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Abstract 

Sedimentary structures in ancient deposits are clues to reconstruct past geohazards. While parallel lamination formed 
by plane beds is one of the most common sedimentary structures in event deposits such as turbidites, the formative 
conditions for plane beds remain unclear. In the literature, two types of plane beds (upper and lower plane beds) exist 
and are supposed to develop under different shear stresses, particle sizes, and flow regimes. Here, we present new 
phase diagrams based on the compilation of existing data regarding formative hydraulic conditions for plane beds 
to clarify the formation processes associated with the two types of plane beds. The diagrams indicated that the data 
form two separate populations and the gap between them corresponds to the threshold condition of the particle 
entrainment into suspension. Lower plane beds form when sediment particles move only as bed load. This phase 
space can be discerned from fine sand to gravel and differs from the conventional view in which the formation of 
the lower plane bed is limited to grain sizes above 0.7 mm. In addition, our phase diagrams suggest that upper plane 
beds appear under conditions of the active suspended load. Our analyses demonstrate that the suspended load 
contributes to the formation of plane beds, whereas other mechanisms can also produce fine-grained plane beds in 
flows with low bed shear stress. Thus, the results of this study suggest that the existing interpretations on fine-grained 
parallel lamination such as Bouma’s  Td division need to be reconsidered. The bedform phase diagrams newly estab-
lished in this study will be useful for estimating the flow conditions from the geologic records of event beds.
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1 Introduction
1.1  General introduction of bedforms
Sand grains on Earth surfaces are carried from mountains 
to deep seas by flows, e.g., river, winds, tidal flows, and 
sediment-laden gravity currents. The transport of these 
sediments is not only one of the primary processes of the 
Earth’s surface material circulation, including the carbon 
cycle (Schlünz and Schneider 2000; Galy et al. 2007), but 
also a cause of severe geohazards such as landslides or 
debris flows. Such past geohazards can be reconstructed 
from the characteristics of their deposits (e.g., Mitra et al. 
2021), suggesting the disaster risk of each region.

Interaction between flows and solid particles dur-
ing sediment transport results in various morphologies 
including bedforms that display wavy or flat topogra-
phies. Bedforms have been found ubiquitously on sedi-
ment beds; for instance, in open-channel flows (e.g., 
Collinson 1970; Ma et al. 2017; Galeazzi et al. 2018) and 
oscillatory flows (e.g., Miller and Komar 1980; Masselink 
et al. 2007; Wu and Parsons 2019).

In the past decades, numerous laboratory experiments 
(e.g., Gilbert 1914; Guy et al. 1966; Southard 1991; Dumas 
et al. 2005; Perillo et al. 2014; Bradley and Venditti 2019) 
and field observations (e.g., Colby and Hembree 1955; 
van den Berg 1987; Cisneros et al. 2020) were conducted 
to obtain empirical relationships between flows and bed-
forms. Bedform phase diagrams have been used to under-
stand the formation of bedforms in response to flow 
behavior (e.g., Chabert and Chauvin 1963; Southard and 
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Boguchwal 1990). Recently, Ohata et al. (2017) proposed 
bedform phase diagrams in three-dimensional paramet-
ric space, and their diagrams successfully characterized 
paleo-flow conditions from sedimentary structures.

1.2  Review of plane beds
Plane beds are bedforms that develop in various envi-
ronments such as alluvial riverbeds (e.g., Hauer et  al. 
2019) and beach faces (e.g., Vaucher et al. 2018; Vaucher 
and Dashtgard 2021). The plane bed phase is character-
ized by nearly flat topography or low-relief bed waves. 
Flume experiments have explained that the migration 
of low-relief bed waves over plane beds results in planar 
lamination with a few millimeters in thick (Paola et  al. 
1989, Bridge and Best 1997). Planar lamination in sand-
stone beds (Fig.  1) is ubiquitously found in fluvial (e.g., 
Umazano et  al. 2012; Mazumder and Van Kranendonk 
2013), estuaries (e.g., Hori et  al. 2001), tidal flat (e.g., 
Chakraborty et  al. 2003), shoreface (e.g., Kikuchi 2018), 
and submarine fan environments (e.g., Eggenhuisen et al. 
2011; Jobe et  al. 2012). For example, deposits from tur-
bidity currents (i.e., turbidites) in submarine environ-
ments exhibit succession of sedimentary structures called 
Bouma sequence, in which parallel lamination is observ-
able in  Tb and  Td divisions (Bouma 1962).

