An experimental study on the rate and mechanism of capillary rise in sandstone
 Yuya Tsunazawa^{1}Email author,
 Tadashi Yokoyama^{2} and
 Naoki Nishiyama^{3}
DOI: 10.1186/s4064501600865
© Tsunazawa et al. 2016
Received: 31 October 2015
Accepted: 12 April 2016
Published: 28 April 2016
Abstract
The LucasWashburn equation is a fundamental expression used to describe capillary rise in geologic media on the basis of pore radius, liquid viscosity, surface tension, contact angle, and time. It is known that a radius value significantly smaller than the main pore radius must be used in the equation in order for the predictions to fit the experimentally measured values. To evaluate this gap between theoretical predictions and experimental data, we conducted several capillary rise experiments using Berea sandstone. First, to investigate conditions in which pores of any size are available for capillary rise, an experiment was conducted using a dried core. Next, to adjust the size distribution of pore water before the capillary rise, gas pressure was applied to a watersaturated core and water was expelled from pores of r > 10 μm; then, capillary rise was initiated. Under this condition, capillary rise occurred only in the pores of r > 10 μm. The same experiment was conducted for r = 3, 1, and 0.36 μm. When narrower pores were made available for capillary rise, the overall rate of rise decreased and approached the rate observed when the sample was dry initially. This observation suggests that the capillary rise in narrow pores plays a significant role in the overall rate. Based on these results, we propose a conceptual capillary rise model that considers differing radii in branched pores and provide an example of a quantitative description of capillary rise.
Keywords
Capillary rise Capillary pressure LucasWashburn equation Water expulsion method SandstoneBackground
Geologic media commonly have pores of various sizes and shapes. When water comes in contact with a geologic medium, it is drawn into the pores by capillary force. At equilibrium, the height of capillary rise in a vertical pipe with a radius of r at 20 °C is estimated to be 15, 1.5, and 0.15 m for r = 1, 10, and 100 μm, respectively. An understanding of the mechanism and rate of capillary rise is important when considering the transport of water in geologic media near the ground surface (i.e., imbibition and drying), associated processes such as rock weathering and soil formation, water availability to plants, and contaminant migration.
This is a fundamental equation for understanding capillary rise in pores. However, it has been found that the xt relationship predicted by the LW equation with simple assumptions (e.g., a constant, realistic r and a constant θ) does not agree well with measured, experimental data (Dullien et al. 1977; Hammecker et al. 1993). Methods to improve the LW equation involving change in contact angle (Einset 1996; Siebold et al. 2000; Heshmati and Piri 2014), nonuniformity of pore radius (Dullien et al. 1977; Erickson et al. 2002), tortuosity of pores (Benavente et al. 2002; Cai et al. 2014), noncircularity of the cross section of pores (Benavente et al. 2002; Cai et al. 2014), and inertial effect and pore wall roughness especially at the earliest stage of capillary rise (Szekely et al. 1971) have been discussed. A geologic medium usually has a complex pore structure, and any of the variables τ, r, and θ can change depending on the position in the medium and the elapsed time of capillary rise. Therefore, it is often not easy to determine which factor most affects the overall rate of capillary rise.
For this study, several different experiments were performed using sandstone, each designed to evaluate the effects of pore size on the rate of capillary rise. We compare experimental results with theoretical predictions based on the LW equation, discuss the mechanism of capillary rise, and propose a conceptual model that can account for the experimental results.
Methods
Sample description
By inserting measured values of k, ϕ _{tra}, and r (1 × 10^{−5} m from Fig. 2) into Eq. 6, τ was calculated to be 3.19.
Experiment 1: measurement of capillary rise using a dried core
Experiment 2: measurement of capillary rise after controlling for the size distribution of pore water
where r is the radius of pore from which water is expelled (Yokoyama and Takeuchi 2009; Nishiyama et al. 2012; Nishiyama and Yokoyama 2014). Equation 7 shows that the minimum radius of empty pores after water expulsion decreases as ΔP _{gas} increases (Fig. 4b). Expelled water was wiped away with tissue, and pores larger than a given radius emptied. After this water expulsion treatment, the sample was weighed, and the capillary rise experiment was initiated (Fig. 3b). The water expulsion treatment was conducted for four pore radii using the same sample: the values of ΔP _{gas} applied were 146, 485, 1441, and 4000 hPa, corresponding to radii of 10, 3, 1, and 0.36 μm, respectively. For comparison, the capillary rise experiment was also carried out with the fully dried sample. In experiment 2, the position of the wet front could not be seen because the sample was sealed with resin. Therefore, the sample was removed from the apparatus intermittently and weighed to determine the amount of water absorbed. The temperature and relative humidity were 17.6–22.0 °C and 33.1–44.2 %, respectively (humidity was not measured during the experiments for r = 1 and 3 μm).
