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A new mechanical perspective 
on a shallow megathrust near-trench 
slip from the high-resolution fault model 
of the 2011 Tohoku-Oki earthquake
Tatsuya Kubota1*  , Tatsuhiko Saito1   and Ryota Hino2   

Abstract 

The 2011 Tohoku-Oki earthquake generated a surprisingly large near-trench slip, and earth scientists have devoted 
significant attention to understanding why. Some studies proposed special rupture mechanisms, such as extensive 
dynamic frictional weakening; others simulated this near-trench slip behavior without supposing the extensive 
dynamic weakening. However, we have not reached a decisive conclusion for this question due to limited spatial 
near-trench slip resolution. Hence, in this study we use new tsunami data recorded just above the large slip area in 
addition to offshore and onshore geodetic data to improve the spatial resolution of stress release in the Tohoku-Oki 
earthquake and quantitatively examine the mechanical state of the plate interface. A maximum slip of 53 m reaching 
the trench and an insignificant stress drop (< 3 MPa) at the shallowest portion of the fault were estimated. Based on 
our modeling results and the past experimental studies, it is suggested that friction at the shallow near-trench portion 
should be inherently low both before and during the earthquake. This result provides perspectives on the shallow slip 
behavior along the plate boundary, in which the strain energy accumulation at the deep portion of the fault accounts 
for the anomalous large shallow slip, but shallow mechanical coupling does not. A large shallow slip has been con-
sidered as a result of the release of sufficiently large strain energy at the shallow portion of the plate interface, but we 
suggest that shallow slips similar to that during the 2011 Tohoku-Oki earthquake may occur in any subduction zones 
where the energy sufficiently accumulates only in the deeper portion.

Keywords: The 2011 Tohoku-Oki earthquake, Ocean-bottom pressure gauge, Tsunami, Stress drop, Frictional 
strength of megathrust, Plate mechanical coupling
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1 Introduction
The devastating tsunami generated by the 2011 Tohoku-
Oki earthquake caused severe damage to the coast 
of Japan. The most surprising feature of this megath-
rust earthquake is the occurrence of a very large slip 
(> 50  m) reaching the trench (Kodaira et  al. 2012; 2020; 
Sun et  al. 2017). Before this earthquake, it was widely 

believed that the interface between the two plates at the 
shallow portion, corresponding to a depth range shal-
lower than ~ 10  km from the seafloor, was stably sliding 
(creeping) during the interseismic period, resulting in no 
stress accumulation (i.e., no mechanical coupling) (Byrne 
et  al. 1988; Scholtz 1998; Bilek and Lay 2002). Only the 
deep portion of the plate interface (deeper than ~ 10 km) 
was believed to be locked to accumulate the stress (i.e., 
mechanically coupled), which exhibited unstable stick–
slip (i.e., earthquake) behavior (Byrne et al. 1988; Scholtz 
1998; Bilek and Lay 2002). The stable sliding behavior at 
the shallow portion was also considered to be consistent 
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with almost no interseismic slip deficit near the trench 
estimated before the Tohoku-Oki earthquake (Suwa et al. 
2006; Hashimoto et  al. 2009; Loveless and Meade 2010; 
2011) that was unlikely to have caused the large coseis-
mic slip. To better understand shallow slip behavior and 
tsunami generation in subduction zones, it is crucial to 
clarify the reason for this unexpected extremely large 
slip occurring during the Tohoku-Oki earthquake. This 
study attempts to address this scientific issue, particularly 
focusing on the perspective of fault mechanics (i.e., stress 
accumulation and release), whereas many previous stud-
ies have discussed from the kinematic perspective (i.e., 
slip deficit and coseismic slip). Although the kinematic 
and mechanical perspectives are closely related to each 
other, we should note that these two concepts are essen-
tially different but are often confusingly used to discuss 
the interseismic process (Wang and Dixon 2004).

To explain this shallow slip behavior, some studies have 
considered that the frictional strength along the shallow 
plate interface is high enough to accumulate shear stress 
during the interseismic period. It has been proposed that 
when the Tohoku-Oki earthquake occurred, the shallow 
frictional stress extensively reduced with an increase in 
the slip rate (dynamic weakening) (Di Toro et  al. 2011; 
Noda and Lapusta 2013), leading to a large shallow 
slip. An example of the dynamic frictional weakening 
mechanism related to frictional heating along the plate 
interface, called “thermal pressurization,” has also been 
proposed to explain the shallow slip behavior (Hirono 
et  al. 2019; Shibazaki et  al. 2019). The extensive reduc-
tion in frictional strength basically requires significant 
shear stress reduction at the shallow portion of the plate 
interface.

Other studies have attempted to explain the shallow 
slip behavior without considering these special mecha-
nisms requiring a shallow large stress drop (e.g., Lay 
et  al. 2012). The basic standpoint of the plate coupling 
and rupture mechanics in these studies is that the shal-
low portion of the plate boundary does not accumulate 
the shear stress but only the deep portion does, as has 
been conventionally thought (Sholtz 1998; Bilek and Lay 
2002). From the observational facts, a seafloor drilling 
survey (Chester et  al. 2013) showed the existence of a 
low-friction material along the Tohoku shallow fault zone 
(Fulton et al. 2013; Ujiie et al. 2013). A laboratory experi-
ment of this shallow fault-zone material retrieved from 
the Tohoku subduction zone, under a water-dampened 
condition mimicking a plate boundary suggested that 
the low-friction material was insensitive to the slip rate 
(i.e., no extreme dynamic weakening behavior) (Remitti 
et  al. 2015). Fukuyama and Hok (2015) conducted the 
dynamic earthquake rupture simulation of an interplate 
earthquake mimicking the Tohoku-Oki earthquake, 

who assumed a large stress release region only at the 
deep portion of the plate interface corresponding to a 
strong mechanical plate locking (i.e., no stress release at 
the shallow portion). This dynamic rupture simulation 
showed the surface-reaching slip can occur without stress 
drop at the shallow portion, due to the stress-free bound-
ary condition at the ground surface. In addition, based 
on fault mechanics, some recent modeling studies have 
pointed out that, a large shallow slip can occur because 
of the “pinning” effect of the deep frictionally locked area 
which causes slip delay (or slip deficit) in the shallow por-
tion (Almeida et al. 2018; Herman and Govers 2020; Her-
man et al. 2018; Lindsey et al. 2021).