Plane beds were initially referred to as “the smooth 
phase of bedforms” (Owens 1908; Gilbert 1914). Later, 
Simons et al. (1961) used the term “plane” to avoid confu-
sion with the hydraulically smooth phase of flows. Owens 
(1908) and Strahan et  al. (1908) observed that the bed 
state changes from ripples to the smooth phase of bed-
form (i.e., plane bed) and then to antidunes with increas-
ing flow velocity. In addition, the plane bed phase also 
appears under the condition when the bed shear stress 
is lower than that forming ripples or dunes (e.g., Simons 
et al. 1961; Southard 1971). Thus, previous studies have 
recognized that there are two conditions of plane bed 
formation and they are separated by formation condi-
tions of ripples or dunes.

However, the formative process and conditions for 
phase transition of plane beds remain unclear. It is known 
that the plane bed is formed under two different hydrau-
lic conditions, but the reason why the formation condi-
tions are divided into two regions is not well understood. 
In previous studies, the two types of plane beds have been 
classified depending on the (1) sediment motion (Simons 
et  al. 1961; Simons and Richardson 1962), (2) criticality 
of Froude number (Venditti 2013; Dey 2014), and (3) size 
of bed material and flow intensity (Allen 1968; Southard 
1971).

Simons et  al. (1961) recognized two conditions of 
plane bed in their flume experiments using the medium 
sand—plane beds with and without sediment motion. On 
the basis of the flume experiments with the two types of 
medium sand (D = 0.28 mm and 0.45 mm), Simons et al. 
(1961) and Simons and Richardson (1961, 1962) classified 
alluvial flows based on bedforms into three regimes—a 
lower flow regime (plane beds without sediment move-
ment, ripples, dunes with ripples superposed, and dunes), 
a transition zone (washed-out dunes), and an upper flow 
regime (plane beds with sediment movement, standing 
waves, antidunes, and chutes-and-pools). Simons et  al. 
(1961) and Simons and Richardson (1962) recognized 
this sequence of flow regimes with the increase in flow 
intensity. The definition of Simons et al. (1961) has been 
employed in the analyses of bedforms (van Rijn 1984b; 
Julien and Raslan 1998). For example, the bedform stabil-
ity diagram proposed by Colombini and Stocchino (2008) 
has described plane bed phases as plane beds without 
sediment motion and upper plane bed. Bradley and Ven-
ditti (2019) cited the phase diagram by Colombini and 
Stocchino (2008) and described the phase of plane beds 
without sediment motion as lower plane beds.

Although Simons et al. (1961) noted that flows change 
from the lower to upper flow regimes at a Froude num-
ber (Fr) less than unity, Venditti (2013) and Dey (2014) 
stated that lower and upper flow regimes are consistent 
with Froude-subcritical (Fr < 1) and Froude-supercritical 

Fig. 1 Photographs showing planar lamination in sandy deposits. A 
Snapshot of a laboratory experiment conducted at Kyoto University. 
Flow is from right to left. Two types of sands (D50 = 0.12 mm and 
0.53 mm) were used. B Field photograph showing a turbidite 
sandstone in the Aoshima Formation of the Miocene Miyazaki Group, 
Japan
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flow regimes (Fr > 1), respectively. In other words, fol-
lowing the definition by Venditti (2013) and Dey (2014), 
plane bed in the lower regime is generally interpreted to 
exist at Fr < 1, and plane bed in the upper regime is at or 
above Fr = 1.

Allen (1968) and Southard (1971) described bed-
form phase diagrams based on a compilation of obser-
vational data (Fig. 2). In their phase diagrams, there is a 
stable plane bed region where coarse sediment (median 
diameter D50 > 0.6–0.7  mm) is transported at low flow 
velocities (< 0.5 m/s). Allen (1968) termed this bed state 
as a lower-phase plane bed. That is, there are two types 
of plane beds with sediment movement, namely lower 
plane beds with low flow intensities on coarse sediment 
and upper plane beds with high flow intensities on fine 
sediment. Liu (1957) and Bogárdi (1961) also reported 
a region of flow conditions in which sediment motion 
occurred but ripples or other bedforms did not appear.

In summary, researchers have proposed various defini-
tions and formation conditions of the two types of plane 
beds: (1) sediment motion (Simons et  al. 1961; Simons 
and Richardson 1962), (2) criticality of Froude number 
(Venditti 2013; Dey 2014), and (3) size of bed material 
and flow intensity (Allen 1968; Southard 1971).

In this paper, we compiled a total of 935 sets of exist-
ing data from the literature. The dataset indicates that 
two separate regimes of plane bed exist and the boundary 
between the two plane bed regimes matches the thresh-
old condition for the particle entrainment into suspen-
sion (Niño et al. 2003) or sheet flow (traction carpet; Gao 
2008). We compiled data pertaining to plane beds in uni-
directional open-channel flows and plotted them using 
dimensionless parameters as axes without any a priori 

assumption of types of plane beds. Based on this data 
analysis, we recognized that the upper plane beds are 
always accompanied by suspension or sheet flow.