Experiment 3: measurement of the height profile of water saturation
Results and discussion
Height profile of water saturation
Time variation in capillary rise height in initially dry sandstone
The solution is equal to those of Hamraoui and Nylander (2002) and Fries and Dreyer (2008) if τ = 1. The most dominant pore radius in the rock sample is approximately 10 μm (Fig. 2); therefore, we initially assume r = 10 μm. As for θ, the assumption of cosθ = 1 (θ = 0°) has been used previously to analyze capillary rise in sandstone (Dullien et al. 1977; Hammecker and Jeannette 1994) and granitic rocks (Mosquera et al. 2000). In addition, Heshmati and Piri (2014) reported that if capillary numbers (μv/γ) are <~0.001, θ becomes ~10° (cosθ = 0.98) for the case of capillary rise in a glass tube. The capillary number of our sample was calculated to be <0.001 for x > 1 mm based on the measured value of v. The assumption of cosθ = 1, therefore, seems to be reasonable. However, the contact angle of quartz, the predominant mineral in Berea sandstone, has been reported to range between 0° and 54° (Jaňczuk et al. 1986). Therefore, we also considered the case of cosθ = 0.59 (θ = 54°) as an extreme case. Figure 6b shows the variation of water height with time, calculated by Eq. 11 with cosθ = 1 and 0.59 (γ = 0.0727 N/m at 20 °C) and plotted with the measured data. Calculated water heights were significantly higher than the measured values, both in the case of cosθ = 1 and 0.59.
Pore radius and cosθ (θ = 0°, 24°, 40°, 54°) values at which the measured and calculated values match best
cosθ  1  0.91  0.77  0.59 
r (μm)  0.35  0.39  0.46  0.60 
Capillary rise after controlling for the size distribution of pore water
A conceptual model for capillary rise
where r and l are the radius and the length of a component of the unit pore, respectively (Dullien et al. 1977). The summations represent overall components of the unit pore. In Eq. 12, the factor of 1/3 originally included by Dullien et al. (1977) is excluded because the factor corresponds to the effect of tortuosity, which is already taken into account in this study (Eq. 4 or Eq. 11). If r _{wide} = 10 μm, r _{0} = 30 μm, and l _{0} = l _{1} = 200 μm are assumed on the basis of grain size (Fig. 1) and pore size distribution (Fig. 2), r _{eff} is calculated to be 1.4 μm, which means that the rate of capillary rise in the rock is equivalent to that in a pore with a 1.4 μm radius, even though the pore radii of the rock are 10 and 30 μm. Therefore, this effect may partially explain the slow capillary rise indicated by our results. However, this effect is unlikely to be the sole factor; according to Dullien’s model (Dullien et al. 1977), the height of capillary rise is predicted to be similar between experiments started with dry samples and with samples subjected to water expulsion treatment prior to the experiment, as shown in Fig. 8a, b. This prediction is inconsistent with our results (Fig. 7f).
Inertia has also been considered to explain deviations between the measured rate of capillary rise and predictions made using the LW equation (e.g., Bosanquet 1923; Quéré 1997). Theoretical studies and experiments conducted using a capillary pipe demonstrated that the height of capillary rise dominated by inertial force is proportional to time (Quéré 1997; Siebold et al. 2000), whereas the LW equation shows that the height of capillary rise governed by viscous force is proportional to the square root of time. Because the height of capillary rise in our sample did not increase linearly with time (Fig. 6), the effect of inertia is likely to be negligible, at least for the time span considered in this study.
Conclusions
 (1)
A pore radius value significantly smaller than dominant pore radius of the rock had to be used to reproduce the experimental results using the LW equation, assuming cosθ = 1 and a uniform pore radius.
 (2)
In the experiment that was initiated with a dry sample, water saturation in the sample was relatively constant below approximately 70 % of the height of the wet front and decreased rapidly with increasing height toward the wet front.
 (3)
As the radius of the pores available for capillary rise decreased, the rate of capillary rise decreased and approached that of the initially dry sample.
 (4)
The effect of the nonuniformity of pore radii in a single flow path can explain the result of (1) at least partly but is unlikely to account for the result of (3). These results can be better explained by considering the capillary rise in branched pores with different pore radii.