It is difficult to identify the shallow stress release pro-
cess in detail because of the large uncertainty in the near-
trench slip, owing to the lack of a dataset with sufficient 
quality to resolve it. Although seafloor geodetic data 
(Fujiwara et  al. 2011; Kido et  al. 2011; Sato et  al. 2011) 
have made significant contributions toward elucidating 
the slip distribution (Iinuma et al. 2012; Sun et al. 2017), 
the spatial resolution of the slip inferred from such data, 
which contains information that is only relevant at the 
location of the observation point, is limited. The onshore 
seismic and geodetic datasets recorded more than 
200 km from the trench axis also have difficulty in resolv-
ing the near-trench slip (e.g., Loveless and Meade 2015). 
The analyses using the seismograms also require the 
assumption of the rupture propagation velocity across 
the fault, but this assumption may cause an uncertainty 
in estimating the spatial extent of the entire slip region 
because of a substantial trade-off between the rupture 
velocity and the spatial extent (Kubota et  al. 2018). The 
distributions of the coseismic slip and stress release pro-
posed in the past vary from model to model, particularly 
at the shallowest portion (Brown et  al. 2015; Sun et  al. 
2017; Lay 2018), due to the issues raised above. There-
fore, the cause of the large shallow slip has been inves-
tigated for the past ten years, but no decisive conclusion 
has been reached.

In this study, we attempt to constrain the slip and stress 
drop distributions with the highest precision to reveal 
the cause of the near-trench large slip during the 2011 
Tohoku-Oki earthquake and to understand the mechan-
ics of the shallow trench-reaching rupture. To achieve 
this, we use the tsunami data recorded by several ocean-
bottom pressure gauges installed directly above the fault 
area (Kubota et al. 2021), which have not before been uti-
lized in a slip inversion for the event (Fig. 1). The tsunami 
data are advantageous to overcome this issue because 
shallow near-trench slips excite tsunamis more efficiently 
than the deeper slip and hence the tsunami waveform 
data contain unique and robust spatial information about 
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the distribution of the fault slip, in particular at the shal-
low portion near the trench.

2  Data and methods
2.1  Data
We use the tsunami data from ocean-bottom pressure 
gauges installed just above the large slip area (near-field 
data), obtained by Tohoku University (Kubota et al. 2021) 
(green inverted triangles in Fig.  1a and b). We also use 
the ocean-bottom pressure gauge data of the University 
of Tokyo (Maeda et al. 2011) off Iwate (dark red inverted 
triangles in Fig.  1b). The station information is summa-
rized in Table 1.

We also use the offshore tsunami data obtained far 
from the source area (far-field data) from the ocean-
bottom pressure gauges of the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC, light blue 
inverted triangles in Fig.  1a), Japan Meteorological 
Agency (JMA, red inverted triangles), National Research 
Institute for Earth Science and Disaster Resilience (NIED, 
black inverted triangles), and National Oceanic and 
Atmospheric Administration (NOAA)’s DART (Deep-
ocean Assessment and Reporting of Tsunamis) system 
(a blue inverted triangle). We also use the tsunami wave-
forms from the GPS buoys (yellow squares in Fig. 1a and 
b) and the wave gauges (orange triangles) of NOWPHAS 
(Nationwide Ocean Wave information network for Ports 

and HarbourS) of the Port and Airport Research Institute 
(PARI).

In the data processing of the tsunami data, we 
remove the tidal fluctuation using the theoretical model 
NAO.99Jb (Matsumoto et al. 2000). We then apply a low-
pass filter with a cutoff period of 100 s to the near-field 
ocean-bottom pressure records and a band-pass filter 
with a passband of 100–3600 s to the other far-field tsu-
nami data.

In addition to these tsunami dataset, we also use off-
shore geodetic observation data (Kido et  al. 2011; Sato 
et al. 2011) and onshore GPS data obtained by the Geo-
spatial Information Authority of Japan (GSI) (Fig. 1c).

2.2  Methods
2.2.1  Fault geometry and crustal deformation calculation
In contrast to most of the past tsunami modeling stud-
ies using the simplified fault configuration (e.g., Satake 
et  al. 2013; Yamazaki et  al. 2018), such as implement-
ing a planar fault geometry, large-sized and discontinu-
ous subfaults, and/or a buried fault with a top that does 
not reach the seafloor, we incorporate the nonplanar 
fault geometry of the Japan Integrated Velocity Struc-
ture Model (JIVSM) (Koketsu et al. 2012) for the anal-
ysis (Fig.  2a). This is because we intend to obtain the 
correct slip and stress drop distribution by suppress-
ing spurious slip and stress drop and artificial stress 

Fig. 1 a Station locations for the tsunami observation. Inverted triangles, squares, and triangles are the ocean-bottom pressure gauges, the 
offshore GPS buoys, and near-shore seafloor wave gauges, respectively. The colors of the symbols indicate agencies owning each dataset. b 
Close-up around the Off-Tohoku region. The white star denotes the epicenter of the Tohoku-Oki earthquake (Suzuki et al. 2012). c The location of 
the onshore and offshore geodetic stations used in the present study. Black and red squares denote inland GPS and seafloor geodetic observatories, 
respectively. Small triangles represent the configuration of the triangular subfaults used for the analysis
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discontinuity around the boundaries of the subfaults 
(e.g., Hu and Wang 2008; Ma 2012; Brown et al. 2015; 
Wang et al. 2018; Du et al. 2021). The detail is described 
in Texts S1 and S2 in Additional file 1.

To derive the fault slip distribution through Green’s 
functions, the nonplanar fault plane is divided into 
small triangular subfault elements, in which the length 
of one side of the triangle is approximately 10 km (tri-
angles in Figs. 1 and 2). In this fault triangulation, the 
longitude and latitude of the subfault vertices are iden-
tical to those of Iinuma et al. (2016) but our triangula-
tion used the plate depths from JIVSM (Koketsu et al. 
2012), while those of Nakajima and Hasegawa (2006) 
were used in Iinuma et al. (2016). The total number of 

the triangular subfaults used in this study is Nsub = 434. 
Using these triangular subfault elements, we calculate 
the seafloor displacement using a uniform half-space 
structure model (Meade 2007). To correctly simulate 
the trench-reaching rupture (Wang et al. 2018) in the 
half-space, we slightly modify the fault configuration 
as follows. First, the depths of all the triangular ver-
tices are systematically moved vertically upward by 
8  km to discard the seawater layer. Then, the depths 
of the uppermost row of triangular subfaults (i.e., the 
computational free surface) are set to 0  km from the 
free surface so that the shallowest fault surface lines up 
with the trench axis. We show the strike and dip angles 
derived from the JIVSM in Fig.  2b and c, which are 

Table 1 List of tsunami stations used in this study

a All observed records were resampled to 1 s in the inversion analyses

Station Latitude [°N] Longitude [°E] Depth [m] Inversion time 
window [s]