2  Methods
2.1  Data sources
We compiled from the literature a total of 935 sets of 
data pertaining to plane beds to investigate the plane 
bed regimes. The dataset consisted of 890 sets of labo-
ratory data and 45 sets of field data (Tables 1 and 2). A 
wide range of hydraulic conditions and sediment calibers 
are encompassed in the datasets. The median sediment 
diameter ( D50 ) ranges from 1.1 ×  10–2 to 44.3  mm, the 
flow depth ( h ) ranges from 1.2 ×  10–3 to 2.74 m, and the 
flow velocity ( U ) ranges from 0.058 to 2.38 m/s. To com-
pare the transport mode of plane bed formation with the 
threshold conditions of sediment motion and the initia-
tion of suspension, we classified the data with sediment 
movement into three types based on the suspended sedi-
ment concentration ( Cs ), as follows: (a) The suspended 
sediment concentration was measured (hereafter referred 
to as data Cs > 0), (b) the suspended sediment concentra-
tion was recorded as zero (hereafter referred to as data Cs 
= 0), and (c) the suspended sediment concentration was 
not available (hereafter referred to as data no Cs).

2.2  Dimensionless parameters for morphodynamic 
conditions

First, we focused on the grain size and the sediment 
transport mechanism (i.e., no sediment movement, 
bed load, and suspended load) as controls on plane bed 
regimes. Bedform phases were expressed in a space of 
dimensionless parameters that reflected the properties of 
flows and sediment particles (e.g., van den Berg and van 
Gelder 1993; Ohata et al. 2017). We employed the follow-
ing dimensionless parameters to represent hydraulic con-
ditions and sediment properties: the particle Reynolds 
number ( Rep ), Shields number ( τ∗ ), and the suspension 
index ( u∗/ws).

The particle Reynolds number ( Rep ) is defined as (Gar-
cia 2000):

where R represents the submerged specific density of the 
sediment, g denotes the gravitational acceleration, and 
ν denotes the kinematic viscosity of the fluid. The sub-
merged specific density is defined as R = (ρs − ρf )/ρf , 
where ρs and ρf represent the sediment and fluid den-
sities, respectively. The kinematic viscosity ( ν ) was 
assumed to be a function of temperature according to 
the relationship for water (van den Berg and van Gelder 
1993):

(1)Rep =
√

RgD50D50

ν

Fig. 2 Bedform phase diagram for unidirectional currents digitized 
after Southard and Boguchwal (1990) for a flow depth of 0.25–0.40 m. 
The mean velocity U10, flow depth H10, and grain size D10 denote 
10 °C equivalent values
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Table 1 Summary of flume data used for the analysis

Reference # of points Particle 
diameter D50 
[mm]

Flow depth h 
[m]

Flow velocity U 
[m/s]

Particle 
Reynolds 
number  Rep

Shields number 
τ*

Suspension 
index
u*/ws

Froude 
number
Fr

Barton and Lin 
(1955)*

11 0.18 0.13–0.24 0.74–1.09 9.74–11.1 0.47–1.13 1.7–2.88 0.52–0.87

Bridge and Best 
(1988)

2 0.3 0.1–0.1 0.9–0.98 19.85–21.86 1.29–1.38 1.98–2.02 0.91–0.99

Brooks (1955)* 8 0.09–0.15 0.06–0.09 0.6–0.65 3.7–8.63 0.43–0.77 1.98–5.03 0.71–0.81

Cao (1985) 84 11.5–44.3 0.02–0.26 0.31–1.64 4594–38,250 0.007–0.20 0.07–0.39 0.43–1.75

Chyn (1935)* 2 0.79 0.05–0.06 0.37–0.4 92.99–94.46 0.051–0.057 0.24–0.25 0.51

Costello (1974)* 8 0.6–0.79 0.15–0.16 0.32–0.39 72.28–103.48 0.019–0.055 0.14–0.26 0.26–0.31

E. Pakistan (1966, 
68–69)*

4 0.25–0.33 0.15–0.3 0.19–0.86 17.66–28.31 0.019–0.46 0.21–1.27 0.11–0.71

Fukuoka et al. 
(1982)

18 0.19–1.6 0.02–0.07 0.35–1.19 10.52–256.97 0.037–0.76 0.18–1.3 0.61–2.12

Gee (1975) 3 0.31 0.08 0.94–1.02 21.73–23.12 0.47–0.55 1.16–1.21 1.06–1.17

Gilbert (1914)* 250 0.31–4.94 0.02–0.12 0.49–1.42 21.39–1393.27 0.062–0.90 0.22–1.42 0.79–2.08

Guy et al. (1966) 48 0.19–0.93 0.09–0.31 0.2–1.64 9.88–121.18 0.022–1.50 0.16–2.32 0.14–1.63

Jopling and 
Forbes (1979)

