominated by the same air mass zones 
throughout the year (TT, SS, PP, AA) and three zones 

Fig. 5  Global distributions of four air mass zones (shading) and surface precipitation greater than 3 mm day−1 (white contour) in the (a) O–M 
half-year and (b) A–S half-year. The contour interval is 3 mm day−1. The colors are explained at the bottom. Blank areas indicate regions where the 
altitude was greater than 775 hPa (about 2000 m). T: Tropical, S: Subtropical, P: Polar, A: Arctic/Antarctic
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with a one-class change each half-year (ST, PS, AP). 
This is similar to the classical ACC (Fig. 1). In addition, 
some regions have two-class changes (AS, PT) such as 
the eastern Siberia (ultramarine), central North Amer-
ica (black), Yangtze River basin (black), and western 

Japan (black) (Fig. 7). These regions experience signifi-
cant changes in climate throughout the year.

The most significant difference between the renewed 
ACC (Fig. 7) and classical ACC (Fig. 1) is the large width 
of the tropical climatic zone (TT) in the renewed ACC, 
which is the equatorial climatic zone in the classical 

Fig. 6  (a) Distribution and centroid in feature space of the global air mass zones, and (b) the mean values (error bars: standard deviations) of the 
temperature and specific humidity in each air mass zone for the Northern Hemisphere (0°–90° N) in the O–M and A–S half-years
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ACC. Alisov (1954) probably estimated the location of 
the inter-tropical convergence zone empirically because 
meteorological data, especially humidity, were scarce at 
that time, particularly over oceans. In addition, Alisov 
(1954) seemed to have arbitrarily determined the loca-
tions of fronts using only the surface temperature.

Figure 8 shows the global distributions of the four air 
mass zones in January and July estimated only by the 
temperature like Alisov (1954). The distributions of the 
Arctic/Antarctic air mass zones are similar to those in 
Fig. 5 except for the Antarctic zone in January. In addi-
tion, the width of the tropical air mass zone increased 
markedly from January to July. In July (Fig. 8b), the north-
ern edge of the tropical air mass zone reached about 60° 
N over Eurasia and North America, and the polar air 
mass zone disappeared in the high latitudes of the North-
ern Hemisphere.

The white contours in Fig.  8 indicate areas with pre-
cipitation of greater than 3  mm  day−1. Although the 
monthly mean precipitation in January and July was 
greater than the seasonal means of the O–M and A–S 
half-years (Fig.  5), the distributions of the monthly and 
seasonal means did not show significant differences for 
the cold and warm periods. Figure 8b shows a misalign-
ment between the subtropical front and intense rain 

bands of greater than 6 mm day−1 in July and a generally 
poor representation of the subtropical to temperate cli-
mates. This suggests that the humidity gradient is more 
critical than the temperature gradient for precipitation 
from the Meiyu–Baiu front. Overall, the renewed ACC 
(Fig. 7) better explains climatic phenomena in the North-
ern Hemisphere based on the concepts of air masses and 

Fig. 7  Global climatic zones obtained by overlapping the air mass zones of the winter and summer half-years in each hemisphere (Fig. 5; see 
Table 1 for symbols). The hatched areas indicate the regions where the air mass zones alternate with the season. The blank areas mean the same as 
in Fig. 5

Table 1  Nine climatic zones

Nine climatic zones based on the dominant air mass zones during the winter 
and summer half-years in each hemisphere and their relationship with the 
behavior of the air mass zones

Symbol Climatic zones Winter / Summer Behavior

TT Tropical Tropical / Tropical stable

ST Quasi-tropical Subtropical / Tropical one-class change

SS Subtropical Subtropical / Subtropi‑
cal

stable

PS Temperate Polar / Subtropical one-class change

PP Polar Polar / Polar stable

AP Subarctic Arctic / Polar one-class change

AA Arctic /Antarctic Arctic / Arctic stable

AS Subarctic Arctic / Subtropical two-class change

PT Temperate Polar / Tropical two-class change
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fronts than the classical ACC (Fig. 8) because the former 
considers both the temperature and specific humidity 
while the latter only considers the temperature.