Agency Sampling rate of 
original data  [s]a

TM2 39.2459 142.4526 997 0–1800 ERI 0.1

TM1 39.2283 142.7720 1618 0–1800 ERI 0.1

P06 38.6340 142.5838 1254 0–3600 Tohoku University 1

P02 38.5002 142.5016 1104 0–3600 Tohoku University 1

P03 38.1834 142.3998 1052 0–3600 Tohoku University 1

P07 38.0016 142.4495 1059 0–3600 Tohoku University 1

P08 38.2829 142.8320 1418 0–3600 Tohoku University 1

P09 38.2650 143.0002 1556 0–3600 Tohoku University 1

GJT3 38.2945 143.4814 3293 0–3600 Tohoku University 1

21,418 38.7180 148.6980 5500 1200–4200 NOAA 15

KPG2 42.2365 144.8454 2210 600–3600 JAMSTEC 0.1

KPG1 41.7040 144.4375 2218 600–3600 JAMSTEC 0.1

KCTD 41.6675 144.3409 2540 600–3600 JAMSTEC 10

NMS09 42.3692 145.9167 3316 600–3600 Tohoku University 1

NMS05 42.1667 145.8235 4548 600–3600 Tohoku University 1

BOSO2 34.7550 140.7517 2098 600–4200 JMA 1

BOSO3 34.8050 140.5067 1912 600–4200 JMA 1

HPG1 35.0031 139.2247 1176 1800–5400 JAMSTEC 1

VCM3 35.0712 139.3906 1225 1800–5400 NIED 0.1

VCM1 34.5954 139.9198 2125 1800–5400 NIED 0.1

807 40.1167 142.0667 125 0–3600 NOWPHAS 5

804 39.6272 142.1867 200 0–3600 NOWPHAS 5

802 39.2586 142.0969 204 0–3600 NOWPHAS 5

803 38.8578 141.8944 160 0–3600 NOWPHAS 5

801 38.2325 141.6836 144 0–3600 NOWPHAS 5

806 36.9714 141.1856 137 0–3600 NOWPHAS 5

613 42.9106 144.3972 50.0 1800–5400 NOWPHAS 5

602 42.5439 141.4458 50.7 1800–5400 NOWPHAS 5

202 40.9250 141.4242 43.8 1800–4800 NOWPHAS 5

203 40.5608 141.5683 27.7 Not Used NOWPHAS 5

219 40.2178 141.8600 49.5 Not Used NOWPHAS 5

205 38.2500 141.0661 21.3 Not Used NOWPHAS 5
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calculated from a vector normal to the subfault sur-
face (i.e., fault-normal vector) n (e.g., Aki and Richards 
(2002); the schematic illustration is shown in Fig.  3). 
The rake angles at each subfault are defined based 
on the direction of the plate convergence (azimuth of 
290°, DeMets et al. 2010, Fig. 2d), so that the horizon-
tal component of the slip vector ( s ) has an opposite 
direction to the relative plate convergence direction 
(Fig. 3).

2.2.2  Observation equation to be solved
We here describe the procedure to estimate the slip and 
stress drop distributions along the plate interface (Fig. 4). 
The procedure is similar to that used in our previous 
study (Kubota et al. 2021) (refer to Text S1 in Additional 
file  1 for more detailed information). Considering that 
the observed data are expressed by the linear superposi-
tion of Green’s function, we estimate the amount of slip 
at each of the triangular subfaults by solving the follow-
ing observation equation:

The vector d is the data vector, consisting of the observed 
data, and G is the matrix consisting of Green’s functions 
(the synthetics by the unit slip of the subfault). The sub-
scripts denote the types of datasets. The scalar value w 
denotes the weight of each dataset (see Sect. 2.2.4 for the 
choice of the weight value). Vector m consists of the slip 
amount of the triangular subfaults, which is to be esti-
mated. To stabilize the solution, we impose the smooth-
ing constraint (Maerten et al. 2005) expressed by matrix 
S and the damping constraint using the identity matrix 
E. Parameters α and β are the weights of each constraint. 
We set α = 2 and β = 0.1 for the main results, but we 
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Fig. 2 Configuration of the subfaults used in this study. a Center depths of the subfaults measured from the sea surface. Depth contour of the 
plate boundary of JIVSM (Koketsu et al. 2012) is also shown, with an interval of 5 km for thin lines and 10 km for thick lines. b Strike angles of the 
triangular subfaults. Strike direction is shown by small arrows. c Dip angles of the triangular subfaults. Dipping direction is shown by small arrows. d 
Rake angles of the triangular subfaults. Direction of the plate convergence (DeMets et al. 2010) is also shown by thick arrows

Fig. 3 Schematic illustration of the subfault geometry. The unit 
fault-normal vector n (blue arrow) is derived from the locations of 
the subfault vertices (gray dots). The unit slip vector s (red arrow) is 
derived from the plate convergence vector v (thick black arrow) and 
the dot product of the fault-normal and the slip vectors ( s • n = 0)
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will discuss its appropriateness in Discussion section 
(Sect. 4.1.1).

2.2.3  Calculation of the Green’s Functions
We present the procedure to calculate Green’s functions 
for tsunamis (matrix Gtsun in Eq.  (1)) and geodetic data 
(Ggeod) (See Additional file  1: Text S2 for more detail). 
First, the seafloor vertical displacement distribution 
from each of the triangular subfaults is simulated using 
the elastic dislocation theory with the half-space (Meade 
2007). The slip direction of each subfault is confined to 
be the direction of the slip vector schematically shown 
by red arrow in Fig. 3 (i.e., rake-parallel). We also incor-
porate the effect of the apparent seafloor vertical move-
ment due to the horizontally moving seafloor (Tanioka 
and Satake 1996). We then calculate the sea-surface 
height change from the seafloor deformation using a spa-
tial smoothing filter related to the seawater as the initial 
condition of the tsunami simulation (e.g., Kajiura 1963; 
Saito 2019). This filter cuts off the small-wavenumber 
or spatially short-wavelength component, leading to 
a smoother initial sea-surface height distribution. We 
assume a constant depth of H0 = 6 km for this filter, based 
on the average water depth around the main rupture 

region. Finally, we simulate tsunamis using the linear dis-
persive equation (e.g., Saito 2019), by numerically solv-
ing the equation on the discretized staggered grid. The 
cosine-shaped source time function with the duration of 
Tr = 40 s is assumed for the rupture time history of each 
subfault, as used in Kubota et al. (2021). In this simula-
tion, the bathymetry data of GEBCO 2020 are interpo-
lated to 2 km spatial intervals. The time interval for this 
simulation is 1 s. In the calculation of the ocean-bottom 
pressure gauge waveforms, we incorporate not only the 
pressure change due to the tsunami (sea-surface height 
change) but also the static pressure changes related to 
the seafloor permanent displacement (Tsushima et  al. 
2012). We finally apply the same low-pass or band-pass 
filters to the simulated waveforms, as those applied to the 
observed data.