4 0.05 0.04–0.09 0.06–0.73 1.43–1.47 0.94–4.60 13.1–28.81 0.06–1.11

Jorissen (1938)* 9 0.6–0.91 0.02–0.09 0.26–0.44 57.79–118.26 0.045–0.097 0.22–0.34 0.43–0.59

Julien and Raslan 
(1998)

18 0.2–0.6 0.04–0.14 0.35–0.79 9.26–51.22 0.13–1.0 0.43–2.87 0.47–0.92

Kalinske and Hsia 
(1945)

1 0.01 0.16 0.83 0.15 8 347.79 0.67

Kennedy (1961) 12 0.23–0.55 0.02–0.11 0.61–1.05 15.68–60.75 0.36–0.62 0.81–1.57 0.73–2.04

Kennedy and 
Brooks (1963)

4 0.14 0.07–0.08 0.6–0.67 7.61–7.68 0.54–0.76 2.36–2.81 0.69–0.82

Kuhnle and Wren 
(2009)

2 0.5 0.17–0.18 0.68 44.89–45.3 0.41–0.64 0.81–1.02 0.51–0.53

Laursen (1958) 1 0.11 0.14 1.02 4.94 0.65 3.64 0.86

Mutter (1971)* 5 0.26 0.01–0.04 0.29–0.79 18.98–20.07 0.21–0.70 0.82–1.51 0.46–1.91

Neill (1967)** 30 5–20 0.03–0.18 0.5–1.13 1348.6–10,896.09 0.023–0.059 0.13–0.21 0.42–1.52

Nomicos (1956)* 12 0.09–0.15 0.07–0.08 0.56–0.81 3.89–8.93 0.42–0.83 1.96–4.52 0.66–0.95

Nordin (1976) 7 0.25–0.25 0.33–0.6 1.26–1.75 15.95–17.64 0.81–1.89 1.76–2.71 0.63–0.81

Pratt (1970)* 12 0.48 0.08–0.46 0.14–0.27 37.89–45.9 0.006–0.02 0.1–0.18 0.08–0.21

Rathbun and Guy 
(1967)

2 0.3 0.06–0.07 0.23–0.24 20.86 0.026–0.027 0.28–0.29 0.29

Singh (1960)* 30 0.62 0.01–0.07 0.28–0.8 51.98–60.15 0.042–0.56 0.24–0.88 0.4–1.2

Stein (1965)* 9 0.4 0.1–0.3 0.94–1.68 33.68–38.15 0.55–2.0 1–1.94 0.71–1.17

Taki and Parker 
(2005)

10 0.02–0.12 0.001–0.003 0.15–0.43 0.33–5.28 0.72–2.71 3.63–90.52 1.26–2.94

Tanaka (1970) 10 0.15–0.91 0.04–0.13 0.6–1.86 7.01–110.22 0.55–1.25 0.83–3.85 0.68–2.34

Taylor (1971) 31 0.14–3.95 0.06–0.18 0.2–0.88 7.61–1243.08 0.021–0.5 0.14–2.15 0.26–0.84

Ueno (1981) 8 0.23–0.6 0.01–0.03 0.21–0.31 12.48–56.86 0.031–0.08 0.21–0.65 0.52–0.6

U. S. W. Exp. Sta. 
(1935)*

75 0.18–4.1 0.01–0.12 0.25–0.68 8.97–1051.56 0.03–0.079 0.15–0.8 0.47–0.76

U. S. W. Exp. Sta. 
(1936)***

87 0.46–1.2 0.07–0.08 0.37–0.39 42.18–171.16 0.028–0.075 0.16–0.35 0.42–0.46

Vanoni and 
Brooks (1957)*

3 0.14 0.06–0.17 0.63–0.77 6.27–7.17 0.58–0.69 2.61–3.11 0.6–0.81

Williams (1970) 26 1.35 0.02–0.15 0.33–2.34 143.77–228.03 0.033–0.61 0.17–0.75 0.4–3.5

Willis et al. (1972)* 43 0.1 0.12–0.32 0.69–1.57 3.77–4.89 0.40–2.55 3.12–7.9 0.48–1

Znamenskaya 
(1963)*

1 0.18 0.09 0.71 9.7 0.47 1.87 0.77
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where T  represents the water temperature in degree 
Celsius. Following van den Berg and van Gelder (1993), 
we assumed a value of 20  °C for data where T  was not 
reported. Shields number ( τ∗ ) is defined as

Here, the shear velocity ( u∗ ) for the field data was com-
puted as u∗ =

√

ghS , where S represents the bed slope. 
For laboratory data, we removed the sidewall effect and 
calculated the bed component of the shear velocity using 
the method proposed by Chiew and Parker (1994) (see 
Ohata et al. (2017) for details). We focused on the analy-
sis of plane bed data in this study; therefore, we assumed 
the flow resistance induced by the bedforms is negligible.