3.4 � Subdivision of climatic zones
We compared the renewed ACC (Fig.  7) with the latest 
KGCC (Beck et  al. 2018) in deserts for reference. The 

comparison showed that two deserts in central Eurasia 
belonged not to the subtropical climatic zone (SS) with 
arid characteristics but the temperate climatic zone (PS) 
with polar frontal precipitation. According to the lat-
est KGCC (Beck et  al. 2018), the desert climate can be 
divided into two categories: hot (BWh) and cold (BWk) 
with mean annual temperatures above and below 18 °C, 

Fig. 8  Global distributions of four air mass zones (shading) and surface precipitation greater than 3 mm day−1 (white contour) in (a) January and 
(b) July. The contour interval is 3 mm day−1. The blank areas mean the same as in Fig. 5. T: Tropical, S: Subtropical, P: Polar, A: Arctic/Antarctic
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respectively. The KGCC classifies the desert climate in 
central Eurasia as BWk because of the low half-year tem-
perature in the winter (Fig.  2a) and the Somali region 
of Africa as BWh. However, the renewed ACC classifies 
the later region as belonging to the tropical zone (TT) 
with humid climatic features (Fig. 7). It is difficult for the 

renewed ACC to explain the desert formation mecha-
nism of this region as the subtropical air mass zone with 
dry atmospheric characteristics. Thus, we subdivided the 
climatic zones in Fig.  7 into climatic regions to discuss 
this issue in more detail.

Fig. 9  Regions with dry and moist air masses (shading) obtained by subdividing each air mass zone (Fig. 5) into two clusters, and surface 
precipitation greater than 3 mm day−1 (white contour) in the (a) O–M half-year and (b) A–S half-year. The contour interval is 3 mm day−1. The blank 
areas mean the same as in Fig. 5. Td: Tropical dry, Tm: Tropical moist, Sd: Subtropical dry, Sm: Subtropical moist, Pd: Polar dry, Pm: Polar moist, Ad: 
Arctic/Antarctic dry, Am: Arctic/Antarctic moist
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Figure 9 shows the distributions of the air mass zones 
in Fig.  5 when further subdivided into dry (subscript 

d) and moist (subscript m) air masses. The air masses 
were classified as dry or moist considering the global 
anomaly distribution (Fig.  3) and mean values of T and 
q . First, four air mass zones were prepared, each consist-
ing only of grid points classified into the same air mass 
zone (uniform values of T and q ) between two half-years 
(see Sect. 3.2). Then, each air mass zone was divided into 
two air masses using anomalies of T and q (Fig.  3) at 
those grid points, which resulted in 4 × 2 = 8 air masses. 
Table  2 summarizes the mean values of T (K) and q (g 
kg−1) of each air mass. The air masses were labeled as 
dry and moist, although dry and moist air masses are 
usually equivalent to continental and maritime ones, 
respectively. Figure  9 shows that, in the tropics, intense 
precipitation occurred mostly in the moist air mass (Tm) 
and at its boundary with the dry air mass (Td). In the 

Table 2  Characteristics of each dry and moist air mass

Mean temperature T (K) and specific humidity q (g kg−1) in each dry and moist 
air mass for the O–M and A–S half-years

Symbol Types of air mass T ONDJFM q ONDJFM T AMJJAS q AMJJAS

Td Tropical dry 290.79 9.68 291.01 9.96

Tm Tropical moist 290.59 10.72 290.82 10.80

Sd Subtropical dry 288.93 4.64 291.48 4.83

Sm Subtropical moist 282.52 5.26 282.05 5.31

Pd Polar dry 268.46 2.27 268.92 2.52

Pm Polar moist 268.54 2.42 269.35 2.61

Ad Arctic dry 253.39 0.57 243.37 0.24

Am Arctic moist 254.81 0.67 250.01 0.48

Fig. 10  (a) Global climatic regions obtained by overlapping the air mass distributions of the winter and summer half-years in each hemisphere 
(Fig. 9; see Table 3 for the symbols). The hatched areas indicate regions where the air masses alternate with the half-year. The white contours 
indicate the boundaries of climatic zones (Fig. 7). The blank areas mean the same as in Fig. 5
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mid-latitudes, the subtropical dry air mass (Sd) extended 
throughout the year over the Sahara and Namib deserts 
in Africa, the Arabian Peninsula, and dry regions along 
the western coasts of North and South America. The sub-
tropical dry air mass had a higher temperature and lower 
humidity of about 9 K and 0.5 g  kg−1, respectively, than 
the subtropical moist air mass during the A–S half-year 
(see Sd and Sm in Table  2). Thus, the subtropical dry 
air mass accurately represented the center of subtropi-
cal anticyclones with extremely hot and dry characteris-
tics, which are a significant factor contributing to desert 
formation.