Green’s functions for the geodetic data (Ggeod) are also 
calculated from each of the triangular subfaults, in a sim-
ilar way to the calculation of the seafloor displacement 
(Meade 2007).

2.2.4  Solving the Observation Equation
In the linear inversion analysis, we consider the spatial 
and temporal evolution of the rupture by distributing the 

Fig. 4 Slip and stress distributions of the 2011 Tohoku-Oki earthquake. a Slip distribution obtained in the present study. Contour lines are drawn at 
10 m intervals. b Stress drop distribution calculated from the slip distribution. Contour lines are drawn at 5 MPa intervals. Green dashed lines denote 
the iso-depth contour of the plate interface at 10 km intervals
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Green’s function in the time domain in addition to the 
space domain (Fig.  5a). We distribute the Green’s func-
tions in the time domain for each subfault with the tem-
poral interval of Δt = 0.5 × Tr = 20 s. The slip of the k-th 
temporal element begins at t = tk

beg = (k − 1) × Δt and 
ends at t = tk

end = tk
beg + Tr. We assume Nt = 9 Green’s 

functions in the time domain for each subfault. The total 
number of unknown parameters, which compose the 
vector m in Eq.  (1), is N = Nsub × Nt = 3906. Consider-
ing the rupture front propagation, the slips of the k-th 
temporal element at the i-th subfault are constrained 
to be zero when the rupture front does not arrive there 
(i.e., we allow the slip only when satisfying the condition 
Vr × tk

end ≥ ai, where ai is the distance between the hypo-
center and the center of the i-th subfault and Vr = 4 km/s 
is the rupture velocity).

By solving the least squares problem expressed as 
Eq.  (1), using the nonnegative least squares inversion 
method (Lawson and Hanson 1995), we estimate the spa-
tiotemporal evolution of the slip of the subfaults (vector 
m in Eq.  (1)). The time windows used for this inversion 
analysis are shown in the blue traces in Fig. 6a–d. We use 
the time series data with 1-s sampling (i.e., approximately 
1800 to 3600 samples per station), and hence, the total 
number of the tsunami data sample (dtsun) is ~  105. The 
offshore and onshore geodetic stations used for the inver-
sion are shown in Fig. 1c, which have three components 
per station (two horizontal and one vertical), resulting 
in the total geodetic data samples (dgeod) of ~  103. We set 

the relative weight of the tsunami and geodetic dataset 
as wtsun = 1 and wgeod = 10, although the actual relative 
weight is much larger in the tsunami data than the geo-
detic data, due to the difference of the total data samples. 
The weights of the spatial smoothing and damping con-
straints (parameters α and β) are set as α = 2 and β = 0.1, 
based on the previous modeling results (Kubota et  al. 
2021) and based on additional inversion analyses assum-
ing various α and β values (discussed later, in Sect. 4).

2.2.5  Variance Reduction
To evaluate the goodness of the waveform fitting between 
the observation and simulation, we introduce the vari-
ance reduction (VR) expressed as follows:

where dobsi  is the i-th data of the observed data (vector 
dtsun in Eq. (1)) and dcali  is the calculated one. To calculate 
the VR, the same time window as that used for the inver-
sion analysis is used (marked by blue lines in Fig. 6a–d).

2.2.6  Calculation of Stress Drop Distribution
After estimating the slip distribution of the triangular 
subfaults, we calculate the distribution of the shear stress 
change along the fault (i.e., stress drop, Fig. 4b) by com-
puting the shear stress change along the slip direction at 

(2)VR =






1 −

�

i

�

dobsi − dcali

�2

�

i

�

dobsi

�2






× 100(%),

Fig. 5 Temporal evolution of the slip. a Configuration of the temporal elements of the inversion analysis. b Slip amount of the subfaults in each 
temporal element. b Temporal evolution of the total slip amount, calculated by the summation of the temporal elements
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the center of each subfault (Saito and Noda 2022). The 
shear stress change �σi(xi) , at the i-th triangular sub-
fault, in which its center is located at xi, is expressed by a 
superposition of the shear stress change contributions by 
the fault slip of all the subfaults:

where mj is the slip amount at the j-th subfault (located 
at xj), and ΔS(xi; xj) is the shear stress change at the 
center of the i-th subfault caused by the unit slip of the 
j-th subfault. We define the direction of the shear stress 
of each subfault based on the fault-normal and slip vec-
tors shown in Fig. 3. Using the unit fault-normal vector 
n(xi) and the unit slip vector s(xi) at the i-th subfault, 
�S

(

xi; xj
)

 is calculated as (e.g., Saito and Noda 2022):

where |s(xi)| = 1 and |n(xi)| = 1 , and τ
(

xi; xj
)

 is the stress 
tensor at the center of the i-th subfault element caused by 

(3)�σi(xi) =
∑

j

�S
(

xi; xj
)

mj ,

(4)�S
(

xi; xj
)

= s(xi) · τ
(

xi; xj
)

n(xi),

the unit slip of the j-th subfault. We calculate the stress 
tensor τ

(

xi; xj
)

 using the half-space media (Meade 2007) 
assuming the rigidity of 40 GPa.

3  Results
3.1  Fault slip distribution
We obtain a large slip of 53 m to the trench axis in the 
region off Miyagi (approximately at 38.0°N, 144.0°E, 
Fig.  4a). The seismic moment is Mo = 5.07 ×  1022 Nm 
(Mw 9.07, assuming a constant rigidity of 40 GPa). In 
Fig.  5b and c, we show the subfault slip amounts in 
each temporal element (k = 1, 2, …, Nt). At the initial 
stage, t ≤ 80  s from the rupture initiation, we observe 
relatively large slip around the hypocenter. Then, the 
rupture extends to the trench axis until t = 140  s. At 
the later part of the rupture (t > 140 s), we observe the 
rupture at the near-trench area of the northern part, 
off-Sanriku, Iwate, region (~ 39.5°N). This spatiotempo-
ral evolution of the rupture is consistent with that esti-
mated from the seismogram analyses in the past studies 
(e.g., Ide et al. 2011). The synthetic tsunami (Fig. 6a–d) 