The suspension index is expressed as the ratio of the 
shear velocity ( u∗ ) to the settling velocity of sediment 
( ws ). The settling velocity was estimated using the rela-
tionship formulated by Ferguson and Church (2004):

where constants C1 and C2 were set to 18 and 1, respec-
tively, which were the values for natural sands (Ferguson 
and Church 2004).

The sediment transport regimes are classified based on 
the transport mechanism—no sediment movement, bed-
load-dominated, mixed-load, and suspended-load-dom-
inated regimes (Church 2006). The boundary between 

(2)
ν =

[

1.14 − 0.031(T − 15)+ 0.00068(T − 15)2
]

10−6

(3)τ∗ = u2∗
RgD50

(4)ws =
RgD2

50

C1ν+
√

0.75C2RgD
3
50

no sediment movement and other regimes is defined by 
the Shields curve, which is the critical condition for the 
initiation of particle motion (e.g., Shields 1936). Based 
on Shields’ experimental data, Brownlie (1981) proposed 
a function describing the threshold condition of particle 
motion as:

Next, the threshold condition for the initiation of sus-
pension is expressed using the suspension index ( u∗/ws ) 
(Bagnold 1966; van Rijn 1984a; Niño et  al. 2003). The 
threshold condition of the particle entrainment into sus-
pension represents the boundary between the bed-load-
dominated regime and a regime where the bed materials 
are transported with suspension. The threshold condition 
for the particle entrainment into suspension, obtained by 
Niño et al. (2003), is:

We used Eq. (5) (dashed line) and 6 (dotted line) to define 
the boundaries of the sediment transport regimes (Figs. 3, 
4). The region on phase diagrams below the dashed line 
denotes the no sediment movement regime, the region 
between dashed and dotted lines denotes a bed-load-dom-
inated regime, and the region above the dotted line denotes 
a mixed-load or suspended-load-dominated regime where 
bed materials are moved in bed load and suspension. To 
describe the threshold condition of sediment motion 
(Eq. 5) on the Rep−u∗/ws diagram (Fig. 4) and the initia-
tion of suspension (Eq. 6) on the Rep−τ∗ diagram (Fig. 3), 

(5)τ∗c = 0.22Re−0.6
p + 0.06 exp

(

−17.77Re−0.6
p

)

(6)
(

u∗
ws

)

c
=

{

21.2Re−1.2
p , 1 < Rep < 27.3

0.4, 27.3 ≤ Rep

Table 1 (continued)
*Cited from the dataset of Brownlie (2018). **Cited as Neill (1967) in Brownlie (2018). ***Cited as US Waterways Exp. Sta. (1936B) in Brownlie (2018)

Table 2 Summary of field data used for the analysis

*Cited from the dataset of Brownlie (2018)

References # of points particle 
diameter D50 
[mm]

flow depth 
h [m]

flow velocity U 
[m/s]

Particle 
Reynolds 
number  Rep

Shields 
number τ*

suspension 
index u*/ws

Froude number 
Fr

Baird (2010) 1 0.15 1.54 1.04 7.38 2.37 5.09 0.27

Colby and 
Hembree 
(1955)*

17 0.21–0.32 0.4–0.59 0.96–1.27 8.44–19.8 1.26–2.88 2.15–4.5 0.46–0.54

Culbertson 
et al. (1972)

14 0.16–0.24 0.28–1.11 0.46–1.66 5.38–17.82 0.48–2.08 1.3–5.14 0.26–0.52

Mahmood et al. 
(1979)*

6 0.08–0.21 1.46–2.32 0.6–0.8 3.57–9.71 0.60–1.45 2.1–7.01 0.13–0.19

Neill (1969) 3 0.34 0.91–2.74 0.67–1.01 20.81–20.81 0.45–1.34 1.16–2.01 0.19–0.22

Simons (1957) 4 0.03–0.36 1.32–1.83 0.59–0.64 0.66–30.93 0.25–2.77 0.74–46.94 0.14–0.17
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Eqs. (5 and 6) are rearranged using Eqs. (1, 3, and 4), where 
R = 1.65 (the value for quartz) and ν = 1.0 ×  10–6 (the value 
for water with 20 °C).

Second, the plane bed conditions were investigated using 
Froude number. Phase diagrams were generated using Rep , 
u∗/ws , and Froude number as the axes. Froude number 
is the ratio of the inertial force to the gravitational force, 
defined as:

(7)Fr = U√
gh

3  Results
3.1  Influence of grain size and sediment transport mode
First, the plane bed data were plotted in Rep−τ∗ space 
(Fig. 3) to investigate the relationships among the plane 
bed regimes, the particle diameter, and the criteria for 
sediment movement. The threshold conditions of parti-
cle motion (Eq.  5) and suspension (Eq.  6) are shown in 
Fig.  3 as the dashed and dotted lines, respectively. The 
median diameter D50 is recast from Rep with R = 1.65 
and ν = 1.0 ×  10–6, which is represented on the top axis of 
Fig. 3.