Figure  10 shows the overlapping seasonal changes of 
the air mass distributions in Fig.  9. The hatched areas 
indicate regions where air masses alternated between 
the winter and summer half-years in each hemisphere. 
Table  3 summarizes the name and symbol of climatic 
regions, the types of air masses that dominated each half-
year for each hemisphere, and their correspondence to 
the vegetation landscape of the latest KGCC (Beck et al. 

2018). A climatic region is expressed by four letters (e.g., 
XxYy). The first two and last two letters indicate the air 
masses that dominate the winter and summer half-years, 
respectively. The capital X and Y can be replaced by T, S, 
P, or A, and the small x and y can be replaced by d or m.

Each stable zone (i.e., XX in Fig. 7) except for Antarc-
tica was divided into four regions: where a dry or moist 
air mass dominates all year round (XdXd and XmXm), 
and where a dry/moist air mass dominates in the win-
ter and a moist/dry air mass dominates in the summer 
(XdXm and XmXd) (see Table  3). Seasonal one-class 
change zones (XY) (Fig. 7) were divided into four regions: 
where dry and moist air masses within the same air mass 
zone alternated seasonally (XdYd, XmYm), and where 
dry and moist air masses within adjacent air mass zones 
alternate seasonally (XdYm, XmYd). The temperate and 
subarctic climatic zones included seasonal two-class 
change regions (PdTm and AdSm), which resulted in five 
types of climatic regions (see Table 3).

Table 3  Twenty-seven climatic regions and their correspondence to the KGCC​

Names and symbols of each climatic region and the dominant air masses during the winter and summer half-years in each hemisphere (in parentheses in the middle 
column) and their correspondence to the KGCC (right column; Beck et al. 2018).

Symbol Climatic regions (Winter / Summer) Landscape (cf. Beck et al. 2018)

TdTd Tropical year-round dry (Td / Td) Deserts: BWh

TmTm Tropical year-round moist (Tm / Tm) Tropical rainforests: Af, (Aw, Am)

TdTm Tropical summer-moist (Td / Tm) Savannas: Aw, (BSh)

TmTd Tropical summer-dry (Tm / Td)

SdTd Quasi-tropical year-round dry (Sd / Td) Steppes: BSh, (BWh)

SmTm Quasi-tropical year-round moist (Sm / Tm) Evergreen forest: Cfa, Cwa

SdTm Quasi-tropical summer-moist (Sd / Tm) Aw, (BSh, Cwa)

SmTd Quasi-tropical summer-dry (Sm / Td)

SdSd Subtropical year-round dry (Sd / Sd) Hot-Deserts: BWh

SmSm Subtropical year-round moist (Sm / Sm) Mediterranean: Csa, Csb, (BWh, BSh)

SdSm Subtropical summer-moist (Sd / Sm) Bwh

SmSd Subtropical summer-dry (Sm / Sd) BWh, (BWk, BSk)

PdSd Temperate year-round dry (Pd / Sd) Cold-Deserts: BWk

PmSm Temperate year-round moist (Pm / Sm) Broadleaf, Mixed forests: Cfb, Dfb, (Dfc)

PdSm Temperate summer-moist (Pd / Sm) Coniferous forests: Dfa, Dfb, (DWa)

PmSd Temperate summer-dry (Pm / Sd) BWk

PdTm Temperate summer-wet (Pd / Tm) Cfa, Dfa, (DWa)

PdPd Polar year-round dry (Pd / Pd)

PmPm Polar year-round moist (Pm / Pm) Dfc

PdPm Polar summer-moist (Pd / Pm)

PmPd Polar summer-dry (Pm / Pd) Dfc

AdPd Subarctic year-round dry (Ad / Pd) Taigas, Tundras: Dfc, ET

AmPm Subarctic year-round moist (Am / Pm) Dsb

AdPm Subarctic summer-moist (Ad / Pm) Dfd

AmPd Arctic (Am / Pd) ET, (Dfc)

AdSm Subarctic summer-warm (Ad / Sm) Dwb, Dwc

AmAm Antarctic (Am / Am) EF
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We focused on the Somali and central Eurasia regions 
where the renewed ACC ran into a problem and found 
that these regions were covered by dry air masses 
throughout the year (Fig. 9). The Somali region is cov-
ered by a tropical dry air mass all year, which forms a 
dry region (TdTd) in the tropical climatic zone. The 
central Eurasia region is covered by a subtropical dry 
air mass centered in the Sahara that expands northeast-
ward during the A–S half-year (Fig. 9b) and by a polar 
dry air mass in the polar air mass zone (Table  2) dur-
ing the O–M half-year (Fig. 9a). This explains why two 
locally arid climatic regions (PdSd) formed in the tem-
perate climatic zone (Fig. 10).