Fig. 6 Comparison between the observed and synthetic data. a–d Comparisons of the seafloor pressure gauge waveforms above the focal area, 
the far-field seafloor pressure gauge waveforms, the offshore GPS buoy waveforms, and the nearshore wave gauge waveforms near the coast. Gray 
and red waveforms are the observed and synthetic waveforms, respectively. Blue lines indicate the time window used for the analysis. Locations of 
each station are shown in Fig. 1. e A comparison of the observed and synthetic data of the geodetic dataset. Black and gray bars and arrows denote 
the observed movement of the offshore and onshore geodetic stations. Light and dark red bars and arrows are the synthetic ones. Note that the 
length of the bars and arrows differs between the onshore and offshore stations. The distribution of the seafloor vertical displacement calculated 
from the fault model is also shown
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and onshore and offshore displacement (Fig.  6e) from 
this slip distribution model are in good agreement with 
the observations (VR = 97.7%). The main slip area, 
defined as the region where the slip exceeded 10 m, is 
consistent with that reported previously (e.g., Iinuma 
et al. 2012; Satake et al. 2013; Yamazaki et al. 2018).

We evaluate the uncertainty of the slip estimation 
by additional inversion tests based on a jack-knife 
approach (Additional file 1: Figure S1a and red shaded 
area in Fig. 7a). In this test, we exclude one of the nine 
near-field pressure gauge stations (Fig. 6a) and use the 
remaining eight stations to estimate the slip distribu-
tion. The inversion setting is identical to the original 
setting which used all the data. We define the possible 
range of the slip amount using the maximum and mini-
mum slip amounts from all tested models. As a result, 
the possible range of the shallowest slip is between 49 
and 55 m at the Off-Miyagi region (red shaded area in 
Fig. 7a).

Our model has a peak slip at the trench axis (red line in 
Fig. 7a), which is consistent with the study by Sun et al. 
(2017) who estimated the near-trench slip profile of the 
Off-Miyagi region using the bathymetry change based on 
the surveys conducted before and after the Tohoku-Oki 
earthquake (blue line in Fig. 7a). In contrast, other pre-
vious models (e.g., Yamazaki et al. 2018) locate the peak 
slip a few tens of kilometers from the trench axis (green 
line in Fig.  7a). The gradient of the slip along the dip 
direction is also consistent with that of Sun et al. (2017).

The slip amount at the trench axis in our study is 
slightly smaller (~ 53  m) than that of Sun et  al. (2017) 
(~ 65 m), by ~ 12 m. Therefore, we examine whether the 
slip profile reaching up to 65 m, estimated by Sun et al. 
(2017), can explain the tsunami waveform observed 
by the near-field pressure gauges (Fig.  8). Because the 
coseismic slip estimated by Sun et  al. (2017) was avail-
able only at the near-trench region, our slip distribution 
model is used as a reference to emulate the slip model of 
Sun et al. (2017) (see Text S3 for the detailed procedure). 
As a result, the simulated tsunami waveforms are almost 
consistent with the observation (VR = 95.7%), but the 
peak amplitudes at the stations near the epicenter (P08 
and P09) are larger than those observed (Fig.  8b). This 
may indicate that the maximum slip near the trench is 
not as large as 65 m.

We also examine how the near-field ocean-bottom 
pressure data that we newly used contribute to the 
improvement of the modeling resolution, by conduct-
ing tsunami simulations using the previous slip dis-
tributions of Satake et  al. (2013), Iinuma et  al. (2012), 
and Yamazaki et  al. (2018) (Fig.  9, see Text S4 for the 
detailed simulation procedure). The model of Iinuma 
et  al. (2012) has an extremely large slip at the trench 
(light blue line in Fig.  7a), which produces a short-
wavelength tsunami inconsistent with the observa-
tions (stations P03, P07). The model of Yamazaki 
et  al. (2018) has the maximum slip located at ~ 40  km 
inboard of the trench (green line), which produces 

Fig. 7 Cross-sectional view of the fault slip and stress drop of the Tohoku-Oki earthquake. a Comparison of the fault slip distributions between the 
present study (red) and the ones in the previous studies (Iinuma et al. 2012; Satake et al. 2013; Sun et al. 2017; Yamazaki et al. 2018) along the line 
normal to the trench axis shown in the inset map. The error range of the present study’s model is shown by the red shaded area. The blue shaded 
area denotes the error range of Sun et al. (2017). The small triangles denote the location of the ocean-bottom pressure gauges. The region of the 
differential bathymetry survey conducted in Sun et al. (2017) is shown by the cyan line. b Comparison of the stress drop distributions. The error 
range of the present study’s model is shown by the red shaded area
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the larger short-wavelength tsunami than the obser-
vation at GJT3. We quantify the goodness of the slip 
models based on the VR value (Eq.  (2)) using the time 
window of 0 to 1800s from the near-field seven pres-
sure gauge waveforms (P02, P03, P06, P07, P08, P09, 
and GJT3, hereafter referred to as  VRnear). We obtain 
 VRnear = 65.4% for the model of Satake et  al. (2013), 
 VRnear = 5.5% for Iinuma et  al. (2012), and 35.7% for 
Yamazaki et  al. (2018), while our fault model obtains 
 VRnear = 99.2%. The fault models of these previous stud-
ies cannot explain the near-field ocean-bottom pressure 
gauges waveforms, which indicates that the use of the 
near-field tsunami data obtained by the pressure gauges 
contributes to revealing the detailed shallow slip profile 
at the trench.

3.2  Stress drop
We show the shear stress change along the fault plane 
(i.e., the stress drop) in Fig. 4b. The stress release at the 
deep portion (> 10 km) is large (> 5 MPa), where the slip 
amount is smaller than ~ 40 m, whereas the stress release 
at the shallowest portion (> ~ 40 m slip) is much smaller.

Similar to the slip uncertainty evaluation, we evalu-
ate the stress drop uncertainty based on the jack-knife 
approach (Additional file  1: Figure S1b, red shaded 
area in Fig.  7b). We calculate the stress drop distribu-
tion based on the slip distribution models estimated by 
excluding one of the nine near-field pressure gauges. The 
possible range of the stress drop is then defined by the 

maximum and minimum slip amounts from all tested 
models. Taking the uncertainty of the estimation into 
account, the stress drop at the shallow portion is smaller 
than 3 MPa (Additional file 1: Figure S1b and 7b). Con-
siderable stress drop at the deeper portion suggests that 
a strong mechanical coupling at the deeper portion accu-
mulated the significant amount of shear stress before the 
earthquake, while insignificant coseismic stress release 
at the shallow portion suggests much weaker shallow 
mechanical coupling than the deep portion before the 
earthquake (discussed later in Sect. 4.2).