Shields numbers associated with plane bed condi-
tions range from 0.05 to 10, and the plane bed data 
are divided into two separate regions at τ∗ = 0.1–0.2 

Fig. 3 Plane bed regime in a space of particle Reynolds number Rep versus Shields number τ∗ . The dotted line denotes the threshold condition for 
particle motion (Eq. 5). The solid line denotes the threshold condition for sediment suspension (Eq. 6). Both lines were extended to Rep =  10–1 and 
 105. The plane bed data are divided into two separate regions: the region around the threshold condition of particle motion and the region above 
the threshold condition of suspension
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(Fig.  3). The plane bed data with low τ∗ plot around 
the threshold condition of particle motion, and the 
region with high τ∗ plots above the threshold condi-
tion of suspension. The threshold condition of particle 
motion does not divide the plane bed regime; rather, 
the threshold condition of suspension runs between the 
two regions of data. The particle Reynolds numbers of 
the data with low τ∗ range 9 < Rep  < 4.0 ×  104 (0.2 mm 
< D50  < 40  mm). In the case of the data with high τ∗ , 
the particle Reynolds number ranges from 0.1 to 300 
(0.01  mm < D50  < 2  mm). The data Cs > 0 and field 
observation data are included in the region of high τ∗ . 
The data Cs = 0 plot around the threshold condition for 
particle motion and τ∗ = 0.4.

Second, the relationships among the plane bed regimes, 
the sediment diameter, and the criteria for suspension 
were examined by plotting u∗/ws versus Rep (Fig.  4). 
Median diameter D50 is shown on the top axis of Fig. 4.

In Rep–u∗/ws space, the plane bed data plot in two 
regions separated by the threshold condition of sus-
pension (Fig. 4), similar to our results in Rep–τ∗ space 
(Fig.  3). The threshold condition of particle motion 
runs through the middle of the data with a low suspen-
sion index. With respect to the particle Reynolds num-
ber, the data with a high suspension index plot in the 
region 0.1 < Rep  < 3.2 ×  103 (0.01  mm < D50  < 2  mm) 
and the data with low suspension index plot in the 
region 9 < Rep  < 4.0 ×  104 (0.2  mm < D50  < 40  mm). 

Fig. 4 Plane bed regime in a space of particle Reynolds number Rep versus suspension index u∗/ws . The dotted line denotes the threshold 
condition for particle motion (Eq. 5). The solid line denotes the threshold condition for sediment suspension (Eq. 6). Both lines were extended to 
Rep =  10–1 and  105. The plane bed data are divided into two separate regions: the region around the threshold condition of particle motion and the 
region above the threshold condition of suspension
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The data Cs > 0 and field data plot above the threshold 
condition of suspension. The data Cs = 0 plot below 
and above the suspension criteria.

3.2  Effect of Froude number
We investigated the consistency of the flow regime 
concept based on Froude number (Venditti 2013; Dey 
2014) to plane bed regimes, plotting data in Rep–Fr 
space (Fig. 5). The data include Froude numbers rang-
ing from 0.1 to 3.5. The data are not separated with 
regard to Froude number values. The field data have 
lower Froude numbers ( Fr < 0.5) and higher Shields 
numbers and exceed the threshold condition of sus-
pension (Figs. 3 and 4). For Cs > 0, the data fall in the 
domain 0.1 < Fr  < 1.3 and the data Cs = 0 distribute in 
the domain 0.2 < Fr  < 3.5.

4  Discussion
4.1  A new definition for plane beds
Data from the literature including field observations 
and flume experiments for plane beds were used to cre-
ate phase diagrams for plane beds (Figs.  3, 4, 5). Tradi-
tionally, the particle diameters or the critical values of 
sediment motion or Froude number were used to dis-
criminate lower and upper plane beds. However, our 
phase diagrams indicate that this is unlikely (Figs.  3, 4, 
5). Indeed, the phase regions of the plane beds are not 
separated by the traditional indicators such as particle 
diameters. In contrast, observational data of the plane 
beds plot in two separate regions in the Rep–τ∗ and Rep
–u∗/ws diagrams (Figs. 3, 4), and the boundary between 
the two regions corresponds to the threshold condition 
for sediment suspension. Therefore, we suggest that the 
upper and lower plane bed phases separated by the rip-
ple and dune phases (Fig. 2) should be redefined—upper 

Fig. 5 Plane bed regime in a space of particle Reynolds number Rep versus Froude number Fr . The data points of plane beds are not discriminated 
by Froude number
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plane beds are plane beds in which the lower boundary 
is the threshold condition for sediment suspension, and 
lower plane beds are plane beds dominated by bed load. 
That is, there is a necessity to modify the classic bedform 
phase diagram.