Abbreviations
 LW:

LucasWashburn
Declarations
Acknowledgements
We thank two anonymous reviewers for their helpful comments.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
 Benavente D, Lock P, García Del Cura MÁ, Ordóñez S (2002) Predicting the capillary imbibition of porous rocks from microstructure. Transport Porous Med 49:59–76View ArticleGoogle Scholar
 Bosanquet H (1923) On the flow of liquids into capillary tubes. Philos Mag Ser 6:525–531View ArticleGoogle Scholar
 Cai J, Perfect E, Cheng CL, Hu X (2014) Generalized modeling of spontaneous imbibition based on HagenPoiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30:5142–5151View ArticleGoogle Scholar
 Carman PC (1956) Flow of gases through porous media. Elsevier, New YorkGoogle Scholar
 Dullien FAL, ElSayed MS, Batra VK (1977) Rate of capillary rise in porous media with nonuniform pores. J Colloid Interface Sci 60:497–506View ArticleGoogle Scholar
 Erickson D, Li D, Park CB (2002) Numerical simulations of capillarydriven flows in nonuniform crosssectional capillaries. J Colloid Interface Sci 250:422–430View ArticleGoogle Scholar
 Einset EO (1996) Capillary infiltration rates into porous media with applications to silcomp processing. J Am Ceram Soc 79:333–338View ArticleGoogle Scholar
 Fries N, Dreyer M (2008) The transition from inertial to viscous flow in capillary rise. J Colloid Interface Sci 327:125–128View ArticleGoogle Scholar
 Hammecker C, Mertz JD, Fischer C, Jeannette D (1993) A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transport Porous Med 12:125–141View ArticleGoogle Scholar
 Hammecker C, Jeannette D (1994) Modelling the capillary imbibition kinetics in sedimentary rocks: role of petrographical features. Transport Porous Med 17:285–303View ArticleGoogle Scholar
 Hamraoui A, Nylander T (2002) Analytical approach for the LucasWashburn equation. J Colloid Interface Sci 250:415–421View ArticleGoogle Scholar
 Heshmati M, Piri M (2014) Experimental investigation of dynamic contact angle capillary rise in tubes with circular and noncircular cross sections. Langmuir 30:14151–14162View ArticleGoogle Scholar
 Jaňczuk B, Chibowski E, Białopiotrowicz T (1986) Time dependence wettability of quartz with water. Chem Papers 40:349–356Google Scholar
 Mehrabian H, Gao P, Feng JJ (2011) Wicking flow through microchannels. Phys Fluids 23:122108View ArticleGoogle Scholar
 Mosquera MJ, Rivas T, Prieto B, Silva B (2000) Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J Colloid Interface Sci 222:41–45View ArticleGoogle Scholar
 Nishiyama N, Yokoyama T, Takeuchi S (2012) Size distributions of pore water and entrapped air during dryinginfiltration processes of sandstone characterized by waterexpulsion porosimetry. Water Resour Res 48, W09556View ArticleGoogle Scholar
 Nishiyama N, Yokoyama T (2014) Estimation of permeability of sedimentary rocks by applying waterexpulsion porosimetry to Katz and Thompson model. Eng Geol 177:75–82View ArticleGoogle Scholar
 Paterson MS (1983) The equivalent channel model for permeability and resistivity in fluidsaturated rock—a reappraisal. Mech Mater 2:345–352View ArticleGoogle Scholar
 Quéré D (1997) Inertial capillary. Europhys Lett 39:533–538View ArticleGoogle Scholar
 Sadjadi Z, Jung M, Seemann R, Rieger H (2015) Meniscus arrest during capillary rise in asymmetric microfluidic pore junctions. Langmuir 31:2600–2608View ArticleGoogle Scholar
 Siebold A, Nardin M, Schultz J, Walliser A, Oppliger M (2000) Effect of dynamic contact angle on capillary rise phenomena. Colloid Surface A 161:81–87View ArticleGoogle Scholar
 Szekely J, Neumann AW, Chuang YK (1971) The rate of capillary penetration and the applicability of the Washburn equation. J Colloid Interface Sci 35:273–278View ArticleGoogle Scholar
 Walsh JB, Brace WF (1984) The effect of pressure on porosity and the transport properties of rock. J Geophys Res 89:9425–9431View ArticleGoogle Scholar
 Yokoyama T, Takeuchi S (2009) Porosimetry of vesicular volcanic products by a waterexpulsion method and the relationship of pore characteristics to permeability. J Geophys Res 114, B02201Google Scholar
 Yokoyama T (2013) Characterization of the reaction and transport properties of porous rhyolite and its application to the quantitative understanding of the chemical weathering rate. Geochim Cosmochim Acta 118:295–311View ArticleGoogle Scholar
 Zhan X, Schwartz LM, Toksoz MN, Smith WC, Morgan FD (2010) Porescale modeling of electrical and fluid transport in Berea sandstone. Geophysics 75:135–142View ArticleGoogle Scholar