4  Discussion
4.1  Evaluation of estimated fault model
4.1.1  Constraint weights in the inversion analysis
In our inversion analysis, we use the weights of the 
smoothing and damping constraints of α = 2 and β = 0.1. 
However, as the slip distribution may be sensitive to these 
parameters, shear stress change calculation from the slip 
distribution will be also highly sensitive to the choices 
of these parameters. Therefore, we conduct additional 
inversions assuming various constraint weight param-
eters (Additional file 1: Figures S2–S10).

Our tests of smoothing and damping parameters (Addi-
tional file  1: Figures  S2–S10) show that the inversions 
are more sensitive to the smoothing weight α than the 
damping weight β. When we assume the smaller smooth-
ing constraint (α = 0.2, Additional file  1 Figures  S2–S4), 
although the observed waveforms used in the inversion 

Fig. 8 Tsunami simulation using a previous slip model from Sun et al. (2017). a Comparison of the along-dip slip profile of the present model (red), 
the model in which the slip amount is modified (dark blue), and the slip profile estimated by Sun et al. (2017) (blue). The amount of modification 
of the slip is indicated by the gray line. The colors, shading, triangles, and bathymetry description are the same as in the legend of Fig. 7a. b 
Comparison between the observed (gray) and simulated waveforms (colored) at representative stations
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are reproduced well (VR > 98%), the calculation fails to 
reproduce the later part of the tsunamis observed GPS 
buoys not used in the inversion analysis (Additional file 1: 
Figures S2e, S3e, and S4e). In addition, the slip distribu-
tions significantly include short-wavelength heteroge-
neities and this leads to the extremely large stress drop 
with finer-scale spatial heterogeneity. This overly rough 
distributions of slip and stress drop distributions must 
be artifacts due to the inappropriately smaller smooth-
ing constraint, considering that the tsunami data, which 
have the dominant period of larger than 100 s, cannot 
resolve such small-scale heterogeneities. The hetero-
geneous slip and stress drop distributions related to the 
smaller smoothing constraint should be arisen from the 
modeling error, mainly due to the overfitting of the data 

which contain various noises such as the observational 
noises (e.g., Yabuki and Matsu’ura 1992; Fukahata and 
Wright 2008).

When we impose smoothing constraints equal to or 
larger than the original value (α = 2 or 20, Additional 
file 1: Figures S5–S10), we basically observe the trench-
reaching slip. When supposing the stronger smoothing 
constraint (α = 20, Additional file  1: Figures  S8–S10), 
the amount of the near-trench slip is smaller than the 
original results (~ 40 m) and the impulsive tsunami com-
ponents at some stations (e.g., TM1, TM2, 21,418, 807, 
and 804) could not be reproduced. This means that the 
smoothing weight of α = 20 is inappropriately large. Even 
though the α = 20 models are inappropriate, we note 
that the stress drop distributions calculated from these 

Fig. 9 Tsunami simulation results of previous fault models of the Tohoku earthquake. a–c Slip distribution and initial sea-surface height distribution 
assumed from the fault model proposed by Satake et al. (2013), Iinuma et al. (2012), and Yamazaki et al. (2018), respectively. d Comparison between 
the observed (gray) and simulated waveforms (colored) at representative stations



Page 12 of 19Kubota et al. Progress in Earth and Planetary Science            (2022) 9:68 

models are similar to the original model, in which the 
maximum stress drop is located at the deeper portion 
but no stress release at the shallower portion. Our main 
results, that the stress release occurred only at the deeper 
portion, do not change in a possible range of the smooth-
ing constraint.

4.1.2  Robustness of shallow stress drop estimation
Our result suggests that the stress release at the shallow-
est portion corresponding to the near-trench large slip 
(> ~ 40 m slip) is lower in magnitude than the deep por-
tion (Fig.  4b). Brown et  al. (2015) suggested that some 
past fault models had larger stress drop in the shallow 
portion than that in the deeper portion (> 30 MPa, e.g., 
Yamazaki et al. 2018). We here evaluate the exact location 

of the main stress drop and examine how insignificant 
the shallow stress is, based on tsunami forward simula-
tions assuming virtual earthquakes.

We assume large stress drop regions at shallow, deep, 
and deeper portions of the plate interface, respectively 
(Fig.  10a–c, shown by thick black lines). We assign a 
stress drop of 5 MPa in each of the portions, based on the 
stress drop amount estimated in our inversions (Fig. 4b). 
Then, assuming the given stress drop amount as the vir-
tual observed data (left-hand side of Eq. (3)), we estimate 
the slip amount of the j-th subfault (mj) by solving the lin-
ear inversion problem (Noda et al. 2021; Saito and Noda 
2022) (contour lines in Fig. 10a–c). Finally, using this vir-
tual fault slip model, we forwardly simulate tsunamis to 
compare with the pressure gauge waveforms (Fig.  10d). 

Fig. 10 Numerical evaluation of plate coupling area location. a–c Slip distribution assuming coupling at the shallowest, middle, and deeper 
portions of the plate boundary, respectively. Polygons drawn with thick black lines denote the regions where the stress drop was assigned. d 
Comparison between the observed (gray) and simulated waveforms (colored) at representative stations
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The temporal evolution of the fault is assumed so that all 
the slip across the fault starts simultaneously at t = 0 and 
ends after the duration of Tr = 40 s.

As a result, when assuming a large stress drop area at 
the deep portion of the plate boundary where the large 
stress drop was estimated in our modeling (Fig. 10b), we 
obtain the near-trench slip up to ~ 50  m and a moder-
ate spatial slip gradient consistent with our fault model 
(red line in Fig.  11). This model explains the features 
of the observed tsunamis well (red traces in Fig.  10d). 
On the other hand, when assuming a large stress drop 
area of 5 MPa at the shallowest portion near the trench 
(Fig.  10a), a maximum slip of > 80  m and a large spatial 
gradient of the slip amount are necessary to cause the 
large stress drop at the shallowest portion (blue line in 
Fig. 11). This shallow extremely large slip generates very 
large short-wavelength tsunamis but cannot explain the 
observation (blue traces in Fig. 10d). The ~ 20 m shallow 
slip based on the assumption of a further deeper stress 
drop area (Fig. 10c, green line in Fig. 11) cannot explain 
the observation as well (green traces in Fig.  10d). From 
these forward simulations, we conclude that the large 
stress drop area should be located around deeper part of 
the plate boundary near the hypocenter.