Simons et al. (1961) defined lower plane beds as plane 
beds without sediment motion. For the data with a low 
Shields number ( τ∗ < 0.1–0.2), there are overlaps of data 
points pertaining to plane beds with sediment move-
ment and without sediment movement (Fig.  3). There 
is a range of shear stresses in which bed particles could 
move because, for example, the sediment bed is com-
posed of natural sands that are somewhat angular and 
of various sizes. Hence, some data points of plane beds 
with sediment motion plotted below the line are defined 
by the threshold of sediment motion. Also, plane beds 
with sediment motion have been observed on a coarse-
grained bed (Guy et  al. 1966; Southard and Boguchwal 
1973; Costello and Southard 1981; Cao 1985). These 
results of flume experiments demonstrate that the classi-
cal definition of plane beds by Simons et al. (1961) is not 
appropriate.

Similarly, Froude number cannot be used to discrimi-
nate the two types of plane beds (Fig. 5). Venditti (2013) 
and Dey (2014) stated that the upper and lower flow 
regimes are defined by Froude number. However, both 
plane beds with and without suspension can develop 
under various Froude numbers (Fig.  4). For example, 
plane beds appear with suspended loads in natural rivers 
where τ∗ is high and Fr is less than unity due to the great 
depth (e.g., Ma et  al. 2017). Therefore, we propose that 
lower and upper plane beds are not classified by the criti-
cality of Froude number.

It is noteworthy that our analyses indicated that the 
regime of the lower plane bed extends to the region 
of fine-grained sediment (Figs.  3, 4). Southard (1971) 
defined lower plane beds as plane beds just above the 
threshold of sediment motion under subcritical flow 
with relatively coarse grains ( D50 > 0.7 mm). Later, Sou-
thard and Boguchwal (1990) proposed bedform phase 
diagrams using a compilation of large datasets, although 
they omitted the data of relatively fine-grained plane 
beds (10 °C-equivalent sediment diameter is smaller than 
0.7  mm) under low-velocity flows in their phase dia-
grams. Southard and Boguchwal (1990) did not include 
such data in their diagram because they suspected that 
equilibrium had not been attained. However, the dura-
tion of experiments performed by Guy et al. (1966) and 
Taylor (1971), which observed low-velocity plane beds in 
fine sediments, was from several hours to more than 24 h. 
The sediment discharge rates for low-velocity plane beds 
in the experiments of Guy et al. (1966) and Taylor (1971) 
are comparable to those of ripples in their experiments. 

Further, the data points of low-flow velocity plane beds 
in fine sediment are continuous from those of low-flow 
velocity plane beds in coarse sediment (Figs. 3, 4). There-
fore, the stable field of the plane bed without suspended 
load can be identified from fine sand to gravel.

The origin of the lower plane bed phase in the new def-
inition is puzzling. In previous studies, one of the con-
trolling factors in the lower and upper plane bed regimes 
was assumed to be the grain size and flow intensity 
(Allen 1968; Southard 1971). Leeder (1980) interpreted 
that coarse-grained plane beds are formed because flow 
separation is prevented by the bed roughness. Recently, 
Blois et al. (2014) proposed that bed permeability may be 
another explanation for the formation of coarse-grained 
plane beds. However, this study established that the 
region of coarse-grained plane beds extends continuously 
to the fine-grained region, and the conditions for fine-
grained plane beds were distributed separately in the two 
regions: the high- and low-bed shear stresses. Thus, the 
formation of the lower plane bed cannot be attributed 
to bed roughness or permeability owing to the grain size 
distribution.

It should be noted here that bed particles are also 
transported in the sheet flow (traction carpet) regime 
(Sumer et  al. 1996), which can be related to the plane 
bed. Sheet flows consist of a shear layer of bed load that 
moves under high shear stress ( τ∗ > ~ 0.5) where ripples 
and dunes are washed out (Sumer et  al 1996; Pugh and 
Wilson 1999). Williams (1970) observed that plane bed 
developed within sheet flows, and the data from Wil-
liams (1970) plotted above the threshold condition of 
suspension, yet no active suspension was observed in 
the experiments of Williams (1970) (Figs. 3, 4). Recently, 
Hernandez-Moreira et  al. (2020) suggested that plane 
beds can develop under sheet flows in the intermediate 
condition between upstream and downstream migrating 
antidunes. However, experiments of sheet flow in open 
channels are scarce because laboratory experiments on 
sheet flows have been conducted using closed conduits 
in order to achieve high shear stresses (Nnadi and Wil-
son 1992; Sumer et  al. 1996) or using oscillatory flow 
tunnels to simulate storm conditions (Dick and Sleath 
1992; O’Donoghue and Wright 2004). Currently, it is dif-
ficult to determine whether sheet flow is another possible 
mechanism that generates plane beds. Further laboratory 
experiments, numerical experiments, and theoretical 
considerations are required to provide explanations for 
the plane bed regimes.