In contrast to the classical ACC, the climatic regions 
in Fig. 10 better represent east–west climatic differences, 
especially at the mid- to high latitudes, such as the west-
ern and eastern coasts of the continental landmasses 
in the Northern Hemisphere. Our climatic regions 
also showed good correspondence with the vegetation 
landscape of the KGCC (Table  3). This means that the 
renewed ACC connects, through observations, purely 
meteorological concept of air masses to the global distri-
bution of vegetation, and thus to the delineation of ecore-
gions. The renewed ACC can be used to gain insights 
into the climatic distribution over oceans, which is not 
classified by the KGCC in principle (Kottek et  al. 2006; 
Peel et al. 2007; Kriticos et al. 2012; Beck et al. 2018).

4 � Conclusions
For many years, one of the most critical issues in air mass 
climatology has been developing an objective method 
to determine the air mass distribution. In this study, we 
applied K-means++ clustering to global reanalysis data 
to quantitatively and objectively determine the bounda-
ries between air masses. Then, we subdivided air mass 
zones into regions based on continental or maritime cli-
mates and east–west climatic differences, and we consid-
ered the half-year changes in air mass zones. Thus, we 
renewed the classical ACC for the first time in almost 
70 years.

We began by questioning whether the global climate 
can be divided into four air mass zones as Alisov did 
in the 1950s. Our statistical evaluation of four indices 
(DBI, SC, CHI, and BIC) confirmed that the division of 
the global climate into four air mass zones is suitable 
(Fig. 4). We then applied K-means++ clustering to clas-
sify the global climate for the O–M and A–S half-years 
(Fig.  5). The clustering results showed consistency with 
rain bands along fronts that were probably induced by 
baroclinic instability in the mid-latitudes. Alisov (1954) 
devised seven climatic zones (Fig. 1) based on the Janu-
ary–July alternation of air mass zones. By considering 
the half-year alternation of air mass zones (Fig.  5), we 

also obtained nine climatic zones (Fig. 7, Table 1). These 
zones can be used to diagnose changes in large-scale 
atmospheric circulations in relation to the seasonal shift 
of air mass zones.

The seasonal distributions of the air mass zones were 
used to establish four stable climatic zones (TT, SS, PP, 
AA), three one-class change climatic zones (ST, PS, AP), 
and two two-class change climatic zones (AS, PT) (Fig. 7). 
These climatic zones can explain climatic phenomena 
in the Northern Hemisphere more realistically than the 
original ACC because they consider both the tempera-
ture and humidity rather than just the temperature.

Finally, we subdivided the climatic zones into climatic 
regions to reflect differences between the ocean and 
continent and the east and west coasts. The 27 climatic 
regions established in this study (Fig. 10, Table 3) accom-
plish the subdivision of climatic zones left undone by 
Alisov (1954) and his successors. Our climatic regions 
can also be used to gain insight into the climatic distri-
bution over oceans, which cannot be done by the KGCC. 
The renewed ACC improves the correspondence between 
mid-latitude climatic features and vegetation landscape, 
which was one of the issues of the original ACC. Thus, 
the renewed ACC represents a significant advance in 
air mass climatology. The data-driven machine learning 
approach can be used to establish a standard for causal 
CC based on air masses. Note that we did not define the 
climate at high altitudes higher than 2000  m (e.g., the 
Tibetan Plateau, Antarctica, and Greenland) in this study.

One of the advantages of using the renewed ACC 
is to refine the climate change research. The classical 
ACC cannot diagnose the effects of global warming on 
air mass distributions. The renewed ACC may be appli-
cable to visualizing climate change projected by global 
climate models (Netzel and Stepinski 2016). We will be 
able to trace the meridional shift of climatological fronts 
associated with climate change, which can assist with 
carrying out the measures recommended by the Inter-
governmental Panel on Climate Change and revive air 
mass climatology.
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