We also examine how insignificant the stress was 
released in the shallow portion, based on another tsu-
nami forward simulation (Additional file  1: Figure S11). 
We modify the stress drop distribution of our model 

(Fig. 4b) so that the shallow stress drop in the Off-Miy-
agi region (~ 37–39°N) becomes zero (Additional file  1: 
Figure S11a) and construct the virtual slip distribution 
with the same procedure as the forward simulations 
above (Additional file  1: Figure S11b). Using this fault 
slip distribution, we then simulate tsunamis (Additional 
file 1: Figure S11c). As a result, the simulation reasonably 
explains the features of the observed tsunamis well even 
if we suppose no stress drop in the shallow portion (dark 
blue traces in Additional file 1: Figure S11c). This result 
supports that the shallow stress drop is much smaller in 
magnitude than the deeper portion.

4.1.3  Effects of heterogeneous structure
To check the validity of the use of the JIVSM plate bound-
ary model for the fault modeling, we compare the JIVSM 
with a plate boundary model of Iwasaki et al. (2015), con-
structed from the precise seismicity and active survey 
data (Fig. 12a). We also compare the JIVSM with the Vp 
structure along the MY102 survey line in the Off-Miyagi 
region estimated by an air-gun survey (Miura et al. 2005, 
Fig. 12b). There are some differences between the mod-
els, but we confirm the plate depth is reasonably similar 
to each other at the shallowest portion where the large 
near-trench slip occurred. This indicates that the use of 
the plate geometry from the JIVSM is reasonable to esti-
mate the realistic stress drop distribution.

It is possible that the heterogeneity of the crustal 
structure may affect the calculation of the stress drop 
(Figs. 12b and c, e.g., Yagi and Fukahata 2011; Fukahata 
et  al. 2012). Because the rigidity at the shallowest por-
tion of the plate boundary should be smaller than that 
assumed in this study, the stress change at the shallow 
portion is expected to be smaller than that obtained 
from our study. Even if the heterogeneity of the structure 
is considered, we would be able to reasonably state that 
the shallow stress drop is much less significant than the 
deeper portion. In the next step, we further consider this 
heterogeneous crustal structure using the numerical sim-
ulation approach (e.g., Ma 2012; Maeda et al. 2017; Sun 
et al. 2017; Herman et al. 2018; Du et al. 2021). In addi-
tion, it will be necessary to consider the seafloor bathym-
etry, which cannot be incorporated in the half-space 
calculation (Wang et al. 2018). It will be also important to 
consider the inelastic deformation effect due to dynamic 
coseismic stress change, leading to an enhancement of 
the tsunami (e.g., Ma 2012; Ma and Nie 2019; Du et  al. 
2021).

4.2  Mechanism of near‑trench large slip: kinematic 
and dynamic perspectives of the fault boundary

The use of the near-field ocean-bottom pressure gauge 
made it possible to resolve the shallow slip and stress 

Fig. 11 Cross-sectional view of fault slip for the numerical evaluation 
test. The slip distribution profiles assuming coupling at the shallowest 
(blue), middle (red), and deeper (green) portions of the plate 
boundary, respectively, are shown. The colors, shading, triangles, and 
bathymetry description are the same as in the legend of Fig. 7a
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drop distributions of the Tohoku-Oki earthquake, which 
shows the shallow stress drop was insignificantly small. 
In addition, the seafloor drilling survey conducted after 
the Tohoku-Oki earthquake suggested that the abso-
lute shear stress level after the earthquake at the shallow 
plate interface was almost zero (Lin et al. 2013; Brodsky 
et  al. 2017; 2020). According to the experimental stud-
ies using the shallow fault-zone material of the Tohoku 
subduction zone (Ujiie et  al. 2013; Remitti et  al. 2015), 

the temperature measurements of the interplate fric-
tional heating due to the earthquake (Fulton et al. 2013), 
and the seismic active survey study (Hondori and Park 
2022), it is suggested that the friction coefficient in the 
shallow plate interface is considerably low, resulting in 
very low absolute level of the shear stress. Therefore, it 
is suggested that the shear stress at the shallow portion 
should be also nearly zero during, and even before, the 
Tohoku-Oki earthquake, and the shallow portion did not 

Fig. 12 Comparison of the plate depth and velocity structure of the previous studies. a Comparison of the plate depth of JIVSM (Koketsu et al. 
2012, dark red contours) and that of Iwasaki et al. (2015) (dark blue contours). b The vertical profile along the MY102 line (Miura et al. 2005, thick 
black line in Fig. 10a). Colors indicate the Vp structure estimated by Miura et al. (2005). The plate depth contours of both JIVSM and Iwasaki et al. 
(2015) are also drawn. c The Vp structure of JIVSM along the MY102 line
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accumulate the shear stress during the long-term inter-
seismic period (i.e., no shallow mechanical locking). 
Based on these results, we propose that the main reason 
for the large shallow coseismic slip is a stress release of a 
deeper locked zone, where the stress accumulates during 
the interseismic period. In other words, the Tohoku-Oki 
earthquake slip occurred to compensate for the interseis-
mic slip deficit at both deep and shallow parts of the plate 
interface, which was provoked only by deep mechani-
cal coupling (Fig. 13) (Almeida et al. 2018; Herman et al. 
2018). Before the Tohoku-Oki earthquake, it was widely 
believed that the shallow plate interface does neither 
accumulate the shear stress (Scholtz 1998; Bilek and Lay 
2002) nor the slip deficit (Suwa et  al. 2006; Hashimoto 
et  al. 2009; Loveless and Meade 2010; 2011). Our study 
indicates that the shallow stress accumulation behavior 
is consistent with that expected before the Tohoku-Oki 
earthquake, but the slip deficit accumulation behavior is 
not.

Most previous studies have conventionally understood 
the occurrence of large earthquakes based on a kin-
ematic perspective (e.g., Nishikawa et  al. 2019; Uchida 

and Bürgmann 2021) (Fig.  13b). As has been seen in 
other large earthquakes, the main slip of the Tohoku-Oki 
earthquake was located in the slip deficit area during the 
interseismic period (Lindsey et al. 2021), indicating that 
the earthquake released the interseismic slip deficit. Seis-
mic waves were radiated mainly at deeper depths, but 
there was almost no radiation at shallow depths (Ide et al. 
2011). Afterslips occurred in areas without coseismic slip 
(Watanabe et al. 2021). Other typical kinematic pictures 
are shown in Fig.  13b. To explain the extremely large 
shallow slip which was unusual within this kinematic 
perspective, some studies considered the possibility of 
an additional mechanism causing an extensive dynamic 
reduction of friction, such as thermal pressurization, 
which results in an extremely large stress drop process 
at the shallow part (Hirono et  al. 2019; Shibazaki et  al. 
2019).