4.2  Theoretical explanation of plane bed formation
The transition from dunes to plane beds has been theo-
retically explained by the spatial lag between the dune 
crest and the location of maximum sediment transport 
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rate (Kennedy 1963). Dune height decreases when the 
maximum sediment transport rate occurs at the down-
stream of the dune crest. Recently, the spatial lag has 
been quantitatively observed under suspended-load-
dominated flows (Naqshband et al. 2017), whereas there 
was no spatial lag in mixed-load flows (Naqshband et al. 
2014). Therefore, the flume experiments by Naqshband 
et  al. (2014, 2017) indicated that the increase in sus-
pended load flux could lead to the spatial lag between the 
dune crest and the location of the maximum sediment 
transport rate. Figures  3 and 4 show the data of plane 
beds with suspension plotted at a region separated from 
the data of plane beds without suspension. That is, the 
compilation of the dataset supports that the spatial lag is 
caused by the existence of the suspended load.

Further, the influence of suspended load on the for-
mation condition of bedforms has been demonstrated 
in the linear stability analyses by Nakasato and Izumi 
(2008). Nakasato and Izumi (2008) showed that the maxi-
mum Froude number for dune formation decreased by 
including the effect of suspended load; that is, the dune 
formation is partly suppressed. Although the results of 
linear analyses by Nakasato and Izumi (2008) were veri-
fied using the experimental data of dune and antidune 
of Guy et al. (1966), the hydraulic conditions of analyses 
were limited, and they did not make a comparison with 
the data of plane beds. In future theoretical research, it 
is required to analyze various conditions (e.g., sediment 
diameter and flow depth) and compare the results with 
the plane bed data.

4.3  Implication for rock record
Planar parallel lamination is often observed in ancient 
sedimentary successions and utilized to interpret the 
depositional environments (e.g., Clifton 1976; Plink-
Björklund 2005). For example, planar-laminated sand-
stones from shallow marine conditions are interpreted 
to be formed in nearshore environments where wave col-
lapse generates back-and-forth currents on the sea floor 
(Clifton 1976; Dumas and Arnott 2005; Vaucher et  al. 
2018).

In deep marine environments, turbidites may form 
planar laminations as the  Tb and  Td divisions (Bouma 
1962), although both may be absent (e.g., Sumner et al. 
2012). The origin of the  Tb division is attributed to 
plane bed deposition, whereas that of the  Td division is 
enigmatic (Middleton 1993; Talling et al. 2012). Follow-
ing the definitions of Southard and Boguchwal (1990), 
Talling et  al. (2012) argued that the origin of  Td divi-
sion in turbidites is not the lower plane beds because 
the lower plane beds occur only on the coarse-grained 
beds. However, our phase diagrams imply that the ori-
gin of planar laminae in sandstone cannot be presumed 

depending only on its particle size. Although Southard 
(1971) and Southard and Boguchwal (1990) suggested 
that lower plane beds cannot be formed with sediment 
finer than 0.7  mm in diameter, this study shows that 
fine-grained plane beds can develop at low-flow velocity 
(Figs. 3 and 4). Also, Hesse and Chough (1980) pointed 
out the possibility of the existence of fine-grained plane 
beds at low shear stress based on the flume experiments 
using silt-sized sediment by Rees (1966). Fine-grained 
plane beds can be stable at low shear stress because the 
critical shear stress to maintain the sediment move-
ment under supersaturated flows where the sediment 
is already suspended is different from the critical shear 
stress to erode the sediment from the bed (Rees 1966). 
Also,  Td division is composed of silt- and clay-sized 
particles (Bouma 1962), and the cohesion is one of the 
possible mechanisms for the formation of plane beds in 
open-channel flows (Schindler 2015). Therefore, gaps 
in the existing data to explain the origin of  Td division 
should be filled by flume experiments of sediment-
laden gravity currents and open-channel flows under 
controlled conditions.

5  Conclusions
In this study, we compiled 935 flume and field datasets 
pertaining to plane beds and analyzed the dataset in 
the nondimensional parametric space. The results of 
our analysis indicate that the formation conditions of 
plane beds do not show a clear boundary at the thresh-
old condition of sediment motion, a unique value of par-
ticle diameter, or a Froude number of unity, which have 
been traditionally used to define lower and upper plane 
beds. Conversely, the formation conditions of plane beds 
are distributed in two separate regions, a lower plane 
bed dominated by bed load and an upper plane bed in 
which the lower boundary is the threshold condition for 
sediment suspension. This study demonstrates that sus-
pended load significantly contributes to the formation 
of plane beds. Further experiments are needed to under-
stand the mechanisms that can produce fine-grained 
plane beds in flows with low-bed shear stress.
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