Here, based on the data analysis focusing on the stress 
drop distribution, we expanded this kinematic view to 
a new mechanical picture (Fig.  13a). From a mechani-
cal perspective, the rupture area of the Tohoku-Oki 
earthquake can be divided into deeper (> ~ 10  km) and 

Fig. 13 Interpretation of the mechanical and kinematic properties along the Tohoku plate boundary. a Mechanical perspective associated with 
the megathrust Tohoku-Oki earthquake. The regions where the plate boundary is mechanically locked are shown in red, and the regions where the 
mechanical coupling is weak are shown in blue. The regions surrounded by dashed lines are less certain than those with the solid lines. The regions 
where the mechanical property is unclear are shown in gray. b Kinematic perspective of the seismic activities along the plate boundary. The spatial 
relationship of the coseismic (magenta) and postseismic (cyan) slips are shown. Aftershock areas are also shown in gray, and tremor areas are shown 
in green



Page 16 of 19Kubota et al. Progress in Earth and Planetary Science            (2022) 9:68 

shallower (< ~ 10  km) portions. We propose that the 
driving force of the entire slip was the accumulated 
strain energy at the deep mechanically coupled area. The 
amount of shallow slip seemed incredibly large, but it can 
be reasonably interpreted by considering the effect of the 
deep stress release and its interaction with the free sur-
face (Almeida et  al. 2018; Herman et  al. 2018). In addi-
tion, a large seismic wave radiation area is well correlated 
with the area of the large stress drop, whereas the shallow 
weak seismic wave radiation area corresponds to the low 
stress drop area.

Although the kinematic concept of afterslips is sim-
ple and complementary to the main shock (Watanabe 
et  al. 2021), we propose two different mechanisms of 
afterslip: The afterslips located just north (~ 39.5°N) and 
south (~ 37°N) of the rupture area were driven to dissi-
pate stress concentration due to the mainshock, while the 
slip which occurred ~ 200  km south (~ 35.5°N) was not 
directly driven by the stress concentration, but it sponta-
neously started (i.e., triggered aseismic slip).

4.3  Toward understanding of the Tohoku‑Oki earthquake 
and megathrust earthquake physics

In addition to the conventional kinematic perspective 
of the megathrust earthquake, the stress drop distribu-
tion provided us with additional information about the 
megathrust earthquake, including the cause of the driv-
ing force that triggered the shallow large slip, the source 
of seismic wave excitation, and the existence of different 
types of afterslip generation mechanisms (Fig. 13). These 
observations are consistent with the basic mechani-
cal model of faulting (Kostrov 1974), in which the strain 
energy stored in the lithosphere between the interseismic 
period excites the fault slip and seismic wave radiation. 
Without assuming any special mechanism requiring an 
extremely large shallow stress drop, the anomalous shal-
low slip can be explained by a combination of free sur-
face and deep stress release (Fukuyama and Hok 2015; 
Almeida et al. 2018; Herman et al. 2018).

The large shallow slip of the Tohoku-Oki earthquake 
was mainly due to the effect of the free surface and the 
deep stress release (Almeida et  al. 2018; Herman et  al. 
2018). This indicates that the shallow slip behavior 
depends largely on the location and amount of the stress 
drop. More specifically, the earthquake slip behavior 
relies on the amount of strain energy accumulated around 
the mechanically coupled area. The rupture of the Mw 7.2 
foreshock on 9 March 2011, which preceded the Tohoku-
Oki earthquake by two days, had a much smaller stress 
drop of 1.0 MPa on average (Kubota et al. 2017), result-
ing in a smaller amount of the released strain energy 
as compared to the March 11 mainshock. Although we 

need further efforts to deepen our understanding of the 
mechanics of the foreshock and the mainshock, the dif-
ference in the amounts of the strain energy released by 
these earthquakes would be essentially important to 
understand the diversity of the earthquake dynamics.

The past studies using the onshore geodetic data sug-
gested that there were no interplate slip deficits in the 
shallowest portion of the plate interface (Suwa et  al. 
2006; Hashimoto et  al. 2009; Loveless and Meade 2010; 
2011), leading to no shallow large seismic slip. However, 
recent studies suggest interplate slip deficits have been 
geodetically detected even in the shallowest portion of 
the plate in many subductions (e.g., Loveless and Meade 
2015; Noda et al. 2018; Herman and Govers 2020; Lind-
sey et  al. 2021). Our results show that unusually large 
shallow slips and giant tsunamis such as those occur-
ring due to the Tohoku-Oki earthquake can occur in any 
subduction zones even without a shallow stress release, 
if enough strain energy is accumulated to generate earth-
quakes around the locked portion which is commonly 
thought to be at the seismogenic depth (> 10  km). This 
idea requires methods to evaluate whether enough shear 
stress or strain energy is accumulated or not around the 
deeper locked areas which can generate large coseismic 
slips during the anticipated megathrust earthquakes in 
the future. For example, some studies assess the poten-
tials of future megathrust earthquakes by evaluating the 
energy budget associated with the earthquake faulting 
based on the detected mechanically coupled distribu-
tions along the plate interface (Noda et  al. 2021; Saito 
and Noda 2022). Our results showed that observational 
earthquake science is steadily progressing from kine-
matic modeling toward mechanical modeling to achieve 
quantitative evaluation.

5  Conclusions
To understand the reason for the large near-trench slip 
during the 2011 Tohoku-Oki earthquake, this study esti-
mated the slip and stress drop distributions with the high 
spatial resolution using the tsunami data recorded by 
ocean-bottom pressure gauges installed above the fault 
area, which had not before been used in the past. The 
estimated model had a large slip of > 40 m at the shallow-
est portion (z < 10 km) in the Off-Miyagi region and the 
slip peaked at 53  m at the Japan Trench. However, the 
stress release at the shallowest portion was insignificantly 
small (< 3  MPa). The main stress drop region (> 5  MPa) 
was located at the deep portion (> 10 km) where the slip 
amount was smaller than ~ 40  m. The results suggested 
the deep mechanical plate locking corresponding to the 
large stress drop provoked the interseismic slip deficit 
in both shallow and deep regions of the plate boundary. 
Although a large shallow slip had been considered as a 
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result of the release of large strain energy in the shallow 
portion of the plate boundary in the past, our analyses 
provided us with a new mechanical perspective along the 
plate boundary, in which shallow slips can occur with-
out the shallow energy accumulation but only with the 
energy accumulation in the deeper portion.
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